Hair Lead, Aluminum, and Other Toxic Metals in Normal-Weight and Obese Patients with Coronary Heart Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cohort Characteristics
2.2. Hair Sampling and Preanalytical Treatment
2.3. Inductively-Coupled Plasma Mass-Spectrometry
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mensah, G.A.; Roth, G.A.; Fuster, V. The global burden of cardiovascular diseases and risk factors: 2020 and beyond. J. Am. Coll. Cardiol. 2019, 74, 2529–2532. [Google Scholar] [CrossRef] [PubMed]
- Sanchis-Gomar, F.; Perez-Quilis, C.; Leischik, R.; Lucia, A. Epidemiology of coronary heart disease and acute coronary syndrome. Ann. Transl. Med. 2016, 4, 256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dahlöf, B. Cardiovascular Disease Risk Factors: Epidemiology and Risk Assessment. Am. J. Cardiol. 2010, 105, 3A–9A. [Google Scholar] [CrossRef] [PubMed]
- Hajar, R. Risk factors for coronary artery disease: Historical perspectives. Hear. Views 2017, 18, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Riaz, H.; Khan, M.S.; Siddiqi, T.J.; Usman, M.; Shah, N.; Goyal, A.; Khan, S.; Mookadam, F.; Krasuski, R.A.; Ahmed, H. Association Between Obesity and Cardiovascular Outcomes: A Systematic Review and Meta-analysis of Mendelian Ran-domization Studies. JAMA Netw. Open 2018, 1, e183788. [Google Scholar] [CrossRef]
- Zhao, Y.; Cheng, Z.; Lu, Y.; Chang, X.; Chan, C.; Bai, Y.; Zhang, Y.; Cheng, N. PM10 and PM2.5 particles as main air pollutants contributing to rising risks of coronary heart disease: A systematic review. Environ. Technol. Rev. 2017, 6, 174–185. [Google Scholar] [CrossRef]
- Wang, L.; Wu, X.; Du, J.; Cao, W.; Sun, S. Global burden of ischemic heart disease attributable to ambient PM2.5 pollution from 1990 to 2017. Chemosphere 2021, 263, 128134. [Google Scholar] [CrossRef]
- Obeng-Gyasi, E. Chronic cadmium exposure and cardiovascular disease in adults. J. Environ. Sci. Health Part A 2020, 55, 726–729. [Google Scholar] [CrossRef]
- Navas-Acien, A.; Guallar, E.; Silbergeld, E.K.; Rothenberg, S.J. Lead Exposure and Cardiovascular Disease—A Systematic Review. Environ. Health Perspect. 2007, 115, 472–482. [Google Scholar] [CrossRef] [Green Version]
- Moon, K.; Guallar, E.; Navas-Acien, A. Arsenic Exposure and Cardiovascular Disease:An Updated Systematic Review. Curr. Atheroscler. Rep. 2012, 14, 542–555. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; He, C.; Chen, M.; Yang, S.; Li, J.; Lin, Y.; Deng, Y.; Li, N.; Guo, Y.; Yu, P.; et al. The effects of lead and aluminum exposure on congenital heart disease and the mechanism of oxidative stress. Reprod. Toxicol. 2018, 81, 93–98. [Google Scholar] [CrossRef]
- Occelli, F.; Lanier, C.; Cuny, D.; Deram, A.; Dumont, J.; Amouyel, P.; Montaye, M.; Dauchet, L.; Dallongeville, J.; Genin, M. Exposure to multiple air pollutants and the incidence of coronary heart disease: A fine-scale geographic analysis. Sci. Total Environ. 2020, 714, 136608. [Google Scholar] [CrossRef]
- Yuan, Y.; Xiao, Y.; Feng, W.; Liu, Y.; Yu, Y.; Zhou, L.; Qiu, G.; Wang, H.; Liu, B.; Liu, K.; et al. Plasma Metal Concentrations and Incident Coronary Heart Disease in Chinese Adults: The Dongfeng-Tongji Cohort. Environ. Health Perspect. 2017, 125, 107007. [Google Scholar] [CrossRef]
- Tinkov, A.A.; Aschner, M.; Ke, T.; Ferrer, B.; Zhou, J.-C.; Chang, J.-S.; Santamaría, A.; Chao, J.C.-J.; Aaseth, J.; Skalny, A.V. Adipotropic effects of heavy metals and their potential role in obesity. Fac. Rev. 2021, 10. [Google Scholar] [CrossRef]
- Wang, X.; Mukherjee, B.; Park, S.K. Associations of cumulative exposure to heavy metal mixtures with obesity and its comorbidities among U.S. adults in NHANES 2003–2014. Environ. Int. 2018, 121, 683–694. [Google Scholar] [CrossRef]
- Pinot, F.; Kreps, S.E.; Bachelet, M.; Hainaut, P.; Bakonyi, M.; Polla, B.S. Cadmium in the Environment: Sources, Mechanisms of Biotoxicity, and Biomarkers. Rev. Environ. Health 2000, 15, 299–324. [Google Scholar] [CrossRef]
- Obeng-Gyasi, E. Sources of lead exposure in various countries. Rev. Environ. Health 2019, 34, 25–34. [Google Scholar] [CrossRef]
- Chung, J.Y.; Yu, S.D.; Hong, Y.S. Environmental source of arsenic exposure. J. Prev. Med. Public Health 2014, 47, 253. [Google Scholar] [CrossRef] [Green Version]
- Asgary, S.; Movahedian, A.; Keshvari, M.; Taleghani, M.; Sahebkar, A.; Sarrafzadegan, N. Serum levels of lead, mercury and cadmium in relation to coronary artery disease in the elderly: A cross-sectional study. Chemosphere 2017, 180, 540–544. [Google Scholar] [CrossRef]
- Chowdhury, R.; Ramond, A.; O’Keeffe, L.; Shahzad, S.; Kunutsor, S.; Muka, T.; Gregson, J.; Willeit, P.; Warnakula, S.; Khan, H.; et al. Environmental toxic metal contaminants and risk of cardiovascular disease: Systematic review and meta-analysis. BMJ 2018, 362, k3310. [Google Scholar] [CrossRef] [Green Version]
- Skalnaya, M.; Tinkov, A.A.; Demidov, V.A.; Serebryansky, E.P.; Nikonorov, A.; Skalny, A.V. Hair Toxic Element Content in Adult Men and Women in Relation to Body Mass Index. Biol. Trace Element Res. 2014, 161, 13–19. [Google Scholar] [CrossRef]
- Xu, P.; Liu, A.; Li, F.; Tinkov, A.A.; Liu, L.; Zhou, J.-C. Associations between metabolic syndrome and four heavy metals: A systematic review and meta-analysis. Environ. Pollut. 2021, 273, 116480. [Google Scholar] [CrossRef]
- Ding, N.; Wang, X.; Tucker, K.L.; Weisskopf, M.G.; Sparrow, D.; Hu, H.; Park, S.K. Dietary patterns, bone lead and incident coronary heart disease among middle-aged to elderly men. Environ. Res. 2019, 168, 222–229. [Google Scholar] [CrossRef]
- Ding, N.; Wang, X.; Weisskopf, M.G.; Sparrow, D.; Schwartz, J.; Hu, H.; Park, S.K. Lead-Related Genetic Loci, Cumulative Lead Exposure and Incident Coronary Heart Disease: The Normative Aging Study. PLoS ONE 2016, 11, e0161472. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Huo, X.; Zhang, Y.; Wang, Q.; Zhang, Y.; Xu, X. Cardiovascular endothelial inflammation by chronic coexposure to lead (Pb) and polycyclic aromatic hydrocarbons from preschool children in an e-waste recycling area. Environ. Pollut. 2019, 246, 587–596. [Google Scholar] [CrossRef]
- Chen, Z.; Huo, X.; Chen, G.; Luo, X.; Xu, X. Lead (Pb) exposure and heart failure risk. Environ. Sci. Pollut. Res. 2021, 28, 28833–28847. [Google Scholar] [CrossRef]
- Wang, N.; Chen, C.; Nie, X.; Han, B.; Li, Q.; Chen, Y.; Zhu, C.; Chen, Y.; Xia, F.; Cang, Z.; et al. Blood lead level and its association with body mass index and obesity in China—Results from SPECT-China study. Sci. Rep. 2015, 5, 18299. [Google Scholar] [CrossRef] [PubMed]
- Faulk, C.; Barks, A.; Sánchez, B.N.; Zhang, Z.; Anderson, O.S.; Peterson, K.E.; Dolinoy, D.C. Perinatal Lead (Pb) Exposure Results in Sex-Specific Effects on Food Intake, Fat, Weight, and Insulin Response across the Murine Life-Course. PLoS ONE 2014, 9, e104273. [Google Scholar] [CrossRef] [PubMed]
- Tellez-Plaza, M.; Guallar, E.; Howard, B.V.; Umans, J.G.; Francesconi, K.A.; Goessler, W.; Silbergeld, E.K.; Devereux, R.B.; Navas-Acien, A. Cadmium Exposure and Incident Cardiovascular Disease. Epidemiology 2013, 24, 421–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myong, J.-P.; Kim, H.-R.; Jang, T.-W.; Lee, H.E.; Koo, J.-W. Association between Blood Cadmium Levels and 10-Year Coronary Heart Disease Risk in the General Korean Population: The Korean National Health and Nutrition Examination Survey 2008–2010. PLoS ONE 2014, 9, e111909. [Google Scholar] [CrossRef] [PubMed]
- Borné, Y.; Barregard, L.; Persson, M.; Hedblad, B.; Fagerberg, B.; Engström, G. Cadmium exposure and incidence of heart failure and atrial fibrillation: A population-based prospective cohort study. BMJ Open 2015, 5, e007366. [Google Scholar] [CrossRef]
- Tinkov, A.A.; Filippini, T.; Ajsuvakova, O.; Skalnaya, M.; Aaseth, J.; Bjørklund, G.; Gatiatulina, E.; Popova, E.V.; Nemereshina, O.N.; Huang, P.-T.; et al. Cadmium and atherosclerosis: A review of toxicological mechanisms and a meta-analysis of epidemiologic studies. Environ. Res. 2018, 162, 240–260. [Google Scholar] [CrossRef]
- Jiang, F.; Zhi, X.; Xu, M.; Li, B.; Zhang, Z. Gender-specific differences of interaction between cadmium exposure and obesity on prediabetes in the NHANES 2007–2012 population. Endocrine 2018, 61, 258–266. [Google Scholar] [CrossRef]
- Tinkov, A.A.; Filippini, T.; Ajsuvakova, O.; Aaseth, J.; Gluhcheva, Y.G.; Ivanova, J.; Bjørklund, G.; Skalnaya, M.; Gatiatulina, E.; Popova, E.V.; et al. The role of cadmium in obesity and diabetes. Sci. Total Environ. 2017, 601–602, 741–755. [Google Scholar] [CrossRef]
- Igbokwe, I.O.; Igwenagu, E.; Igbokwe, N.A. Aluminium toxicosis: A review of toxic actions and effects. Interdiscip. Toxicol. 2019, 12, 45–70. [Google Scholar] [CrossRef] [Green Version]
- Tinkov, A.A.; Skalnaya, M.G.; Aaseth, J.; Ajsuvakova, O.P.; Aschner, M.; Skalny, A.V. Aluminium levels in hair and urine are associated with overweight and obesity in a non-occupationally exposed population. J. Trace Elements Med. Biol. 2019, 56, 139–145. [Google Scholar] [CrossRef]
- Mailloux, R.; Lemire, J.; Appanna, V. Aluminum-Induced Mitochondrial Dysfunction Leads to Lipid Accumulation in Human Hepatocytes: A Link to Obesity. Cell. Physiol. Biochem. 2007, 20, 627–638. [Google Scholar] [CrossRef]
- Oberoi, S.; Devleesschauwer, B.; Gibb, H.J.; Barchowsky, A. Global burden of cancer and coronary heart disease resulting from dietary exposure to arsenic, 2015. Environ. Res. 2019, 171, 185–192. [Google Scholar] [CrossRef]
- James, K.A.; Byers, T.; Hokanson, J.E.; Meliker, J.R.; Zerbe, G.O.; Marshall, J.A. Association between Lifetime Exposure to Inorganic Arsenic in Drinking Water and Coronary Heart Disease in Colorado Residents. Environ. Heal. Perspect. 2015, 123, 128–134. [Google Scholar] [CrossRef] [Green Version]
- Navas-Acien, A.; Sanchez, T.R.; Mann, K.; Jones, M.R. Arsenic Exposure and Cardiovascular Disease: Evidence Needed to Inform the Dose-Response at Low Levels. Curr. Epidemiol. Rep. 2019, 6, 81–92. [Google Scholar] [CrossRef]
- Al-Forkan, M.; Wali, F.B.; Khaleda, L.; Alam, J.; Chowdhury, R.H.; Datta, A.; Rahman, Z.; Hosain, N.; Maruf, M.F.; Chowdhury, M.A.Q.; et al. Association of arsenic-induced cardiovascular disease susceptibility with genetic polymorphisms. Sci. Rep. 2021, 11, 1–16. [Google Scholar] [CrossRef]
- Sidhu, M.S.; Desai, K.P.; Lynch, H.N.; Rhomberg, L.R.; Beck, B.D.; Venditti, F.J. Mechanisms of action for arsenic in cardiovascular toxicity and implications for risk assessment. Toxicology 2015, 331, 78–99. [Google Scholar] [CrossRef]
- Ceja-Galicia, Z.A.; Daniel, A.; Salazar, A.M.; Pánico, P.; Ostrosky-Wegman, P.; Díaz-Villaseñor, A. Effects of arsenic on adipocyte metabolism: Is arsenic an obesogen? Mol. Cell. Endocrinol. 2017, 452, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Stahr, S.; Chiang, T.-C.; Bauer, M.A.; Runnells, G.A.; Rogers, L.J.; Do, H.V.; Kadlubar, S.A.; Su, L.J. Low-Level Environmental Heavy Metals are Associated with Obesity Among Postmenopausal Women in a Southern State. Expo. Health 2021, 13, 269–280. [Google Scholar] [CrossRef]
- Su, C.-T.; Lin, H.-C.; Choy, C.-S.; Huang, Y.-K.; Huang, S.-R.; Hsueh, Y.-M. The relationship between obesity, insulin and arsenic methylation capability in Taiwan adolescents. Sci. Total Environ. 2012, 414, 152–158. [Google Scholar] [CrossRef]
- Tinkov, A.A.; Ajsuvakova, O.; Skalnaya, M.; Popova, E.; Sinitskii, A.; Nemereshina, O.; Gatiatulina, E.; Nikonorov, A.; Skalny, A.V. Mercury and metabolic syndrome: A review of experimental and clinical observations. BioMetals 2015, 28, 231–254. [Google Scholar] [CrossRef]
- Park, J.S.; Ha, K.H.; He, K.; Kim, D.J. Association between Blood Mercury Level and Visceral Adiposity in Adults. Diabetes Metab. J. 2017, 41, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Shin, Y.-Y.; Ryu, I.-K.; Park, M.-J.; Kim, S.-H. The association of total blood mercury levels and overweight among Korean adolescents: Analysis of the Korean National Health and Nutrition Examination Survey (KNHANES) 2010–2013. Korean J. Pediatr. 2018, 61, 121–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rothenberg, S.E.; Korrick, S.A.; Fayad, R. The influence of obesity on blood mercury levels for U.S. non-pregnant adults and children: NHANES 2007–2010. Environ. Res. 2015, 138, 173–180. [Google Scholar] [CrossRef] [Green Version]
- Skalny, A.V.; Chang, J.-S.; Bobrovnitsky, I.P.; Kopylov, P.Y.; Skalnaya, M.G.; Huang, S.-Y.; Paoliello, M.M.B.; Ivanova, E.S.; Wang, W.; Tinkov, A.A. Relationship Between Elevated Hair Mercury Levels, Essential Element Status, and Metabolic Profile in Overweight and Obese Adults. Biol. Trace Element Res. 2020, 199, 2874–2881. [Google Scholar] [CrossRef]
- Rizzetti, D.A.; Corrales, P.; Piagette, J.T.; Uranga-Ocio, J.A.; Medina-Gomez, G.; Peçanha, F.M.; Vassallo, D.V.; Miguel, M.; Wiggers, G.A. Chronic mercury at low doses impairs white adipose tissue plasticity. Toxicology 2019, 418, 41–50. [Google Scholar] [CrossRef]
- Yang, X.-Y.; Sun, J.-H.; Ke, H.-Y.; Chen, Y.-J.; Xu, M.; Luo, G.-H. Metallothionein 2A genetic polymorphism and its correlation to coronary heart disease. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 3747–3753. [Google Scholar]
- Yang, L.; Gao, J.-Y.; Ma, J.; Xu, X.; Wang, Q.; Xiong, L.; Yang, J.; Ren, J. Cardiac-specific overexpression of metallothionein attenuates myocardial remodeling and contractile dysfunction in l-NAME-induced experimental hypertension: Role of autophagy regulation. Toxicol. Lett. 2015, 237, 121–132. [Google Scholar] [CrossRef]
- Miura, N.; Koizumi, S. Gene expression profiles in the liver and kidney of metallothionein-null mice. Biochem. Biophys. Res. Commun. 2005, 332, 949–955. [Google Scholar] [CrossRef]
- Lindeque, J.Z.; Van Rensburg, P.J.J.; Louw, R.; Van Der Westhuizen, F.H.; Florit, S.; Ramírez, L.; Giralt, M.; Hidalgo, J. Obesity and Metabolomics: Metallothioneins Protect Against High-Fat Diet-Induced Consequences in Metallothionein Knockout Mice. OMICS J. Integr. Biol. 2015, 19, 92–103. [Google Scholar] [CrossRef]
Parameter | Lean Control (n = 123) | Obese (n = 140) | Lean CHD (n = 180) | Obese CHD (n = 240) |
---|---|---|---|---|
Sex, n (F/M) | 101/22 | 103/37 | 126/64 | 166/74 |
Age, y.o. | 51.1 ± 9.7 | 53.3 ± 7.2 | 55 ± 9.6 | 52.2 ± 8.6 |
Height, cm | 167.5 ± 7.1 | 167.4 ± 8.9 | 165.2 ± 9.2 | 165.1 ± 8.7 |
Weight, kg | 64.2 ± 6.9 | 94.2 ± 12.4 | 62.8 ± 8.2 | 94.4 ± 17.8 |
BMI | 22.8 ± 1.4 | 33.6 ± 2.9 | 22.9 ± 1.7 | 34.5 ± 5.2 |
Metal | Lean Control (n = 123) | Obese (n = 140) | Lean CHD (n = 180) | Obese CHD (n = 240) |
---|---|---|---|---|
Al | 2.864 (2.053–5.101) | 4.056 1 (2.784–6.803) | 5.810 1,2 (3.57–8.595) | 6.971 1,2,3 (4.321–11.085) |
As | 0.012 (0.006–0.023) | 0.016 (0.008–0.026) | 0.032 1 (0.018–0.058) | 0.038 1,2,3 (0.021–0.068) |
Cd | 0.007 (0.005–0.017) | 0.012 (0.007–0.021) | 0.018 1 (0.01–0.041) | 0.022 1,2 (0.011–0.051) |
Hg | 0.411 (0.232–0.701) | 0.535 1 (0.308–0.863) | 0.425 2 (0.238–0.642) | 0.513 3 (0.257–0.850) |
Ni | 0.232 (0.138–0.36) | 0.188 (0.127–0.314) | 0.194 (0.13–0.379) | 0.231 (0.135–0.368) |
Pb | 0.276 (0.141–0.546) | 0.390 (0.169–0.851) | 0.317 1 (0.177–0.595) | 0.534 1,2,3 (0.237–1.075) |
Factor | Al | As | Cd | Hg | Ni | Pb |
---|---|---|---|---|---|---|
Obesity | <0.001 * | 0.020 * | 0.074 | 0.003 * | 0.667 | <0.001 * |
CHD | <0.001 * | <0.001 * | <0.001 * | 0.644 | 0.279 | 0.024 * |
Obesity * CHD | 0.543 | 0.426 | 0.524 | 0.553 | 0.269 | 0.301 * |
Gender | 0.025 * | <0.001 * | <0.001 * | <0.001 * | <0.001 * | <0.001 * |
Age | 0.037 * | 0.760 | 0.005 * | 0.002 * | 0.190 | 0.569 |
Metal | Height | Weight | BMI | |||
---|---|---|---|---|---|---|
r | p | r | p | r | p | |
Al | −0.295 | <0.001 * | 0.368 | <0.001 * | 0.159 | <0.001 * |
As | −0.397 | <0.001 * | 0.501 | <0.001 * | 0.086 | 0.027 * |
Cd | −0.297 | <0.001 * | 0.359 | <0.001 * | 0.053 | 0.171 |
Hg | 0.057 | 0.139 | 0.004 | 0.918 | 0.060 | 0.120 |
Ni | −0.016 | 0.686 | 0.047 | 0.225 | -0.002 | 0.954 |
Pb | −0.044 | 0.253 | 0.186 | <0.001 * | 0.145 | <0.001 * |
p/r | Al | As | Cd | Hg | Ni | Pb |
---|---|---|---|---|---|---|
Al | - | 0.409 | 0.421 | −0.008 | 0.228 | 0.359 |
As | <0.001 * | - | 0.421 | 0.055 | 0.047 | 0.336 |
Cd | <0.001 * | <0.001 * | - | −0.095 | 0.347 | 0.563 |
Hg | 0.830 | 0.164 | 0.015 * | - | 0.051 | 0.033 |
Ni | <0.001 * | 0.234 | <0.001 * | 0.192 | - | 0.297 |
Pb | <0.001 * | <0.001 * | <0.001 * | 0.404 | <0.001 * | - |
Metal | Al | As | Cd | Hg | Ni | Pb | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Predictor | β | p | β | p | β | p | β | p | β | p | β | p |
BMI | 0.133 | <0.001 * | 0.058 | 0.076 | 0.034 | 0.034 | 0.063 | 0.097 | −0.003 | 0.927 | 0.142 | <0.001 * |
CHD | 0.382 | <0.001 * | 0.440 | <0.001 * | 0.259 | 0.259 | 0.024 | 0.586 | 0.060 | 0.186 | 0.098 | 0.021* |
Sex | 0.085 | 0.017 * | 0.295 | <0.001 * | 0.201 | 0.201 | 0.169 | <0.001 * | 0.147 | <0.001 * | 0.307 | <0.001 * |
Age | −0.093 | 0.026 * | 0.003 | 0.933 | 0.113 | 0.113 | −0.147 | 0.001* | −0.069 | 0.124 | −0.031 | 0.455 |
Multiple R | 0.396 | 0.564 | 0.406 | 0.225 | 0.165 | 0.359 | ||||||
Multiple R2 | 0.157 | 0.318 | 0.165 | 0.051 | 0.027 | 0.129 | ||||||
Adjusted R2 | 0.152 | 0.314 | 0.160 | 0.045 | 0.021 | 0.124 | ||||||
P model | <0.001 * | <0.001 * | <0.001 * | <0.001 * | 0.001 * | <0.001 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skalny, A.V.; Kopylov, P.Y.; Paoliello, M.M.B.; Chang, J.-S.; Aschner, M.; Bobrovnitsky, I.P.; Chao, J.C.-J.; Aaseth, J.; Chebotarev, S.N.; Tinkov, A.A. Hair Lead, Aluminum, and Other Toxic Metals in Normal-Weight and Obese Patients with Coronary Heart Disease. Int. J. Environ. Res. Public Health 2021, 18, 8195. https://doi.org/10.3390/ijerph18158195
Skalny AV, Kopylov PY, Paoliello MMB, Chang J-S, Aschner M, Bobrovnitsky IP, Chao JC-J, Aaseth J, Chebotarev SN, Tinkov AA. Hair Lead, Aluminum, and Other Toxic Metals in Normal-Weight and Obese Patients with Coronary Heart Disease. International Journal of Environmental Research and Public Health. 2021; 18(15):8195. https://doi.org/10.3390/ijerph18158195
Chicago/Turabian StyleSkalny, Anatoly V., Philippe Yu Kopylov, Monica M. B. Paoliello, Jung-Su Chang, Michael Aschner, Igor P. Bobrovnitsky, Jane C.-J. Chao, Jan Aaseth, Sergei N. Chebotarev, and Alexey A. Tinkov. 2021. "Hair Lead, Aluminum, and Other Toxic Metals in Normal-Weight and Obese Patients with Coronary Heart Disease" International Journal of Environmental Research and Public Health 18, no. 15: 8195. https://doi.org/10.3390/ijerph18158195
APA StyleSkalny, A. V., Kopylov, P. Y., Paoliello, M. M. B., Chang, J. -S., Aschner, M., Bobrovnitsky, I. P., Chao, J. C. -J., Aaseth, J., Chebotarev, S. N., & Tinkov, A. A. (2021). Hair Lead, Aluminum, and Other Toxic Metals in Normal-Weight and Obese Patients with Coronary Heart Disease. International Journal of Environmental Research and Public Health, 18(15), 8195. https://doi.org/10.3390/ijerph18158195