Relationship of Hydroxychloroquine and Ophthalmic Complications in Patients with Type 2 Diabetes in Taiwan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Patient Selection
2.3. Hydroxychloroquine and Covariates
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rainsford, K.D.; Parke, A.L.; Clifford-Rashotte, M.; Kean, W.F. Therapy and pharmacological properties of hydroxychloroquine and chloroquine in treatment of systemic lupus erythematosus, rheumatoid arthritis and related diseases. Inflammopharmacology 2015, 23, 231–269. [Google Scholar] [CrossRef] [PubMed]
- Penn, S.K.; Kao, A.H.; Schott, L.L.; Elliott, J.R.; Toledo, F.G.; Kuller, L.; Manzi, S.; Wasko, M.C. Hydroxychloroquine and glycemia in women with rheumatoid arthritis and systemic lupus erythematosus. J. Rheumatol. 2010, 37, 1136–1142. [Google Scholar] [CrossRef] [Green Version]
- Hage, M.P.; Al-Badri, M.R.; Azar, S.T. A favorable effect of hydroxychloroquine on glucose and lipid metabolism beyond its anti-inflammatory role. Ther. Adv. Endocrinol. Metab. 2014, 5, 77–85. [Google Scholar] [CrossRef]
- Pilla, S.J.; Quan, A.Q.; Germain-Lee, E.L.; Hellmann, D.B.; Mathioudakis, N.N. Immune-Modulating Therapy for Rheumatologic Disease: Implications for Patients with Diabetes. Curr. Diabetes Rep. 2016, 16, 91. [Google Scholar] [CrossRef]
- Maiorino, M.I.; Bellastella, G.; Giugliano, D.; Esposito, K. Cooling down inflammation in type 2 diabetes: How strong is the evidence for cardiometabolic benefit? Endocrine 2017, 55, 360–365. [Google Scholar] [CrossRef]
- Ozen, G.; Pedro, S.; Holmqvist, M.E.; Avery, M.; Wolfe, F.; Michaud, K. Risk of diabetes mellitus associated with disease-modifying antirheumatic drugs and statins in rheumatoid arthritis. Ann. Rheum. Dis. 2017, 76, 848–854. [Google Scholar] [CrossRef]
- Rempenault, C.; Combe, B.; Barnetche, T.; Gaujoux-Viala, C.; Lukas, C.; Morel, J.; Hua, C. Metabolic and cardiovascular benefits of hydroxychloroquine in patients with rheumatoid arthritis: A systematic review and meta-analysis. Ann. Rheum. Dis. 2018, 77, 98–103. [Google Scholar] [CrossRef]
- Chen, T.H.; Lai, T.Y.; Wang, Y.H.; Chiou, J.Y.; Hung, Y.M.; Wei, J.C. Hydroxychloroquine was associated with reduced risk of new-onset diabetes mellitus in patients with Sjögren syndrome. Qjm 2019, 112, 757–762. [Google Scholar] [CrossRef] [PubMed]
- Wondafrash, D.Z.; Desalegn, T.Z.; Yimer, E.M.; Tsige, A.G.; Adamu, B.A.; Zewdie, K.A. Potential Effect of Hydroxychloroquine in Diabetes Mellitus: A Systematic Review on Preclinical and Clinical Trial Studies. J. Diabetes Res. 2020, 2020, 5214751. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.M.; Lin, C.H.; Lan, T.H.; Chen, H.H.; Chang, S.N.; Chen, Y.H.; Wang, J.S.; Hung, W.T.; Lan, J.L.; Chen, D.Y. Hydroxychloroquine reduces risk of incident diabetes mellitus in lupus patients in a dose-dependent manner: A population-based cohort study. Rheumatol. (Oxf.) 2015, 54, 1244–1249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solomon, D.H.; Massarotti, E.; Garg, R.; Liu, J.; Canning, C.; Schneeweiss, S. Association between disease-modifying antirheumatic drugs and diabetes risk in patients with rheumatoid arthritis and psoriasis. JAMA 2011, 305, 2525–2531. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.H.; Chen, D.Y.; Lin, C.C.; Chen, Y.M.; Lai, K.L.; Lin, C.H. Association between use of disease-modifying antirheumatic drugs and diabetes in patients with ankylosing spondylitis, rheumatoid arthritis, or psoriasis/psoriatic arthritis: A nationwide, population-based cohort study of 84,989 patients. Ther. Clin. Risk Manag. 2017, 13, 583–592. [Google Scholar] [CrossRef] [Green Version]
- Alberti, K.G.; Zimmet, P.Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet. Med. 1998, 15, 539–553. [Google Scholar] [CrossRef]
- Zhou, B.; Lu, Y.; Hajifathalian, K.; Bentham, J.; Di Cesare, M.; Danaei, G.; Bixby, H.; Cowan, M.J.; Ali, M.K.; Taddei, C.; et al. Worldwide trends in diabetes since 1980: A pooled analysis of 751 population-based studies with 4.4 million participants. Lancet 2016, 387, 1513–1530. [Google Scholar] [CrossRef] [Green Version]
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatterjee, S.; Khunti, K.; Davies, M.J. Type 2 diabetes. Lancet 2017, 389, 2239–2251. [Google Scholar] [CrossRef]
- Cheung, N.; Mitchell, P.; Wong, T.Y. Diabetic retinopathy. Lancet 2010, 376, 124–136. [Google Scholar] [CrossRef]
- Tonade, D.; Kern, T.S. Photoreceptor cells and RPE contribute to the development of diabetic retinopathy. Prog. Retin. Eye Res. 2021, 83, 100919. [Google Scholar] [CrossRef]
- Jo, D.H.; Yun, J.H.; Cho, C.S.; Kim, J.H.; Kim, J.H.; Cho, C.H. Interaction between microglia and retinal pigment epithelial cells determines the integrity of outer blood-retinal barrier in diabetic retinopathy. Glia 2019, 67, 321–331. [Google Scholar] [CrossRef]
- Xia, T.; Rizzolo, L.J. Effects of diabetic retinopathy on the barrier functions of the retinal pigment epithelium. Vision Res. 2017, 139, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Sparrow, J.R.; Hicks, D.; Hamel, C.P. The retinal pigment epithelium in health and disease. Curr. Mol. Med. 2010, 10, 802–823. [Google Scholar] [CrossRef]
- Caceres, P.S.; Rodriguez-Boulan, E. Retinal pigment epithelium polarity in health and blinding diseases. Curr. Opin. Cell Biol. 2020, 62, 37–45. [Google Scholar] [CrossRef]
- Beranova-Giorgianni, S.; Giorgianni, F. Proteomics of Human Retinal Pigment Epithelium (RPE) Cells. Proteomes 2018, 6, 22. [Google Scholar] [CrossRef] [Green Version]
- Lakkaraju, A.; Umapathy, A.; Tan, L.X.; Daniele, L.; Philp, N.J.; Boesze-Battaglia, K.; Williams, D.S. The cell biology of the retinal pigment epithelium. Prog. Retin. Eye Res. 2020, 78, 100846. [Google Scholar] [CrossRef]
- Schroeder, R.L.; Gerber, J.P. Chloroquine and hydroxychloroquine binding to melanin: Some possible consequences for pathologies. Toxicol. Rep. 2014, 1, 963–968. [Google Scholar] [CrossRef] [Green Version]
- Pasadhika, S.; Fishman, G.A. Effects of chronic exposure to hydroxychloroquine or chloroquine on inner retinal structures. Eye (Lond.) 2010, 24, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Bhavsar, K.V.; Mukkamala, L.K.; Freund, K.B. Multimodal imaging in a severe case of hydroxychloroquine toxicity. Ophthalmic Surg. Lasers Imaging Retin. 2015, 46, 377–379. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, I.H.; Sharma, S.; Luqmani, R.; Downes, S.M. Hydroxychloroquine retinopathy. Eye (Lond) 2017, 31, 828–845. [Google Scholar] [CrossRef] [PubMed]
- Korthagen, N.M.; Bastiaans, J.; van Meurs, J.C.; van Bilsen, K.; van Hagen, P.M.; Dik, W.A. Chloroquine and Hydroxychloroquine Increase Retinal Pigment Epithelial Layer Permeability. J. Biochem. Mol. Toxicol. 2015, 29, 299–304. [Google Scholar] [CrossRef]
- Solomon, D.H.; Garg, R.; Lu, B.; Todd, D.J.; Mercer, E.; Norton, T.; Massarotti, E. Effect of hydroxychloroquine on insulin sensitivity and lipid parameters in rheumatoid arthritis patients without diabetes mellitus: A randomized, blinded crossover trial. Arthritis Care Res. (Hoboken) 2014, 66, 1246–1251. [Google Scholar] [CrossRef]
- Mercer, E.; Rekedal, L.; Garg, R.; Lu, B.; Massarotti, E.M.; Solomon, D.H. Hydroxychloroquine improves insulin sensitivity in obese non-diabetic individuals. Arthritis Res. Ther. 2012, 14, R135. [Google Scholar] [CrossRef] [Green Version]
- Halaby, M.J.; Kastein, B.K.; Yang, D.Q. Chloroquine stimulates glucose uptake and glycogen synthase in muscle cells through activation of Akt. Biochem. Biophys. Res. Commun. 2013, 435, 708–713. [Google Scholar] [CrossRef]
- Kumar, V.; Singh, M.P.; Singh, A.P.; Pandey, M.S.; Kumar, S.; Kumar, S. Efficacy and safety of hydroxychloroquine when added to stable insulin therapy in combination with metformin and gimepiride in patients with type 2 diabetes compare to sitagliptin. Int. J. Basic Clin. Pharmacol. 2018, 7, 1959–1964. [Google Scholar] [CrossRef]
- Chakravorty, S.; Purkait, I.; Pareek, A.; Talware, A. Hydroxychloroquine: Looking into the Future. Rom. J. Diabetes Nutr. Metab. Dis. 2017, 24, 369–375. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, M.; Levy, Y. The association between hydroxychloroquine treatment and cardiovascular morbidity among rheumatoid arthritis patients. Oncotarget 2018, 9, 6615–6622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Halm, V.P.; Nurmohamed, M.T.; Twisk, J.W.; Dijkmans, B.A.; Voskuyl, A.E. Disease-modifying antirheumatic drugs are associated with a reduced risk for cardiovascular disease in patients with rheumatoid arthritis: A case control study. Arthritis Res. Ther. 2006, 8, R151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, T.S.; Wasko, M.C.; Tang, X.; Vedamurthy, D.; Yan, X.; Cote, J.; Bili, A. Hydroxychloroquine Use Is Associated With Decreased Incident Cardiovascular Events in Rheumatoid Arthritis Patients. J. Am. Heart Assoc. 2016, 5, e002867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanay, A.; Leibovitz, E.; Frayman, A.; Zimlichman, R.; Shargorodsky, M.; Gavish, D. Vascular elasticity of systemic lupus erythematosus patients is associated with steroids and hydroxychloroquine treatment. Ann. N. Y. Acad. Sci. 2007, 1108, 24–34. [Google Scholar] [CrossRef]
- Achuthan, S.; Ahluwalia, J.; Shafiq, N.; Bhalla, A.; Pareek, A.; Chandurkar, N.; Malhotra, S. Hydroxychloroquine’s Efficacy as an Antiplatelet Agent Study in Healthy Volunteers: A Proof of Concept Study. J. Cardiovasc. Pharmacol. Ther. 2015, 20, 174–180. [Google Scholar] [CrossRef]
- Rosa, M.D.; Distefano, G.; Gagliano, C.; Rusciano, D.; Malaguarnera, L. Autophagy in Diabetic Retinopathy. Curr. Neuropharmacol. 2016, 14, 810–825. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Tang, L.; Xin, G.; Li, S.; Ma, L.; Xu, Y.; Zhuang, M.; Xiong, Q.; Wei, Z.; Xing, Z.; et al. Oxidative stress mediated by lipid metabolism contributes to high glucose-induced senescence in retinal pigment epithelium. Free Radic. Biol. Med. 2019, 130, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Yen, C.Y.; Lee, P.H.; Yen, J.C.; Chen, C.C.; Hu, H.Y.; Tseng, P.C. Current screening practice in patients under long-term hydroxychloroquine medication in Taiwan: A nationwide population-based cohort study. Med. (Baltim.) 2019, 98, e15122. [Google Scholar] [CrossRef]
- Hsia, S.H.; Duran, P.; Lee, M.L.; Davidson, M.B. Randomized controlled trial comparing hydroxychloroquine with pioglitazone as third-line agents in type 2 diabetic patients failing metformin plus a sulfonylurea: A pilot study. J. Diabetes 2020, 12, 91–94. [Google Scholar] [CrossRef]
- Marmor, M.F.; Kellner, U.; Lai, T.Y.; Lyons, J.S.; Mieler, W.F. Revised recommendations on screening for chloroquine and hydroxychloroquine retinopathy. Ophthalmology 2011, 118, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Marmor, M.F.; Kellner, U.; Lai, T.Y.; Melles, R.B.; Mieler, W.F. Recommendations on Screening for Chloroquine and Hydroxychloroquine Retinopathy (2016 Revision). Ophthalmology 2016, 123, 1386–1394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | Case | Control | |||
---|---|---|---|---|---|
n | % | n | % | p-Value | |
Total | 5550 | 5550 | |||
Subgroups | |||||
HCQ | 99 | 1.8 | 93 | 1.7 | 0.662 |
Age | 0.743 | ||||
<40 | 202 | 3.6 | 195 | 3.5 | |
40–65 | 3520 | 63.4 | 3491 | 62.9 | |
≥65 | 1828 | 32.9 | 1864 | 33.6 | |
Mean ± SD | 60.0 ± 11.3 | 60.1 ± 11.3 | 0.643 | ||
Sex | 1 | ||||
Female | 2695 | 48.6 | 2695 | 48.6 | |
Male | 2855 | 51.4 | 2855 | 51.4 | |
Hypertension | 3651 | 65.8 | 3372 | 60.8 | <0.001 |
Hyperlipidemia | 3213 | 57.9 | 2553 | 46.0 | <0.001 |
Rheumatoid arthritis | 76 | 1.4 | 88 | 1.6 | 0.345 |
Ankylosing spondylitis | 23 | 0.4 | 17 | 0.3 | 0.342 |
Systemic lupus erythematosus | 4 | 0.1 | 7 | 0.1 | 0.365 |
Sjogren’s syndrome | 48 | 0.9 | 34 | 0.6 | 0.121 |
Variables | cOR | 95% C.I. | p-Value | aOR † | 95% C.I. | p-Value |
---|---|---|---|---|---|---|
HCQ | ||||||
No | Reference | Reference | ||||
Yes | 1.07 | 0.80–1.42 | 0.663 | 1.10 | 0.81–1.49 | 0.526 |
Hypertension | 1.27 | 1.17–1.38 | <0.001 | 1.21 | 1.11–1.31 | <0.001 |
Hyperlipidemia | 1.68 | 1.55–1.82 | <0.001 | 1.65 | 1.52–1.79 | <0.001 |
Rheumatoid arthritis | 0.86 | 0.64–1.17 | 0.349 | 0.79 | 0.57–1.10 | 0.163 |
Ankylosing Spondylitis | 1.35 | 0.72–2.53 | 0.345 | 1.28 | 0.68–2.42 | 0.448 |
Systemic Lupus Erythematosus | 0.57 | 0.17–1.95 | 0.372 | 0.47 | 0.13–1.66 | 0.239 |
Sjogren’s syndrome | 1.42 | 0.91–2.22 | 0.119 | 1.44 | 0.92–2.27 | 0.114 |
Variables | HCQ | Non-HCQ | |||||
---|---|---|---|---|---|---|---|
n | Complication | n | Complication | OR | 95% C.I. | p-Value | |
Age a | |||||||
<40 | 6 | 5 | 391 | 197 | 6.63 | 0.76–58.17 | 0.088 |
40–65 | 116 | 59 | 6895 | 3461 | 1.01 | 0.70–1.47 | 0.944 |
≥65 | 70 | 35 | 3622 | 1793 | 1.00 | 0.62–1.62 | 0.993 |
Sex b | |||||||
Female | 151 | 72 | 5239 | 2623 | 1.01 | 0.71–1.43 | 0.971 |
Male | 41 | 27 | 5669 | 2828 | 1.75 | 0.90–3.39 | 0.096 |
Hypertension c | |||||||
No | 70 | 31 | 4007 | 1868 | 0.99 | 0.59–1.66 | 0.974 |
Yes | 122 | 68 | 6901 | 3583 | 1.18 | 0.81–1.71 | 0.397 |
Hyperlipidemia d | |||||||
No | 87 | 35 | 5247 | 2302 | 0.85 | 0.54–1.36 | 0.507 |
Yes | 105 | 64 | 5661 | 3149 | 1.33 | 0.88–2.01 | 0.170 |
Rheumatoid arthritis e | |||||||
No | 149 | 81 | 10,787 | 5393 | 1.14 | 0.82–1.58 | 0.440 |
Yes | 43 | 18 | 121 | 58 | 0.88 | 0.42–1.86 | 0.736 |
Ankylosing spondylitis f | |||||||
No | 189 | 97 | 10,871 | 5430 | 1.10 | 0.81–1.49 | 0.551 |
Yes | 3 | 2 | 37 | 21 | 0.92 | 0.07–12.33 | 0.949 |
Systemic lupus erythematosus g | |||||||
No | 185 | 96 | 10,904 | 5450 | 1.09 | 0.81–1.48 | 0.571 |
Yes | 7 | 3 | 4 | 1 | NA | NA | NA |
Sjogren’s syndrome h | |||||||
No | 175 | 92 | 10,843 | 5410 | 1.17 | 0.86–1.59 | 0.329 |
Yes | 17 | 7 | 65 | 41 | 0.43 | 0.11–1.64 | 0.219 |
Cumulative Days of HCQ | n | Complicaion | aOR † | 95% C.I. | p-Value |
---|---|---|---|---|---|
0 * | 10,908 | 5451 | Reference | ||
<90 | 105 | 53 | 1.06 | 0.71–1.57 | 0.783 |
≥90 | 87 | 46 | 1.17 | 0.74–1.83 | 0.501 |
HCQ (continuous variable) | 0.499 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.-C.; Lin, H.-Y.; Chou, M.C.-Y.; Wang, Y.-H.; Leong, P.-Y.; Wei, J.C.-C. Relationship of Hydroxychloroquine and Ophthalmic Complications in Patients with Type 2 Diabetes in Taiwan. Int. J. Environ. Res. Public Health 2021, 18, 8154. https://doi.org/10.3390/ijerph18158154
Chen H-C, Lin H-Y, Chou MC-Y, Wang Y-H, Leong P-Y, Wei JC-C. Relationship of Hydroxychloroquine and Ophthalmic Complications in Patients with Type 2 Diabetes in Taiwan. International Journal of Environmental Research and Public Health. 2021; 18(15):8154. https://doi.org/10.3390/ijerph18158154
Chicago/Turabian StyleChen, Hung-Chih, Hung-Yu Lin, Michael Chia-Yen Chou, Yu-Hsun Wang, Pui-Ying Leong, and James Cheng-Chung Wei. 2021. "Relationship of Hydroxychloroquine and Ophthalmic Complications in Patients with Type 2 Diabetes in Taiwan" International Journal of Environmental Research and Public Health 18, no. 15: 8154. https://doi.org/10.3390/ijerph18158154
APA StyleChen, H.-C., Lin, H.-Y., Chou, M. C.-Y., Wang, Y.-H., Leong, P.-Y., & Wei, J. C.-C. (2021). Relationship of Hydroxychloroquine and Ophthalmic Complications in Patients with Type 2 Diabetes in Taiwan. International Journal of Environmental Research and Public Health, 18(15), 8154. https://doi.org/10.3390/ijerph18158154