Low Horizontal Force Production Capacity during Sprinting as a Potential Risk Factor of Hamstring Injury in Football
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Population
2.3. Sprint Acceleration Mechanical Output Measurements
2.4. Exposure and Injury Data Collection
2.5. Sample Size Calculation
2.6. Statistical Analysis
3. Results
3.1. Population and Sprint Acceleration Mechanical Output Measurements
3.2. Hamstring Injuries
3.3. Associations between Sprint Horizontal Force Production Capacities and Hamstring Injuries
4. Discussion
4.1. Strengths and Limitations
4.2. Lower Maximal Horizontal Force Production as a Risk Factor for Hamstring Injury
4.3. The Multifactorial Nature of Hamstring Injury
4.4. Relevance of Regular Monitoring of Sprint Acceleration Mechanical Outputs over the Season
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ekstrand, J.; Waldén, M.; Hägglund, M. Hamstring injuries have increased by 4% annually in men’s professional football, since 2001: A 13-year longitudinal analysis of the UEFA Elite Club injury study. Br. J. Sports Med. 2016, 50, 731–737. [Google Scholar] [CrossRef] [Green Version]
- Ekstrand, J.; Healy, J.C.; Waldén, M.; Lee, J.C.; English, B.; Hägglund, M. Hamstring muscle injuries in professional football: The correlation of MRI findings with return to play. Br. J. Sports Med. 2011, 46, 112–117. [Google Scholar] [CrossRef] [Green Version]
- Morin, J.-B.; Bourdin, M.; Edouard, P.; Peyrot, N.; Samozino, P.; Lacour, J.-R. Mechanical determinants of 100-m sprint running performance. Graefes Arch. Clin. Exp. Ophthalmol. 2012, 112, 3921–3930. [Google Scholar] [CrossRef] [Green Version]
- Samozino, P.; Rabita, G.; Dorel, S.; Slawinski, J.; Peyrot, N.; De Villarreal, E.S.; Morin, J.-B. A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running. Scand. J. Med. Sci. Sports 2016, 26, 648–658. [Google Scholar] [CrossRef]
- Morin, J.-B.; Samozino, P. Interpreting Power-Force-Velocity Profiles for Individualized and Specific Training. Int. J. Sports Physiol. Perform. 2016, 11, 267–272. [Google Scholar] [CrossRef]
- Cross, M.; Lahti, J.; Brown, S.R.; Chedati, M.; Jimenez-Reyes, P.; Samozino, P.; Eriksrud, O.; Morin, J.-B. Training at maximal power in resisted sprinting: Optimal load determination methodology and pilot results in team sport athletes. PLoS ONE 2018, 13, e0195477. [Google Scholar] [CrossRef] [Green Version]
- Schache, A.G.; Dorn, T.W.; Blanch, P.D.; Brown, N.; Pandy, M. Mechanics of the Human Hamstring Muscles during Sprinting. Med. Sci. Sports Exerc. 2012, 44, 647–658. [Google Scholar] [CrossRef] [Green Version]
- Dorn, T.W.; Schache, A.; Pandy, M. Muscular strategy shift in human running: Dependence of running speed on hip and ankle muscle performance. J. Exp. Biol. 2012, 215, 2347. [Google Scholar] [CrossRef] [Green Version]
- Morin, J.B.; Gimenez, P.; Edouard, P.; Arnal, P.; Jiménez-Reyes, P.; Samozino, P.; Brughelli, M.; Mendiguchia, J. Sprint acceleration mechanics: The major role of hamstrings in horizontal force production. Front. Physiol. 2015, 6, 404. [Google Scholar] [CrossRef]
- Van Dyk, N.; Bahr, R.; Burnett, A.F.; Whiteley, R.; Bakken, A.; Mosler, A.; Farooq, A.; Witvrouw, E. A comprehensive strength testing protocol offers no clinical value in predicting risk of hamstring injury: A prospective cohort study of 413 professional football players. Br. J. Sports Med. 2017, 51, 1695–1702. [Google Scholar] [CrossRef]
- Ruddy, J.D.; Shield, A.; Maniar, N.; Williams, M.D.; Duhig, S.; Timmins, R.G.; Hickey, J.; Bourne, M.; Opar, D. Predictive Modeling of Hamstring Strain Injuries in Elite Australian Footballers. Med. Sci. Sports Exerc. 2018, 50, 906–914. [Google Scholar] [CrossRef] [Green Version]
- Van Dyk, N.; Behan, F.P.; Whiteley, R. Including the Nordic hamstring exercise in injury prevention programmes halves the rate of hamstring injuries: A systematic review and meta-analysis of 8459 athletes. Br. J. Sports Med. 2019, 53, 1362–1370. [Google Scholar] [CrossRef] [Green Version]
- Opar, D.A.; Timmins, R.G.; Behan, F.P.; Hickey, J.T.; van Dyk, N.; Price, K.; Maniar, N. Is Pre-season Eccentric Strength Testing During the Nordic Hamstring Exercise Associated with Future Hamstring Strain Injury? A Systematic Review and Meta-analysis. Sports Med. 2021, 1–11. [Google Scholar] [CrossRef]
- Chapman, A.; Caldwell, G. Factors determining changes in lower limb energy during swing in treadmill running. J. Biomech. 1983, 16, 69–77. [Google Scholar] [CrossRef]
- Jacobs, R.; Bobbert, M.F.; Schenau, G.J.V.I. Mechanical output from individual muscles during explosive leg extensions: The role of biarticular muscles. J. Biomech. 1996, 29, 513–523. [Google Scholar] [CrossRef]
- Quatman, C.E.; Hewett, T.E. Prediction and prevention of musculoskeletal injury: A paradigm shift in methodology. Br. J. Sports Med. 2009, 43, 1100–1107. [Google Scholar] [CrossRef]
- Mendiguchia, J.; Alentorn-Geli, E.; Brughelli, M. Hamstring strain injuries: Are we heading in the right direction? Br. J. Sports Med. 2011, 46, 81–85. [Google Scholar] [CrossRef] [Green Version]
- Mendiguchia, J.; Martinez-Ruiz, E.; Edouard, P.; Morin, J.-B.; Martinez-Martinez, F.; Idoate, F.; Mendez-Villanueva, A. A Multifactorial, Criteria-based Progressive Algorithm for Hamstring Injury Treatment. Med. Sci. Sports Exerc. 2017, 49, 1482–1492. [Google Scholar] [CrossRef]
- Cormie, P.; Mcguigan, M.R.; Newton, R.U. Developing Maximal Neuromuscular Power Part 1—Biological Basis of Maximal Power Production. Sports Med. 2011, 41, 17–38. [Google Scholar] [CrossRef]
- Mendiguchia, J.; Samozino, P.; Martinez-Ruiz, E.; Brughelli, M.; Schmikli, S.; Morin, J.-B.; Mendez-Villanueva, A. Progression of Mechanical Properties during On-field Sprint Running after Returning to Sports from a Hamstring Muscle Injury in Soccer Players. Int. J. Sports Med. 2014, 35, 690–695. [Google Scholar] [CrossRef] [Green Version]
- Mendiguchia, J.; Edouard, P.; Samozino, P.; Brughelli, M.; Cross, M.; Ross, A.; Gill, N.; Morin, J.-B. Field monitoring of sprinting power–force–velocity profile before, during and after hamstring injury: Two case reports. J. Sports Sci. 2015, 34, 535–541. [Google Scholar] [CrossRef]
- Tol, J.L.; Hamilton, B.; Eirale, C.; Muxart, P.; Jacobsen, P.; Whiteley, R. At return to play following hamstring injury the majority of professional football players have residual isokinetic deficits. Br. J. Sports Med. 2014, 48, 1364–1369. [Google Scholar] [CrossRef]
- Maniar, N.; Shield, A.; Williams, M.D.; Timmins, R.G.; Opar, D. Hamstring strength and flexibility after hamstring strain injury: A systematic review and meta-analysis. Br. J. Sports Med. 2016, 50, 909–920. [Google Scholar] [CrossRef]
- Green, B.; Bourne, M.N.; Van Dyk, N.; Pizzari, T. Recalibrating the risk of hamstring strain injury (HSI): A 2020 systematic review and meta-analysis of risk factors for index and recurrent hamstring strain injury in sport. Br. J. Sports Med. 2020, 54, 1081–1088. [Google Scholar] [CrossRef]
- Morin, J.-B.; Samozino, P.; Murata, M.; Cross, M.; Nagahara, R. A simple method for computing sprint acceleration kinetics from running velocity data: Replication study with improved design. J. Biomech. 2019, 94, 82–87. [Google Scholar] [CrossRef] [Green Version]
- Timpka, T.; Alonso, J.-M.; Jacobsson, J.; Junge, A.; Branco, P.; Clarsen, B.; Kowalski, J.; Mountjoy, M.; Nilsson, S.; Pluim, B.; et al. Injury and illness definitions and data collection procedures for use in epidemiological studies in Athletics (track and field): Consensus statement. Br. J. Sports Med. 2014, 48, 483–490. [Google Scholar] [CrossRef] [Green Version]
- Bujang, M.A.; Sa’At, N.; Sidik, T.M.I.T.A.B.; Joo, L.C. Sample Size Guidelines for Logistic Regression from Observational Studies with Large Population: Emphasis on the Accuracy Between Statistics and Parameters Based on Real Life Clinical Data. Malays. J. Med. Sci. 2018, 25, 122–130. [Google Scholar] [CrossRef]
- Nielsen, R.O.; Bertelsen, M.L.; Ramskov, D.; Møller, M.; Hulme, A.; Theisen, D.; Finch, C.F.; Fortington, L.V.; Mansournia, M.A.; Parner, E.T. Time-to-event analysis for sports injury research part 2: Time-varying outcomes. Br. J. Sports Med. 2019, 53, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Bahr, R. Risk factors for sports injuries—A methodological approach. Br. J. Sports Med. 2003, 37, 384–392. [Google Scholar] [CrossRef]
- Jiménez-Reyes, P.; García-Ramos, A.; Párraga-Montilla, J.A.; Morcillo-Losa, J.A.; Cuadrado-Peñafiel, V.; Castaño-Zambudio, A.; Samozino, P.; Morin, J.-B. Seasonal Changes in the Sprint Acceleration Force-Velocity Profile of Elite Male Soccer Players. J. Strength Cond. Res. 2020. [Google Scholar] [CrossRef]
- Opar, D.A.; Williams, M.D.; Shield, A. Hamstring Strain Injuries. Sports Med. 2012, 42, 209–226. [Google Scholar] [CrossRef]
- Freckleton, G.; Pizzari, T. Risk factors for hamstring muscle strain injury in sport: A systematic review and meta-analysis. Br. J. Sports Med. 2012, 47, 351–358. [Google Scholar] [CrossRef] [Green Version]
- Van Dyk, N.; Bahr, R.; Whiteley, R.; Tol, J.L.; Kumar, B.D.; Hamilton, B.; Farooq, A.; Witvrouw, E. Hamstring and Quadriceps Isokinetic Strength Deficits Are Weak Risk Factors for Hamstring Strain Injuries. Am. J. Sports Med. 2016, 44, 1789–1795. [Google Scholar] [CrossRef]
- Croisier, J.-L.; Ganteaume, S.; Binet, J.; Genty, M.; Ferret, J.-M. Strength Imbalances and Prevention of Hamstring Injury in Professional Soccer Players. Am. J. Sports Med. 2008, 36, 1469–1475. [Google Scholar] [CrossRef]
- Timmins, R.G.; Bourne, M.; Shield, A.; Williams, M.D.; Lorenzen, C.; Opar, D. Short biceps femoris fascicles and eccentric knee flexor weakness increase the risk of hamstring injury in elite football (soccer): A prospective cohort study. Br. J. Sports Med. 2015, 50, 1524–1535. [Google Scholar] [CrossRef] [PubMed]
- Hamner, S.R.; Delp, S.L. Muscle contributions to fore-aft and vertical body mass center accelerations over a range of running speeds. J. Biomech. 2013, 46, 780–787. [Google Scholar] [CrossRef] [Green Version]
- Wild, J.J.; Bezodis, I.N.; North, J.S.; Bezodis, N.E. Differences in step characteristics and linear kinematics between rugby players and sprinters during initial sprint acceleration. Eur. J. Sport Sci. 2018, 18, 1–11. [Google Scholar] [CrossRef]
- Schuermans, J.; Van Tiggelen, D.; Palmans, T.; Danneels, L.; Witvrouw, E. Deviating running kinematics and hamstring injury susceptibility in male soccer players: Cause or consequence? Gait Posture 2017, 57, 270–277. [Google Scholar] [CrossRef]
- Julia, M.; Bonnin, A.; Croisier, J.-L.; Pereira, B.; Morand, D.; Peyrin, J.-C.; Dusfour, B.; Dupeyron, A.; Coudeyre, E. Isokinetic thigh muscle strength testing in professional French Rugby Union players: A database as a reference in pre-season strength rehabilitation rather than the controlateral limb. Ann. Phys. Rehabil. Med. 2020, 2020, 101370. [Google Scholar] [CrossRef]
- Schache, A.G.; Lai, A.K.M.; Brown, N.; Crossley, K.M.; Pandy, M.G. Lower-limb joint mechanics during maximum acceleration sprinting. J. Exp. Biol. 2019, 222, jeb209460. [Google Scholar] [CrossRef]
- Meeuwisse, W.H.; Tyreman, H.; Hagel, B.; Emery, C. A Dynamic Model of Etiology in Sport Injury: The Recursive Nature of Risk and Causation. Clin. J. Sport Med. 2007, 17, 215–219. [Google Scholar] [CrossRef] [PubMed]
- Bittencourt, N.; Meeuwisse, W.H.; Mendonça, L.; Nettel-Aguirre, A.; Ocarino, J.; Fonseca, S. Complex systems approach for sports injuries: Moving from risk factor identification to injury pattern recognition—Narrative review and new concept. Br. J. Sports Med. 2016, 50, 1309–1314. [Google Scholar] [CrossRef] [Green Version]
- Buckthorpe, M.; Wright, S.; Bruce-Low, S.; Nanni, G.; Sturdy, T.; Gross, A.S.; Bowen, L.; Styles, B.; Della Villa, S.; Davison, M.; et al. Recommendations for hamstring injury prevention in elite football: Translating research into practice. Br. J. Sports Med. 2018, 53, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Lahti, J.; Mendiguchia, J.; Ahtiainen, J.; Anula, L.; Kononen, T.; Kujala, M.; Matinlauri, A.; Peltonen, V.; Thibault, M.; Toivonen, R.-M.; et al. Multifactorial individualised programme for hamstring muscle injury risk reduction in professional football: Protocol for a prospective cohort study. BMJ Open Sport Exerc. Med. 2020, 6, 000758. [Google Scholar] [CrossRef]
- Hickey, J.T.; Opar, D.A.; Weiss, L.J.; Heiderscheit, B.C. Current clinical concepts: Hamstring strain injury rehabilitation. J. Athl. Train. 2021. [Google Scholar] [CrossRef]
- Engel, G.L. The need for a new medical model: A challenge for biomedicine. Science 1977, 196, 129–196. [Google Scholar] [CrossRef]
- Bolling, C.; Van Mechelen, W.; Pasman, H.R.; Verhagen, E. Context Matters: Revisiting the First Step of the ‘Sequence of Prevention’ of Sports Injuries. Sports Med. 2018, 48, 2227–2234. [Google Scholar] [CrossRef] [Green Version]
- Hill, D.; Shaw, G. A qualitative examination of choking under pressure in team sport. Psychol. Sport Exerc. 2013, 14, 103–110. [Google Scholar] [CrossRef]
- Van Der Horst, N.; Backx, F.; A Goedhart, E.; Huisstede, B.M. Return to play after hamstring injuries in football (soccer): A worldwide Delphi procedure regarding definition, medical criteria and decision-making. Br. J. Sports Med. 2017, 51, 1583–1591. [Google Scholar] [CrossRef] [Green Version]
- McCall, A.; The EFP-Group; Pruna, R.; Van Der Horst, N.; Dupont, G.; Buchheit, M.; Coutts, A.J.; Impellizzeri, F.M.; Fanchini, M. Exercise-Based Strategies to Prevent Muscle Injury in Male Elite Footballers: An Expert-Led Delphi Survey of 21 Practitioners Belonging to 18 Teams from the Big-5 European Leagues. Sports Med. 2020, 50, 1667–1681. [Google Scholar] [CrossRef]
- Edouard, P.; Hollander, K.; Navarro, L.; Lacourpaille, L.; Morales-Artacho, A.J.; Hanon, C.; Morin, J.-B.; Le Garrec, S.; Branco, P.; Junge, A.; et al. Lower limb muscle injury location shift from posterior lower leg to hamstring muscles with increasing discipline-related running velocity in international athletics championships. J. Sci. Med. Sport 2021, 24, 653–659. [Google Scholar] [CrossRef]
- Morin, J.-B.; Le Mat, Y.; Osgnach, C.; Barnabò, A.; Pilati, A.; Samozino, P.; di Prampero, P.E. Individual acceleration-speed profile in-situ: A proof of concept in professional football players. J. Biomech. 2021, 123, 110524. [Google Scholar] [CrossRef]
- Edouard, P.; Mendiguchia, J.; Guex, K.; Lahti, J.; Samozino, P.; Morin, J.-B. Sprinting: A potential vaccine for hamstring injury? Sport Perf. Sci. Rep. 2019, 48, 718. [Google Scholar] [CrossRef]
Total | Per Groups | Per History of Hamstring Injury | ||||
---|---|---|---|---|---|---|
Japan | France | Finland | No Previous Hamstring Injury | History of Previous Hamstring Injury | ||
Number (n (%)) | 284 (100) | 110 (39) | 56 (20) | 118 (42) | 224 (79) | 60 (21) |
Anthropometrical parameters (mean (SD)) | ||||||
Age (years) | 21.4 (4.3) | 20.0 (1.0) c** | 18.2 (1.8) | 24.3 (5.3) a,b*** | 21.3 (4.1) | 22.1 (5.2) |
Height (cm) | 176.7 (7.2) | 172.7 (5.2) c*** | 177.0 (6.7) | 180.4 (7.0) a***,b** | 176.7 (7.2) | 177.0 (7.0) |
Mass (kg) | 71.3 (8.4) | 66.9 (5.3) | 68.1 (8.1) | 77.0 (7.6) a,b*** | 71.4 (8.5) | 71.2 (8.3) |
History of hamstring muscle injury | ||||||
Number of players (%) | 60 (21) | 16 (15) | 14 (25) | 30 (25) | 0 (0) | 60 (100) |
Sprint acceleration mechanical outputs (mean (SD)) | ||||||
Pmax (W·kg−1) | 16.8 (1.6) | 16.3 (1.4) c*** | 17.3 (1.8) | 16.9 (1.6) a** | 16.7 (1.6) | 17.1 (1.7) |
FH0 (N·kg−1) | 7.5 (0.6) | 7.4 (0.6) | 7.5 (0.6) | 7.5 (0.6) | 7.5 (0.6) | 7.5 (0.6) |
V0 (m·s−1) | 9.0 (0.5) | 8.8 (0.5) c*** | 9.3 (0.6) | 9.1 (0.4) a***,b** | 9.0 (0.5) d* | 9.1 (0.5) |
F-v profile | −0.83 (0.08) | −0.84 (0.09)c* | −0.81 (0.09) | −0.83 (0.07) | −0.84 (0.09) | −0.82 (0.08) |
New hamstring injury | ||||||
Number of players with new hamstring injury (n (%)) | 38 (13) | 6 (6) | 12 (21) | 20 (17) | 16 (7) | 22 (37) |
Number of new hamstring injury (n) | 47 | 8 | 16 | 23 | 19 | 19 |
Incidence of new hamstring injury (per 1000 h of football (95% CI)) | 0.4 (0.3 to 0.5) | 0.1 (0.0 to 0.2) | 0.8 (0.5 to 1.2) | 0.6 (0.4 to 0.9) | 0.2 (0.1 to 0.3) | 0.8 (0.4 to 1.2) |
Model 1 (n = 284 Players) | Model 2 (n = 801 Player Measurements) | |||||
---|---|---|---|---|---|---|
Explanatory Variables | HR | (95% CI) | p-Value | HR | (95% CI) | p-Value |
FH0 (N·kg−1) | 1.27 | (0.70 to 2.33) | 0.43 | 2.67 | (1.51 to 4.73) | <0.001 |
V0 (m·s−1) | 1.31 | (0.66 to 2.60) | 0.44 | 1.49 | (0.70 to 3.18) | 0.30 |
Concordance (Harrell’s c-index) | 0.817 | (0.811 to 0.823) | 0.937 | (0.931 to 0.943) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Edouard, P.; Lahti, J.; Nagahara, R.; Samozino, P.; Navarro, L.; Guex, K.; Rossi, J.; Brughelli, M.; Mendiguchia, J.; Morin, J.-B. Low Horizontal Force Production Capacity during Sprinting as a Potential Risk Factor of Hamstring Injury in Football. Int. J. Environ. Res. Public Health 2021, 18, 7827. https://doi.org/10.3390/ijerph18157827
Edouard P, Lahti J, Nagahara R, Samozino P, Navarro L, Guex K, Rossi J, Brughelli M, Mendiguchia J, Morin J-B. Low Horizontal Force Production Capacity during Sprinting as a Potential Risk Factor of Hamstring Injury in Football. International Journal of Environmental Research and Public Health. 2021; 18(15):7827. https://doi.org/10.3390/ijerph18157827
Chicago/Turabian StyleEdouard, Pascal, Johan Lahti, Ryu Nagahara, Pierre Samozino, Laurent Navarro, Kenny Guex, Jérémy Rossi, Matt Brughelli, Jurdan Mendiguchia, and Jean-Benoît Morin. 2021. "Low Horizontal Force Production Capacity during Sprinting as a Potential Risk Factor of Hamstring Injury in Football" International Journal of Environmental Research and Public Health 18, no. 15: 7827. https://doi.org/10.3390/ijerph18157827
APA StyleEdouard, P., Lahti, J., Nagahara, R., Samozino, P., Navarro, L., Guex, K., Rossi, J., Brughelli, M., Mendiguchia, J., & Morin, J. -B. (2021). Low Horizontal Force Production Capacity during Sprinting as a Potential Risk Factor of Hamstring Injury in Football. International Journal of Environmental Research and Public Health, 18(15), 7827. https://doi.org/10.3390/ijerph18157827