Association of Healthy Diet with Recovery Time from COVID-19: Results from a Nationwide Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Method and Subjects
2.2. Ethical Approval
2.3. Development and Validation of Food Frequency Questionnaire
2.4. Statistical Analysis
3. Results
3.1. Demographic Data
3.2. Diet Score and Recovery Time
3.3. Comparison of Healthyl Diet Score with Basic Characteristics of Respondents
3.4. The Relationship between Healthy Diet Score and Recovery Time from COVID-19
3.5. Comparison of Recovery Time with Basic Characteristics of Respondents
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shim, E. Projecting the impact of SARS-CoV-2 variants and the vaccination program on the fourth wave of the COVID-19 pandemic in South Korea. Int. J. Environ. Res. Public Health 2021, 18, 7578. [Google Scholar] [CrossRef]
- Heidari, M.; Jafari, H. Challenges of COVID-19 vaccination in Iran: In the fourth wave of pandemic spread. Prehosp Disaster Med. 2021, 1–5. [Google Scholar] [CrossRef]
- Wu, S.C. Progress and concept for COVID-19 vaccine development. Biotechnol. J. 2020, 15, e2000147. [Google Scholar] [CrossRef]
- Hashem, A.M.; Alghamdi, B.S.; Algaissi, A.A.; Alshehri, F.S.; Bukhari, A.; Alfaleh, M.A.; Memish, Z.A. Therapeutic use of chloroquine and hydroxychloroquine in COVID-19 and other viral infections: A narrative review. Travel Med. Infect. Dis. 2020, 35, 101735. [Google Scholar] [CrossRef]
- Sanders, J.M.; Monogue, M.L.; Jodlowski, T.Z.; Cutrell, J.B. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): A review. JAMA 2020, 323, 1824–1836. [Google Scholar] [CrossRef]
- Chakraborty, R.; Parvez, S. COVID-19: An overview of the current pharmacological interventions, vaccines, and clinical trials. Biochem. Pharmacol. 2020, 180, 114184. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. COVID-19 Vaccines|FDA. Available online: https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-covid-19/covid-19-vaccines (accessed on 15 June 2021).
- Abid, A. No Quarantine for Vaccinated Travelers to Saudi Arabia. Available online: https://www.arabnews.jp/en/saudi-arabia/article_47527/ (accessed on 15 June 2021).
- Tuite, A.R.; Zhu, L.; Fisman, D.N.; Salomon, J.A. Alternative dose allocation strategies to increase benefits from constrained COVID-19 vaccine supply. Ann. Intern. Med. 2021, 174, 570–572. [Google Scholar] [CrossRef]
- World Health Organization. Coronavirus Disease 2019 (COVID-19): Situation Report 82. Available online: https://apps.who.int/iris/handle/10665/331780 (accessed on 15 June 2021).
- Rhodes, J.M.; Subramanian, S.; Laird, E.; Griffin, G.; Kenny, R.A. Perspective: Vitamin D deficiency and COVID-19 severity–plausibly linked by latitude, ethnicity, impacts on cytokines, ACE2 and thrombosis. J. Intern. Med. 2020, 289, 97–115. [Google Scholar] [CrossRef]
- Novel, C.P.E.R.E. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China. Chin. J. Epidemiol. 2020, 41, 145. [Google Scholar] [CrossRef]
- Butler, M.J.; Barrientos, R.M. The impact of nutrition on COVID-19 susceptibility and long-term consequences. Brain Behav. Immun. 2020, 87, 53–54. [Google Scholar] [CrossRef]
- Katona, P.; Katona-Apte, J. The interaction between nutrition and infection. Clin. Infect. Dis. 2008, 46, 1582–1588. [Google Scholar] [CrossRef]
- Smith, V.H.; Jones, T.P.; Smith, M.S. Host nutrition and infectious disease: An ecological view. Front. Eco Environ. 2005, 3, 268–274. [Google Scholar] [CrossRef]
- Morais, A.H.A.; Aquino, J.S.; da Silva-Maia, J.K.; Vale, S.H.L.; Maciel, B.L.L.; Passos, T.S. Nutritional status, diet and viral respiratory infections: Perspectives for severe acute respiratory syndrome coronavirus 2. Br. J. Nutr 2021, 125, 851–862. [Google Scholar] [CrossRef]
- Briguglio, M.; Pregliasco, F.E.; Lombardi, G.; Perazzo, P.; Banfi, G. The malnutritional status of the host as a virulence factor for new Coronavirus SARS-CoV-2. Front. Med. 2020, 7, 146. [Google Scholar] [CrossRef]
- Wilck, N.; Balogh, A.; Marko, L.; Bartolomaeus, H.; Muller, D.N. The role of sodium in modulating immune cell function. Nat. Rev. Nephrol. 2019, 15, 546–558. [Google Scholar] [CrossRef]
- Myles, I.A. Fast food fever: Reviewing the impacts of the Western diet on immunity. Nutr. J. 2014, 13, 61. [Google Scholar] [CrossRef] [Green Version]
- Zabetakis, I.; Lordan, R.; Norton, C.; Tsoupras, A. COVID-19: The inflammation link and the role of nutrition in potential mitigation. Nutrients 2020, 12, 1466. [Google Scholar] [CrossRef]
- Aldwihi, L.A.; Khan, S.I.; Alamri, F.F.; AlRuthia, Y.; Alqahtani, F.; Fantoukh, O.I.; Assiri, A.; Almohammed, O.A. Patients’ Behavior Regarding Dietary or Herbal Supplements before and during COVID-19 in Saudi Arabia. Int. J. Environ. Res. Public Health 2021, 18, 5086. [Google Scholar] [CrossRef]
- Kromhout, D.; Spaaij, C.J.; de Goede, J.; Weggemans, R.M. The 2015 Dutch food-based dietary guidelines. Eur. J. Clin. Nutr. 2016, 70, 869–878. [Google Scholar] [CrossRef]
- Liya, S.J.; Siddique, R. Determination of antimicrobial activity of some commercial fruit (apple, papaya, lemon and strawberry) against bacteria causing urinary tract infection. Eur. J. Immunol. 2018, 8, 95–99. [Google Scholar] [CrossRef]
- Kim, K.-H.; Kim, H.-J.; Byun, M.-W.; Yook, H.-S. Antioxidant and antimicrobial activities of ethanol extract from six vegetables containing different sulfur compounds. J. Korean Soc. Food Sci. Nutr. 2012, 41, 577–583. [Google Scholar] [CrossRef]
- Jacob, S.J.P.; Shenbagaraman, S. Evaluation of antioxidant and antimicrobial activities of the selected green leafy vegetables. Int J. Pharm. Tech. Res. 2011, 3, 148–152. [Google Scholar]
- Taguri, T.; Tanaka, T.; Kouno, I. Antimicrobial activity of 10 different plant polyphenols against bacteria causing food-borne disease. Biol. Pharm. Bull. 2004, 27, 1965–1969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naz, S.; Siddiqi, R.; Ahmad, S.; Rasool, S.A.; Sayeed, S.A. Antibacterial activity directed isolation of compounds from Punica granatum. J. Food Sci. 2007, 72, M341–M345. [Google Scholar] [CrossRef]
- Hilton, J.W. The interaction of vitamins, minerals and diet composition in the diet of fish. Aquaculture 1989, 79, 223–244. [Google Scholar] [CrossRef]
- Maggini, S.; Pierre, A.; Calder, P.C. Immune function and micronutrient requirements change over the life course. Nutrients 2018, 10, 1531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voortman, T.; Kiefte-de Jong, J.C.; Ikram, M.A.; Stricker, B.H.; van Rooij, F.J.A.; Lahousse, L.; Tiemeier, H.; Brusselle, G.G.; Franco, O.H.; Schoufour, J.D. Adherence to the 2015 Dutch dietary guidelines and risk of non-communicable diseases and mortality in the Rotterdam Study. Eur. J. Epidemiol. 2017, 32, 993–1005. [Google Scholar] [CrossRef]
- Biesbroek, S.; Verschuren, W.M.M.; Boer, J.M.A.; van de Kamp, M.E.; van der Schouw, Y.T.; Geelen, A.; Looman, M.; Temme, E.H.M. Does a better adherence to dietary guidelines reduce mortality risk and environmental impact in the Dutch sub-cohort of the European Prospective Investigation into Cancer and Nutrition? Br. J. Nutr. 2017, 118, 69–80. [Google Scholar] [CrossRef] [Green Version]
- Looman, M.; Feskens, E.J.; de Rijk, M.; Meijboom, S.; Biesbroek, S.; Temme, E.H.; de Vries, J.; Geelen, A. Development and evaluation of the Dutch Healthy Diet index 2015. Public Health Nutr. 2017, 20, 2289–2299. [Google Scholar] [CrossRef]
- Jelsøe, E. Dietary guidelines: Nutritional health communication versus sustainable food policy. J. Transdiscipl. Environ. Stud. 2015, 14, 36–51. [Google Scholar]
- Evers, I.; Heerings, M.; de Roos, N.M.; Jongen, P.J.; Visser, L.H. Adherence to dietary guidelines is associated with better physical and mental quality of life: Results from a cross-sectional survey among 728 Dutch MS patients. Nutr. Neurosci. 2021, 1–8. [Google Scholar] [CrossRef]
- Galanakis, C.M. The food systems in the era of the Coronavirus (COVID-19) pandemic crisis. Foods 2020, 9, 523. [Google Scholar] [CrossRef]
- Rodríguez-Pérez, C.; Molina-Montes, E.; Verardo, V.; Artacho, R.; García-Villanova, B.; Guerra-Hernández, E.J.; Ruíz-López, M.D. Changes in dietary behaviours during the COVID-19 outbreak confinement in the Spanish COVIDiet Study. Nutrients 2020, 12, 1730. [Google Scholar] [CrossRef]
- Yau, Y.H.C.; Potenza, M.N. Stress and eating behaviors. Minerva. Endocrinol. 2013, 38, 255–267. [Google Scholar] [PubMed]
- Gibson, E.L. The psychobiology of comfort eating: Implications for neuropharmacological interventions. Behav. Pharmacol. 2012, 23, 442–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheikh Ismail, L.; Osaili, T.M.; Mohamad, M.N.; Al Marzouqi, A.; Jarrar, A.H.; Abu Jamous, D.O.; Magriplis, E.; Ali, H.I.; Al Sabbah, H.; Hasan, H.; et al. Eating habits and lifestyle during COVID-19 lockdown in the United Arab Emirates: A cross-sectional study. Nutrients 2020, 12, 3314. [Google Scholar] [CrossRef] [PubMed]
- Alshahrani, M.M.; Chandramohan, S. A cross-sectional study on prevalence of obesity and its association with dietary habits among college students in Abha, Saudi Arabia. Int. J. Community Med. Public Health 2017, 4, 7. [Google Scholar] [CrossRef] [Green Version]
- Benajiba, N. Fast food intake among saudi population: Alarming fact. Am. J. Food Nutr. 2016, 4, 1406–1412. [Google Scholar] [CrossRef] [Green Version]
- Alasqah, I.; Mahmud, I.; East, L.; Usher, K. Patterns of physical activity and dietary habits among adolescents in Saudi Arabia: A systematic review. Int. J. Health Sci. 2021, 15, 39–48. [Google Scholar]
- Amin, T.T.; Al-Sultan, A.I.; Ali, A. Overweight and obesity and their relation to dietary habits and socio-demographic characteristics among male primary school children in Al-Hassa, Kingdom of Saudi Arabia. Eur. J. Nutr. 2008, 47, 310. [Google Scholar] [CrossRef] [PubMed]
- Alhusseini, N.; Alqahtani, A. Covid-19 pandemic′s impact on eating habits in Saudi Arabia. J. Public Health Res. 2020, 9, 1868. [Google Scholar] [CrossRef] [PubMed]
- Alfawaz, H.; Amer, O.E.; Aljumah, A.A.; Aldisi, D.A.; Enani, M.A.; Aljohani, N.J.; Alotaibi, N.H.; Alshingetti, N.; Alomar, S.Y.; Khattak, M.N.K.; et al. Effects of home quarantine during COVID-19 lockdown on physical activity and dietary habits of adults in Saudi Arabia. Sci. Rep. 2021, 11, 5904. [Google Scholar] [CrossRef] [PubMed]
- van der Gaag, E.; Brandsema, R.; Nobbenhuis, R.; van der Palen, J.; Hummel, T. Influence of dietary advice including green vegetables, beef, and whole dairy products on recurrent upper respiratory tract infections in children: A randomized controlled trial. Nutrients 2020, 12, 272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cobre, A.F.; Surek, M.; Vilhena, R.O.; Böger, B.; Fachi, M.M.; Momade, D.R.; Tonin, F.S.; Sarti, F.M.; Pontarolo, R. Influence of foods and nutrients on COVID-19 recovery: A multivariate analysis of data from 170 countries using a generalized linear model. Clin. Nutr. 2021. [Google Scholar] [CrossRef] [PubMed]
- Moradi-Lakeh, M.; El Bcheraoui, C.; Afshin, A.; Daoud, F.; AlMazroa, M.A.; Al Saeedi, M.; Basulaiman, M.; Memish, Z.A.; Al Rabeeah, A.A.; Mokdad, A.H. Diet in Saudi Arabia: Findings from a nationally representative survey. Public Health Nutr. 2017, 20, 1075–1081. [Google Scholar] [CrossRef] [Green Version]
- Feenstra, S.G.; Nahar, Q.; Pahan, D.; Oskam, L.; Richardus, J.H. Recent food shortage is associated with leprosy disease in Bangladesh: A case-control study. PLoS Negl. Trop. Dis. 2011, 5, e1029. [Google Scholar] [CrossRef] [Green Version]
- Sousa-Figueiredo, J.C.; Gamboa, D.; Pedro, J.M.; Fancony, C.; Langa, A.J.; Magalhaes, R.J.; Stothard, J.R.; Nery, S.V. Epidemiology of malaria, schistosomiasis, geohelminths, anemia and malnutrition in the context of a demographic surveillance system in northern Angola. PLoS ONE 2012, 7, e33189. [Google Scholar] [CrossRef] [Green Version]
- Alkhatib, A. Antiviral functional foods and exercise lifestyle prevention of coronavirus. Nutrients 2020, 12, 2633. [Google Scholar] [CrossRef]
- Gombart, A.F.; Pierre, A.; Maggini, S. A review of micronutrients and the immune system–working in harmony to reduce the risk of infection. Nutrients 2020, 12, 236. [Google Scholar] [CrossRef] [Green Version]
- Segerstrom, S.C.; Miller, G.E. Psychological stress and the human immune system: A meta-analytic study of 30 years of inquiry. Psychol Bull. 2004, 130, 601–630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maggini, S.; Maldonado, P.; Cardim, P.; Newball, C.F.; Sota Latino, E.R. Vitamins C, D and zinc: Synergistic roles in immune function and infections. Vitam. Miner. 2017, 6, 167. [Google Scholar] [CrossRef]
- Dobner, J.; Kaser, S. Body mass index and the risk of infection—From underweight to obesity. Clin. Microbiol Infect. 2018, 24, 24–28. [Google Scholar] [CrossRef] [Green Version]
- Castelo-Branco, C.; Soveral, I. The immune system and aging: A review. Gynecol Endocrinol 2014, 30, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Zheng, K.I.; Wang, X.-B.; Sun, Q.-F.; Pan, K.-H.; Wang, T.-Y.; Chen, Y.-P.; Targher, G.; Byrne, C.D.; George, J.; et al. Obesity Is a Risk Factor for Greater COVID-19 Severity. Diabetes Care 2020, 43, e72–e74. [Google Scholar] [CrossRef] [PubMed]
- Bousquet, J.; Anto, J.M.; Iaccarino, G.; Czarlewski, W.; Haahtela, T.; Anto, A.; Akdis, C.A.; Blain, H.; Canonica, G.W.; Cardona, V.; et al. Is diet partly responsible for differences in COVID-19 death rates between and within countries? Clin. Transl. Allergy 2020, 10, 16. [Google Scholar] [CrossRef] [PubMed]
- Peckham, H.; de Gruijter, N.M.; Raine, C.; Radziszewska, A.; Ciurtin, C.; Wedderburn, L.R.; Rosser, E.C.; Webb, K.; Deakin, C.T. Male sex identified by global COVID-19 meta-analysis as a risk factor for death and ITU admission. Nat. Commun. 2020, 11, 6317. [Google Scholar] [CrossRef]
- Jin, J.-M.; Bai, P.; He, W.; Wu, F.; Liu, X.-F.; Han, D.-M.; Liu, S.; Yang, J.-K. Gender differences in patients with COVID-19: Focus on severity and mortality. Front. Public Health 2020, 8. [Google Scholar] [CrossRef] [PubMed]
- Vermillion, M.S.; Ursin, R.L.; Kuok, D.I.T.; Vom Steeg, L.G.; Wohlgemuth, N.; Hall, O.J.; Fink, A.L.; Sasse, E.; Nelson, A.; Ndeh, R.; et al. Production of amphiregulin and recovery from influenza is greater in males than females. Biol. Sex. Differ. 2018, 9, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darwish, M.A.; Al-Saif, G.; Albahrani, S.; Sabra, A.A. Lifestyle and dietary behaviors among Saudi preschool children attending primary health care centers, Eastern Saudi Arabia. Int. J. Family Med. 2014, 2014, 432732. [Google Scholar] [CrossRef] [Green Version]
- Majeed, F. Association of BMI with diet and physical activity of female medical students at the University of Dammam, Kingdom of Saudi Arabia. J. Taibah Univ. Medical Sci. 2015, 10, 188–196. [Google Scholar] [CrossRef] [Green Version]
- Popkin, B.M.; Du, S.; Green, W.D.; Beck, M.A.; Algaith, T.; Herbst, C.H.; Alsukait, R.F.; Alluhidan, M.; Alazemi, N.; Shekar, M. Individuals with obesity and COVID-19: A global perspective on the epidemiology and biological relationships. Obes. Rev. 2020, 21, e13128. [Google Scholar] [CrossRef] [PubMed]
- Alali, A.S.; Alshehri, A.O.; Assiri, A.; Khan, S.; Alkathiri, M.A.; Almohammed, O.A.; Badoghaish, W.; AlQahtani, S.M.; Alshammari, M.A.; Mohany, M.; et al. Demographics, comorbidities, and outcomes among young and middle-aged COVID-19 patients in Saudi Arabia. Saudi Pharm. J. 2021. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Lipsitz, O.; Nasri, F.; Lui, L.M.W.; Gill, H.; Phan, L.; Chen-Li, D.; Iacobucci, M.; Ho, R.; Majeed, A.; et al. Impact of COVID-19 pandemic on mental health in the general population: A systematic review. J. Affect. Disord 2020, 277, 55–64. [Google Scholar] [CrossRef]
- Gao, J.; Zheng, P.; Jia, Y.; Chen, H.; Mao, Y.; Chen, S.; Wang, Y.; Fu, H.; Dai, J. Mental health problems and social media exposure during COVID-19 outbreak. PLoS ONE 2020, 15, e0231924. [Google Scholar] [CrossRef]
- Lei, L.; Huang, X.; Zhang, S.; Yang, J.; Yang, L.; Xu, M. Comparison of prevalence and associated factors of anxiety and depression among people affected by versus people unaffected by quarantine during the COVID-19 epidemic in southwestern China. Med. Sci. Monit 2020, 26, e924609-1–e924609-12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, S. Psychological stress, immunity, and upper respiratory infections. Curr. Dir. Psychol. Sci. 1996, 5, 86–89. [Google Scholar] [CrossRef]
- Arshad, M.S.; Hussain, I.; Nafees, M.; Majeed, A.; Imran, I.; Saeed, H.; Hashmi, F.K.; Akbar, M.; Abrar, M.A.; Ramzan, B.; et al. Assessing the impact of COVID-19 on the mental health of healthcare workers in three metropolitan cities of Pakistan. Psychol Res. Behav. Manag. 2020, 13, 1047–1055. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B.; Rimm, E.; Smith-Warner, S.A.; Feskanich, D.; Stampfer, M.J.; Ascherio, A.; Sampson, L.; Willett, W.C. Reproducibility and validity of dietary patterns assessed with a food-frequency questionnaire. Am. J. Clin. Nutr. 1999, 69, 243–249. [Google Scholar] [CrossRef] [Green Version]
- Willett, W.C.; Sampson, L.; Stampfer, M.J.; Rosner, B.; Bain, C.; Witschi, J.; Hennekens, C.H.; Speizer, F.E. Reproducibility and validity of a semiquantitative food frequency questionnaire. Am. J. Epidemiol. 1985, 122, 51–65. [Google Scholar] [CrossRef]
- Halawani, R.; Jaceldo-Siegl, K.; Bahjri, K.; Heskey, C. Saudi Population′s Adherence to the Healthy Food Palm: A Cross-sectional Study (P16-066-19). Curr. Dev. Nutr. 2019, 3, 1469. [Google Scholar] [CrossRef] [Green Version]
- Kazi, R.N.A.; El-Kashif, M.M.L.; Ahsan, S.M. Prevalence of salt rich fast food consumption: A focus on physical activity and incidence of hypertension among female students of Saudi Arabia. Saudi J. Biol. Sci. 2020, 27, 2669–2673. [Google Scholar] [CrossRef] [PubMed]
- Paalanen, L.; Männistö, S.; Virtanen, M.J.; Knekt, P.; Räsänen, L.; Montonen, J.; Pietinen, P. Validity of a food frequency questionnaire varied by age and body mass index. J. Clin. Epidemiol. 2006, 59, 994–1001. [Google Scholar] [CrossRef]
- Pietinen, P.; Hartman, A.M.; Haapa, E.; Räsänen, L.; Haapakoski, J.; Palmgren, J.; Albanes, D.; Virtamo, J.; Huttunen, J.K. Reproducibility and validity of dietary assessment instruments. I. A self-administered food use questionnaire with a portion size picture booklet. Am. J. Epidemiol. 1988, 128, 655–666. [Google Scholar] [CrossRef] [PubMed]
- Erkkola, M.; Karppinen, M.; Javanainen, J.; Räsänen, L.; Knip, M.; Virtanen, S.M. Validity and reproducibility of a food frequency questionnaire for pregnant Finnish women. Am. J. Epidemiol. 2001, 154, 466–476. [Google Scholar] [CrossRef] [PubMed]
- Riboli, E.; Elmståhl, S.; Saracci, R.; Gullberg, B.; Lindgärde, F. The Malmö Food Study: Validity of two dietary assessment methods for measuring nutrient intake. Int. J. Epidemiol. 1997, 26 (Suppl. 1), S161–S173. [Google Scholar] [CrossRef] [Green Version]
- Feskanich, D.; Rimm, E.B.; Giovannucci, E.L.; Colditz, G.A.; Stampfer, M.J.; Litin, L.B.; Willett, W.C. Reproducibility and validity of food intake measurements from a semiquantitative food frequency questionnaire. J. Am. Diet. Assoc. 1993, 93, 790–796. [Google Scholar] [CrossRef]
- Rothman, K.J. BMI-related errors in the measurement of obesity. Int. J. Obes. 2008, 32 (Suppl. 3), S56–S59. [Google Scholar] [CrossRef] [Green Version]
- Zierle-Ghosh, A.; Jan, A. Physiology, body mass index. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
Variables | Overall, Sample N = 738 | Non-Hospitalized N = 501 | Hospitalized N = 237 | p-Value * |
---|---|---|---|---|
Age, mean (SD) | 36.5 (11.9) | 33.6 (10.2) | 42.4 (12.9) | <0.0001 |
BMI, mean (SD) | 28.4 (7.1) | 27.3 (7.1) | 30.6 (6.8) | <0.0001 |
Gender | - | - | - | - |
Male | 418 (56.6) | 286 (57.1) | 132 (55.7) | 0.7542 |
Female | 320 (43.4) | 215 (42.9) | 105 (44.3) | - |
Nationality | - | - | - | - |
Saudi | 559 (75.7) | 409 (81.6) | 150 (63.3) | 0.0012 |
Non-Saudi | 179 (24.3) | 92 (18.4) | 87 (36.7) | - |
Marital status | - | - | - | - |
Single | 199 (27.0) | 168 (33.5) | 31 (13.1) | 0.0015 |
Married | 500 (67.8) | 312 (62.3) | 188 (79.3) | - |
Divorced | 26 (3.5) | 18 (3.6) | 8 (3.4) | - |
Widow/widower | 13 (1.7) | 3 (0.6) | 10 (4.2) | - |
Variables | All Patients | Non-Hospitalized | Hospitalized | p-Value * |
---|---|---|---|---|
Healthy Diet (score) | 15.9 (3.7) | 15.5 (3.7) | 16.7 (3.6) | <0.001 |
Recovery time (days) | 13.4 (9.2) | 11.0 (7.7) | 18.6 (9.9) | <0.001 |
Variables | All Patients | Non-Hospitalized | Hospitalized | |||
---|---|---|---|---|---|---|
Mean (SD) | p-Value | Mean (SD) | p-Value | Mean (SD) | p-Value | |
Gender | - | 0.447 | - | 0.075 | - | 0.169 |
Male | 15.8 (3.7) | - | 15.3 (3.7) | - | 17.0 (3.3) | - |
Female | 16.0 (3.7) | - | 15.9 (3.6) | - | 16.4 (3.6) | - |
Nationality | - | 0.001 ** | - | 0.001 ** | - | 0.079 |
Saudi | 15.6 (3.7) | - | 15.3 (3.7) | - | 16.4 (3.6) | - |
Non-Saudi | 16.9 (3.4) | - | 16.6 (3.3) | - | 17.2 (3.4) | - |
Marital status | - | 0.001 ** | - | 0.001 ** | - | 0.012 * |
Single | 15.6 (3.7) | - | 14.4 (3.4) | - | 15.1 (4.2) | - |
Married | 16.9 (3.3) | - | 16.1 (3.6) | - | 17.1 (3.4) | - |
Divorced | 15.5 (4.7) | - | 15.9 (5.3) | - | 14.8 (3.7) | - |
Widow/widower | 16.4 (2.5) | - | 16.0 (0.1) | - | 16.5 (2.9) | - |
Non-Hospitalized | Hospitalized | |||||||
---|---|---|---|---|---|---|---|---|
Recovery Time | Diet Score | Age | BMI | Recovery Time | Diet Score | Age | BMI | |
Recovery time | 1 | 1 | ||||||
Diet score | −0.088 * | 1 | 0.161 * | 1 | ||||
Age | −0.026 | 0.335 ** | 1 | 0.127 * | 0.347 ** | 1 | ||
BMI | 0.088 | 0.186 ** | 0.258 ** | 1 | 0.102 | 0.006 | 0.263 ** | 1 |
Variables | All Patients | Non-Hospitalized | Hospitalized | |||
---|---|---|---|---|---|---|
Mean (SD) | p-Value * | Mean (SD) | p-Value | Mean (SD) | p-Value | |
Gender | - | 0.001 ** | - | 0.001** | - | 0.004 ** |
Male | 12.1 (8.9) | - | 9.8 (7.5) | - | 16.9 (9.8) | - |
Female | 15.1 (9.3) | - | 12.4 (7.8) | - | 20.7 (9.7) | - |
Nationality | - | 0.420 | - | 0.017 * | - | 0.781 |
Saudi | 13.3 (9.0) | - | 11.4 (7.9) | - | 18.5 (9.8) | - |
Non-Saudi | 13.9 (9.6) | - | 9.2 (6.3) | - | 18.8 (10.1) | - |
Marital status | - | 0.041 * | - | 0.397 | - | 0.871 |
Single | 12.1 (8.4) | - | 10.8 (7.1) | - | 18.9 (11.4) | - |
Married | 13.7 (9.3) | - | 10.9 (7.8) | - | 18.5 (9.7) | - |
Divorced | 16.1 (11.8) | - | 13.9 (11.6) | - | 20.9 (11.9) | - |
Widow/widower | 16.0 (8.3) | - | 12.7 (2.3) | - | 17.0 (9.4) | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alamri, F.F.; Khan, A.; Alshehri, A.O.; Assiri, A.; Khan, S.I.; Aldwihi, L.A.; Alkathiri, M.A.; Almohammed, O.A.; Salamatullah, A.M.; Alali, A.S.; et al. Association of Healthy Diet with Recovery Time from COVID-19: Results from a Nationwide Cross-Sectional Study. Int. J. Environ. Res. Public Health 2021, 18, 8248. https://doi.org/10.3390/ijerph18168248
Alamri FF, Khan A, Alshehri AO, Assiri A, Khan SI, Aldwihi LA, Alkathiri MA, Almohammed OA, Salamatullah AM, Alali AS, et al. Association of Healthy Diet with Recovery Time from COVID-19: Results from a Nationwide Cross-Sectional Study. International Journal of Environmental Research and Public Health. 2021; 18(16):8248. https://doi.org/10.3390/ijerph18168248
Chicago/Turabian StyleAlamri, Faisal F., Aslam Khan, Abdulaziz O. Alshehri, Ahmed Assiri, Shahd I. Khan, Leen A. Aldwihi, Munirah A. Alkathiri, Omar A. Almohammed, Ahmad M. Salamatullah, Amer S. Alali, and et al. 2021. "Association of Healthy Diet with Recovery Time from COVID-19: Results from a Nationwide Cross-Sectional Study" International Journal of Environmental Research and Public Health 18, no. 16: 8248. https://doi.org/10.3390/ijerph18168248