Changes of Gene Expression Patterns from Aquatic Organisms Exposed to Metal Nanoparticles
Abstract
:1. Introduction
2. Effects of Metal Nanoparticles on Gene Expression
2.1. Effects of Silver Nanoparticles on Gene Expression
2.2. Effects of Copper Nanoparticles on Gene Expression
2.3. Effects of other Nanoparticulate Metals on Gene Expression
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Koivisto, A.J.; Jensen, A.C.Ø.; Kling, K.I.; Nørgaard, A.; Brinch, A.; Christensen, F.; Jensen, K.A. Quantitative material releases from products and articles containing manufactured nanomaterials: Towards a release library. NanoImpact 2017, 5, 119–132. [Google Scholar] [CrossRef]
- Auffan, M.; Rose, J.; Bottero, J.Y.; Lowry, G.V.; Jolivet, J.P.; Wiesner, M.R. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat. Nanotechnol. 2009, 4, 634–641. [Google Scholar] [CrossRef]
- De Jong, W.H.; Borm, P.J. Drug delivery and nanoparticles:applications and hazards. Int. J. Nanomed. 2008, 3, 133–149. [Google Scholar] [CrossRef] [Green Version]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Thota, S.; Crans, D. Introduction. In Metal Nanoparticles: Synthesis and Applications in Pharmaceutical Sciences; Thota, S., Crans, D., Eds.; Wiley-VCH: Weinheim, Germany, 2018; pp. 1–7. [Google Scholar]
- Nel, A. Air pollution-related illness: Effects of particles. Science 2005, 308, 804–806. [Google Scholar] [CrossRef] [PubMed]
- Bahadar, H.; Maqbool, F.; Niaz, K.; Abdollahi, M. Toxicity of Nanoparticles and an Overview of Current Experimental Models. Iran. Biomed. J. 2016, 20, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Manke, A.; Wang, L.; Rojanasakul, Y. Mechanisms of Nanoparticle-Induced Oxidative Stress and Toxicity. BioMed Res. Int. 2013, 2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, T.; Kovochich, M.; Brant, J.; Hotze, M.; Sempf, J.; Oberley, T.; Sioutas, C.; Yeh, J.I.; Wiesner, M.R.; Nel, A.E. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett. 2006, 6, 1794–1807. [Google Scholar] [CrossRef]
- Golobič, M.; Jemec, A.; Drobne, D.; Romih, T.; Kasemets, K.; Kahru, A. Upon exposure to cu nanoparticles, accumulation of copper in the isopod porcellio scaber is due to the dissolved Cu ions inside the digestive tract. Environ. Sci. Technol. 2012, 46, 12112–12119. [Google Scholar] [CrossRef]
- Griffitt, R.J.; Weil, R.; Hyndman, K.A.; Denslow, N.D.; Powers, K.; Taylor, D.; Barber, D.S. Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environ. Sci. Technol. 2007, 41, 8178–8186. [Google Scholar] [CrossRef]
- Marin, S.; Vlasceanu, G.; Tiplea, R.; Bucur, I.; Lemnaru, M.; Marin, M.; Grumezescu, A. Applications and Toxicity of Silver Nanoparticles: A Recent Review. Curr. Top. Med. Chem. 2015, 15, 1596–1604. [Google Scholar] [CrossRef] [PubMed]
- Tugulea, A.M.; Bérubé, D.; Giddings, M.; Lemieux, F.; Hnatiw, J.; Priem, J.; Avramescu, M.L. Nano-silver in drinking water and drinking water sources: Stability and influences on disinfection by-product formation. Environ. Sci. Pollut. Res. 2014, 21, 11823–11831. [Google Scholar] [CrossRef] [Green Version]
- Kowalska-Góralska, M.; Senze, M.; Polechoński, R.; Dobicki, W.; Pokorny, P.; Skwarka, T. Biocidal properties of silver-nanoparticles in water environments. Pol. J. Environ. Stud. 2015, 24, 1641–1647. [Google Scholar] [CrossRef]
- Blinova, I.; Niskanen, J.; Kajankari, P.; Kanarbik, L.; Käkinen, A.; Tenhu, H.; Penttinen, O.P.; Kahru, A. Toxicity of two types of silver nanoparticles to aquatic crustaceans Daphnia magna and Thamnocephalus platyurus. Environ. Sci. Pollut. Res. 2013, 20, 3456–3463. [Google Scholar] [CrossRef]
- Qiang, L.; Arabeyyat, Z.H.; Xin, Q.; Paunov, V.N.; Dale, I.J.F.; Mills, R.I.L.; Rotchell, J.M.; Cheng, J. Silver nanoparticles in Zebrafish (Danio rerio) embryos: Uptake, growth and molecular responses. Int. J. Mol. Sci. 2020, 21, 1876. [Google Scholar] [CrossRef] [Green Version]
- Kwok, K.W.H.; Dong, W.; Marinakos, S.M.; Liu, J.; Chilkoti, A.; Wiesner, M.R.; Chernick, M.; Hinton, D.E. Silver nanoparticle toxicity is related to coating materials and disruption of sodium concentration regulation. Nanotoxicology 2016, 10, 1306–1317. [Google Scholar] [CrossRef] [PubMed]
- Van Aerle, R.; Lange, A.; Moorhouse, A.; Paszkiewicz, K.; Ball, K.; Johnston, B.D.; De-Bastos, E.; Booth, T.; Tyler, C.R.; Santos, E.M. Molecular mechanisms of toxicity of silver nanoparticles in zebrafish embryos. Environ. Sci. Technol. 2013, 47, 8005–8014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeo, M.-K.; Yoon, J.-W. Comparison of the Effects of Nano-silver Antibacterial Coatings and Silver Ions on Zebrafish Embryogenesis. Mol. Cell. Toxicol. 2009, 5, 23–31. [Google Scholar]
- Magesky, A.; de Oliveira Ribeiro, C.A.; Beaulieu, L.; Pelletier, É. Silver nanoparticles and dissolved silver activate contrasting immune responses and stress-induced heat shock protein expression in sea urchin. Environ. Toxicol. Chem. 2017, 36, 1872–1886. [Google Scholar] [CrossRef]
- Krishnaraj, C.; Harper, S.L.; Yun, S. Il In Vivo toxicological assessment of biologically synthesized silver nanoparticles in adult Zebrafish (Danio rerio). J. Hazard. Mater. 2016, 301, 480–491. [Google Scholar] [CrossRef] [Green Version]
- Park, H.G.; Yeo, M.K. Comparison of gene expression patterns from zebrafish embryos between pure silver nanomaterial and mixed silver nanomaterial containing cells of Hydra magnipapillata. Mol. Cell. Toxicol. 2015, 11, 307–314. [Google Scholar] [CrossRef]
- Scown, T.M.; Santos, E.M.; Johnston, B.D.; Gaiser, B.; Baalousha, M.; Mitov, S.; Lead, J.R.; Stone, V.; Fernandes, T.F.; Jepson, M.; et al. Effects of aqueous exposure to silver nanoparticles of different sizes in rainbow trout. Toxicol. Sci. 2010, 115, 521–534. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.E.; Kim, S.; Ahn, J.H.; Youn, P.; Kang, J.S.; Park, K.; Yi, J.; Ryu, D.Y. Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. Aquat. Toxicol. 2010, 100, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Osborne, O.J.; Johnston, B.D.; Moger, J.; Balousha, M.; Lead, J.R.; Kudoh, T.; Tyler, C.R. Effects of particle size and coating on nanoscale Ag and TiO2 exposure in zebrafish (Danio rerio) embryos. Nanotoxicology 2013, 7, 1315–1324. [Google Scholar] [CrossRef] [PubMed]
- Ringwood, A.H.; McCarthy, M.; Bates, T.C.; Carroll, D.L. The effects of silver nanoparticles on oyster embryos. Mar. Environ. Res. 2010, 69, S49–S51. [Google Scholar] [CrossRef]
- Johari, S.A.; Kalbassi, M.R.; Lee, S.B.; Dong, M.S.; Yu, I.J. Silver nanoparticles affects the expression of biomarker genes mRNA in rainbow trout (Oncorhynchus mykiss). Comp. Clin. Pathol. 2016, 25, 85–90. [Google Scholar] [CrossRef]
- Nair, P.M.G.; Park, S.Y.; Lee, S.W.; Choi, J. Differential expression of ribosomal protein gene, gonadotrophin releasing hormone gene and Balbiani ring protein gene in silver nanoparticles exposed Chironomus riparius. Aquat. Toxicol. 2011, 101, 31–37. [Google Scholar] [CrossRef]
- Nair, P.M.G.; Choi, J. Identification, characterization and expression profiles of Chironomus riparius glutathione S-transferase (GST) genes in response to cadmium and silver nanoparticles exposure. Aquat. Toxicol. 2011, 101, 550–560. [Google Scholar] [CrossRef] [PubMed]
- Nair, P.M.G.; Choi, J. Characterization of a ribosomal protein L15 cDNA from Chironomus riparius (Diptera; Chironomidae): Transcriptional regulation by cadmium and silver nanoparticles. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2011, 159, 157–162. [Google Scholar] [CrossRef]
- Pham, C.H.; Yi, J.; Gu, M.B. Biomarker gene response in male Medaka (Oryzias latipes) chronically exposed to silver nanoparticle. Ecotoxicol. Environ. Saf. 2012, 78, 239–245. [Google Scholar] [CrossRef]
- Bebianno, M.J.; Gonzalez-Rey, M.; Gomes, T.; Mattos, J.J.; Flores-Nunes, F.; Bainy, A.C.D. Is gene transcription in mussel gills altered after exposure to Ag nanoparticles? Environ. Sci. Pollut. Res. 2015, 22, 17425–17433. [Google Scholar] [CrossRef]
- Wang, S.; Lv, J.; Zhang, S. Discovery of CRR1-targeted copper deficiency response in Chlamydomonas reinhardtii exposed to silver nanoparticles. Nanotoxicology 2019, 13, 447–454. [Google Scholar] [CrossRef]
- Simon, D.F.; Domingos, R.F.; Hauser, C.; Hutchins, C.M.; Zerges, W.; Wilkinson, K.J. Transcriptome sequencing (RNA-seq) analysis of the effects of metal nanoparticle exposure on the transcriptome of Chlamydomonas reinhardtii. Appl. Environ. Microbiol. 2013, 79, 4774–4785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Bairuty, G.A.; Shaw, B.J.; Handy, R.D.; Henry, T.B. Histopathological effects of waterborne copper nanoparticles and copper sulphate on the organs of rainbow trout (Oncorhynchus mykiss). Aquat. Toxicol. 2013, 126, 104–115. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Long, X.; Cheng, Y.; Liu, Z.; Yan, S. A comparison effect of copper nanoparticles versus copper sulphate on juvenile Epinephelus coioides: Growth parameters, digestive enzymes, body composition, and histology as biomarkers. Int. J. Genom. 2015, 2015. [Google Scholar] [CrossRef] [Green Version]
- Arellano, J.M.; Storch, V.; Sarasquete, C. Histological changes and copper accumulation in liver and gills of the senegales sole, Solea senegalensis. Ecotoxicol. Environ. Saf. 1999, 44, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Blinova, I.; Ivask, A.; Heinlaan, M.; Mortimer, M.; Kahru, A. Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Environ. Pollut. 2010, 158, 41–47. [Google Scholar] [CrossRef]
- Kowalska-Góralska, M.; Dziewulska, K.; Kulasza, M. Effect of copper nanoparticles and ions on spermatozoa motility of sea trout (Salmo trutta m. Trutta L.). Aquat. Toxicol. 2019, 211, 11–17. [Google Scholar] [CrossRef]
- Forouhar Vajargah, M.; Mohamadi Yalsuyi, A.; Sattari, M.; Prokić, M.D.; Faggio, C. Effects of Copper Oxide Nanoparticles (CuO-NPs) on Parturition Time, Survival Rate and Reproductive Success of Guppy Fish, Poecilia reticulata. J. Clust. Sci. 2020, 31, 499–506. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Q.; Li, X.; Zhan, S.; Wang, L.; Chen, D. The effects of copper oxide nanoparticles on dorsoventral patterning, convergent extension, and neural and cardiac development of zebrafish. Aquat. Toxicol. 2017, 188, 130–137. [Google Scholar] [CrossRef]
- Murugananthkumar, R.; Rajesh, D.; Senthilkumaran, B. Copper nanoparticles differentially target testis of the catfish, Clarias batrachus: In vivo and in vitro study. Front. Environ. Sci. 2016, 4, 67. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Long, X.; Chen, X.; Liu, Y.; Liu, Z.; Han, S.; Yan, S. Integrated transcriptome, proteome and physiology analysis of Epinephelus coioides after exposure to copper nanoparticles or copper sulfate. Nanotoxicology 2017, 11, 236–246. [Google Scholar] [CrossRef]
- Wang, T.; Chen, X.; Long, X.; Liu, Z.; Yan, S. Copper nanoparticles and copper sulphate induced cytotoxicity in hepatocyte primary cultures of Epinephelus coioides. PLoS ONE 2016, 11, e0149484. [Google Scholar] [CrossRef]
- Abdel-Latif, H.M.R.; Dawood, M.A.O.; Mahmoud, S.F.; Shukry, M.; Noreldin, A.E.; Ghetas, H.A.; Khallaf, M.A. Copper Oxide Nanoparticles Alter Serum Biochemical Indices, Induce Histopathological Alterations, and Modulate Transcription of Cytokines, HSP70, and Oxidative Stress Genes in Oreochromis niloticus. Animals 2021, 11, 652. [Google Scholar] [CrossRef]
- Regier, N.; Cosio, C.; von Moos, N.; Slaveykova, V.I. Effects of copper-oxide nanoparticles, dissolved copper and ultraviolet radiation on copper bioaccumulation, photosynthesis and oxidative stress in the aquatic macrophyte Elodea nuttallii. Chemosphere 2015, 128, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Gupta, Y.R.; Sellegounder, D.; Kannan, M.; Deepa, S.; Senthilkumaran, B.; Basavaraju, Y. Effect of copper nanoparticles exposure in the physiology of the common carp (Cyprinus carpio): Biochemical, histological and proteomic approaches. Aquac. Fish. 2016, 1, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Handy, R.D.; Sims, D.W.; Giles, A.; Campbell, H.A.; Musonda, M.M. Metabolic trade-off between locomotion and detoxification for maintenance of blood chemistry and growth parameters by rainbow trout (Oncorhynchus mykiss) during chronic dietary exposure to copper. Aquat. Toxicol. 1999, 47, 23–41. [Google Scholar] [CrossRef]
- Gomes, T.; Chora, S.; Pereira, C.G.; Cardoso, C.; Bebianno, M.J. Proteomic response of mussels Mytilus galloprovincialis exposed to CuO NPs and Cu2+: An exploratory biomarker discovery. Aquat. Toxicol. 2014, 155, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Ansari, M.T.; Sami, F.; Khairudiin, F.A.; Atan, M.Z.; Mohamad, T.A.S.B.T.; Majeed, S.; Ali, S.; Tahir, A.; Hasnain, M.S. Applications of Zinc Nanoparticles in Medical and Healthcare Fields. Curr. Nanomed. 2018, 8, 225–233. [Google Scholar] [CrossRef]
- Kolodziejczak-Radzimska, A.; Jesionowski, T. Zinc oxide-from synthesis to application: A review. Materials 2014, 7, 2833–2881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waghmode, M.S.; Gunjal, A.B.; Mulla, J.A.; Patil, N.N.; Nawani, N.N. Studies on the titanium dioxide nanoparticles: Biosynthesis, applications and remediation. SN Appl. Sci. 2019, 1, 310. [Google Scholar] [CrossRef] [Green Version]
- Dykman, L.A.; Khlebtsov, N.G. Gold Nanoparticles in Biology and Medicine: Recent Advances and Prospects. Acta Nat. 2011, 3, 34–55. [Google Scholar] [CrossRef] [Green Version]
- Thompson, D.T. Using gold nanoparticles for catalysis. Nano Today 2007, 2, 40–43. [Google Scholar] [CrossRef]
- Shurygina, I.A.; Shurygin, M.G. Use of Nanoselenium in Chemotherapy Drug Delivery Systems. Nanotechn. Russ. 2020, 15, 679–685. [Google Scholar] [CrossRef]
- Hosnedlova, B.; Kepinska, M.; Skalickova, S.; Fernandez, C.; Ruttkay-Nedecky, B.; Peng, Q.; Baron, M.; Melcova, M.; Opatrilova, R.; Zidkova, J.; et al. Nano-selenium and its nanomedicine applications: A critical review. Int. J. Nanomed. 2018, 13, 2107–2128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fahmy, H.M.; Mohamed, F.M.; Marzouq, M.H.; Mustafa, A.B.E.D.; Alsoudi, A.M.; Ali, O.A.; Mohamed, M.A.; Mahmoud, F.A. Review of Green Methods of Iron Nanoparticles Synthesis and Applications. Bionanoscience 2018, 8, 491–503. [Google Scholar] [CrossRef]
- Della Torre, C.; Balbi, T.; Grassi, G.; Frenzilli, G.; Bernardeschi, M.; Smerilli, A.; Guidi, P.; Canesi, L.; Nigro, M.; Monaci, F.; et al. Titanium dioxide nanoparticles modulate the toxicological response to cadmium in the gills of Mytilus galloprovincialis. J. Hazard. Mater. 2015, 297, 92–100. [Google Scholar] [CrossRef]
- Jovanović, B.; Ji, T.; Palić, D. Gene expression of zebrafish embryos exposed to titanium dioxide nanoparticles and hydroxylated fullerenes. Ecotoxicol. Environ. Saf. 2011, 74, 1518–1525. [Google Scholar] [CrossRef]
- Poynton, H.C.; Lazorchak, J.M.; Impellitteri, C.A.; Smith, M.E.; Rogers, K.; Patra, M.; Hammer, K.A.; Allen, H.J.; Vulpe, C.D. Differential gene expression in daphnia magna suggests distinct modes of action and bioavailability for Zno nanoparticles and Zn ions. Environ. Sci. Technol. 2011, 45, 762–768. [Google Scholar] [CrossRef] [PubMed]
- Brun, N.R.; Lenz, M.; Wehrli, B.; Fent, K. Comparative effects of zinc oxide nanoparticles and dissolved zinc on zebrafish embryos and eleuthero-embryos: Importance of zinc ions. Sci. Total Environ. 2014, 476–477, 657–666. [Google Scholar] [CrossRef]
- Zhao, X.; Ren, X.; Zhu, R.; Luo, Z.; Ren, B. Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria-mediated apoptosis in zebrafish embryos. Aquat. Toxicol. 2016, 180, 56–70. [Google Scholar] [CrossRef]
- Choi, J.S.; Kim, R.O.; Yoon, S.; Kim, W.K. Developmental Toxicity of Zinc Oxide Nanoparticles to Zebrafish (Danio rerio): A transcriptomic analysis. PLoS ONE 2016, 11, e0160763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deepa, S.; Murugananthkumar, R.; Raj Gupta, Y.; Gowda, K.S.M.; Senthilkumaran, B. Effects of zinc oxide nanoparticles and zinc sulfate on the testis of common carp, Cyprinus carpio. Nanotoxicology 2019, 13, 240–257. [Google Scholar] [CrossRef] [PubMed]
- Dawood, M.A.O.; Zommara, M.; Eweedah, N.M.; Helal, A.I.; Aboel-Darag, M.A. The potential role of nano-selenium and vitamin C on the performances of Nile tilapia (Oreochromis niloticus). Environ. Sci. Pollut. Res. 2020, 27, 9843–9852. [Google Scholar] [CrossRef]
- Dawood, M.A.O.; Zommara, M.; Eweedah, N.M.; Helal, A.I. Synergistic Effects of Selenium Nanoparticles and Vitamin E on Growth, Immune-Related Gene Expression, and Regulation of Antioxidant Status of Nile Tilapia (Oreochromis niloticus). Biol. Trace Elem. Res. 2020, 195, 624–635. [Google Scholar] [CrossRef] [PubMed]
- Al-Deriny, S.H.; Dawood, M.A.O.; Elbialy, Z.I.; El-Tras, W.F.; Mohamed, R.A. Selenium Nanoparticles and Spirulina Alleviate Growth Performance, Hemato-Biochemical, Immune-Related Genes, and Heat Shock Protein in Nile Tilapia (Oreochromis niloticus). Biol. Trace Elem. Res. 2020, 198, 661–668. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.T.; Zaikova, T.; Hutchison, J.E.; Tanguay, R.L. Gold nanoparticles disrupt zebrafish eye development and pigmentation. Toxicol. Sci. 2013, 133, 275–288. [Google Scholar] [CrossRef] [Green Version]
- Dedeh, A.; Ciutat, A.; Treguer-Delapierre, M.; Bourdineaud, J.P. Impact of gold nanoparticles on zebrafish exposed to a spiked sediment. Nanotoxicology 2015, 9, 71–80. [Google Scholar] [CrossRef]
- Teles, M.; Reyes-López, F.E.; Balasch, J.C.; Tvarijonaviciute, A.; Guimarães, L.; Oliveira, M.; Tort, L. Toxicogenomics of gold nanoparticles in a marine fish: Linkage to classical biomarkers. Front. Mar. Sci. 2019, 6, 147. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Latif, H.M.R.; Shukry, M.; El Euony, O.I.; Mohamed Soliman, M.; Noreldin, A.E.; Ghetas, H.A.; Dawood, M.A.O.; Khallaf, M.A. Hazardous Effects of SiO2 Nanoparticles on Liver and Kidney Functions, Histopathology Characteristics, and Transcriptomic Responses in Nile Tilapia (Oreochromis niloticus) Juveniles. Biology 2021, 10, 183. [Google Scholar] [CrossRef]
- Zheng, M.; Lu, J.; Zhao, D. Effects of starch-coating of magnetite nanoparticles on cellular uptake, toxicity and gene expression profiles in adult zebrafish. Sci. Total Environ. 2018, 622–623, 930–941. [Google Scholar] [CrossRef] [PubMed]
- Villacis, R.A.R.; Filho, J.S.; Piña, B.; Azevedo, R.B.; Pic-Taylor, A.; Mazzeu, J.F.; Grisolia, C.K. Integrated assessment of toxic effects of maghemite (Γ-Fe2O3) nanoparticles in zebrafish. Aquat. Toxicol. 2017, 191, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Lu, J.; Zhao, D. Toxicity and Transcriptome Sequencing (RNA-seq) Analyses of Adult Zebrafish in Response to Exposure Carboxymethyl Cellulose Stabilized Iron Sulfide Nanoparticles. Sci. Rep. 2018, 8. [Google Scholar] [CrossRef] [PubMed]
- Morel, E.; Jreije, I.; Tetreault, V.; Hauser, C.; Zerges, W.; Wilkinson, K.J. Biological impacts of Ce nanoparticles with different surface coatings as revealed by RNA-Seq in Chlamydomonas reinhardtii. NanoImpact 2020, 19, 100228. [Google Scholar] [CrossRef]
Species Tested | Cell Tissue Target | Genes Targeted/Expression Changes | Gene Main Function | References |
---|---|---|---|---|
Danio rerio | Embryos | - zgc:175127 ↑ - sort1b ↑ - idh3g ↑ - thrab ↑ - lgals3l ↑ - caspb ↑ - zgc:114104 ↑ - pvalb5 ↑ - lnx1 ↑ - per1b ↓ - nt5c3 ↓ - mif4gdb ↓ - cbx7a ↓ - mep1a.2 ↓ - slc45a3 ↓ - myf5 ↓ - irg1l ↓ | - Cellular component - Involved in lipid metabolism - carbohydrate metabolism - developmental processes - lectin - proteolysis - metal ion binding - calcium/calmodulin binding - notch signalling gene - response to light stimulus - pyrimidine nucleoside metabolism - regulation of translation - chromatin modification - proteolysis - transmembrane transport - muscle development - propionate metabolism | [22] |
- pepd ↑ - sema3fb ↑ - map2k2a ↑ - anxa1b ↑ - mylpfb ↑ - fgf11a ↑ - cdh15 ↑ | - peptidase - semaphoring - mitogen-activated kinase - annexin - myosin light chain - fibroblast growth factor - cadherin | |||
- HIF4 ↑ - Pxmp2 ↑ | - response to hypoxia - channel forming protein in peroxisomal membrane | [16] | ||
- TGFβ ↑ | - multifunctional cytokine | |||
- pitx2 ↑ - acvr2b ↑ - smad1 ↑ - inhβB ↓ | - establishment of left – right axis - activin receptor precursor - transcriptional modulator - subunit of both activin and inhibin | [19] | ||
Liver | - MTF-1 ↓ - TLR4 ↓ - IL1B ↓ - CEPB ↓ - TRF ↓ - TLR22 ↓ - cytochrome 1a ↓ | - transcription factor - pattern recognition receptor - cytokine - transcription factor - transcription factor - patter recognition receptor - proapoptotic activity | [21] | |
- proteasome subunit β type-1 ↓ - ribosomal protein S6 modification-like protein ↑ | - subunit involved in protein degradation - ribosomal protein ↑ | [18] | ||
- glutathione peroxidase 1a ↓ - SOD1 ↓ - Bax1 ↑ - Noxa ↑ - p21 ↑ - catalase ↑ | - response to ROS - response to ROS - proapoptotic activity - transcription factor - cyclin-dependent kinase inhibitor - response to ROS | [24] | ||
Overall impact on body | - Mt2 ↑ | - binding of heavy metals ↑ | [25] | |
Oncorhynchus mykiss | Overall impact on body | - cyp1a2 ↑ | - xenobiotics metabolism | [23] |
Gills | - MT ↑ - GST ↑ - SOD ↑ | - binding of heavy metals - response to ROS - response to ROS | [27] | |
Chironomus riparius | Fourth instar larvae | - ribosomal protein gene L15 ↓ - gonadotrophin releasing hormone gene ↑ - Balbiani repeat gene 2.2 ↑ - GST | - ribosomal protein - stimulation of gonadotrophin release - secretory protein - response to ROS | [28,29] |
Egss Larvae pupae | - Hsp70 ↑ - CrRPL15 ↓ | - general shock response - ribosomal protein | [30] | |
Oryzias latipes | Liver | - GST ↑ - Hsp70 ↑ - choriogenin↑ - vitellogenin ↑ | - response to ROS - response to stressors - precursor of the inner layer subunit of the egg envelope - precursor of egg yolk | [31] |
Overall effect on body | - cyp1a ↓ - NKA ↓ | - response to stressors - nucleotide binding | [17] | |
Mytillus galloprovincialis | Overall impact on body | - CYP4YI ↑ - cathepsin ↑ - GST ↓ - caspase ↓ | - xenobiotic metabolism - protease - response to ROS - proapoptotic activity | [32] |
Strongylocentrotus droebachiensis | Immune cells | Hsp70 Hsp60 ↑ | - response to stressors | [20] |
Chlamydomonas reinhardtii | Overall impact on organism | - CYC6↑ - FDX5↑ - CTR2↑ - CRD1↑ | - copper level regulation - reductive metabolism - copper transporter - copper assimilation | [33] |
Species Tested | Cell and Tissue Target | Genes Targeted/Expression Changes | Gene Main Function | References |
---|---|---|---|---|
Epinephelus coioides | Overall impact on body | - apolipoprotein Eb ↑ - carnitine O-palmitoyltransferase 1 ↑ - acetyl-CoA acetyltransferase ↑ - complement component 3 ↑ - complement component 8 subunit β ↑ - complement component 9 ↓ - cytochrome p450 ↓ - sorbitol dehydrogenase ↓ - α/β hydrolase domain-containing protein 14 β ↓ | -apolipoprotein precursor - formation of acyl carnitines - transfer of aminoacyl groups - element of immune response - element of immune response - element of immune response - xenobiotics metabolism - conversion of sorbitol into fructose - hydrolase | [45] |
Liver cells culture | - SOD Cu/Zn ↓ - SOD Mn ↓ - CAT ↑ - GPx4 ↑ - p53 ↑ - p38β ↑ - TNFα ↑ | - response to ROS - response to ROS - response to ROS - response to ROS - cell cycle regulation - mitogen-activated protein kinase - cytokine | [44] | |
Danio rerio | Overall impact on body | - HIF-1 ↑ - Hsp70 ↑ - CTR ↑ | - response to hypoxia - response to various stressors - calcitonin receptor | [11] |
Cyprinus carpio | Overall impact on body | - diphosphomevelonate decarboxylase ↑ | - conversion of mevalonate 5-diphosphate into isopentyl diphosphate | [47] |
- selenide/water dikinase-1 ↑ | - transfer of phosphorus-containing groups | |||
- ferritin heavy chain ↓ | - ferroxidase | |||
- rho guanine nucleotide exchange factor 17-like ↓ - cytoglobin-1 ↓ | - stimulation of the formation of Rho-GTP - response to ROS | |||
Oncorhynchus mykiss | Liver and gut | - metallothionein ↑ | - heavy metals binding | [48] |
Mytilus galloprovincialis | Digestive gland and gills | - S-glutathione transferase ↑ - cathepsin L ↑ - ATP synthase F0 synthase subunit ↑ - heat shock cognate 71 ↑ - precollagen – D ↑ | - response to ROS - proteinase - subunit of ATP synthase - response to stress - protocollagen | [49] |
Elodea nuttalii | Overall impact on the organism | - COPT1 ↓ | - copper transporter | [46] |
SPECIES TESTED | Nanoparticle Type | Cell and Tissue Target | Genes Targeted/Expression Changes | Gene Main Function | References |
---|---|---|---|---|---|
Mytilus galloprovincialis | TiNPs | Overall impact on body | - abcb1 ↓ | - ATP-binding cassette | [58] |
Danio rerio | TiNPs | Embryos | - type I cytokeratin ↓ - cytochrome P450 and family 51 ↓ - zona pellucida glycoprotein 3a.2 ↓ - serum/glucocorticoid regulate kinase 1 ↓ - prostaglandin D2 synthase ↓ - carboxyl ester lipase ↑ - activin receptor lib ↑ | - regulation of kinase activity - cholesterol synthesis - zona pellucida component - cellular stress response - smooth muscle contraction - fat and vitamin absorption - kinase | [59] |
Daphnia magna | ZnNPs | Overall impact on body | - multicystatin ↑ - ferritin ↓ - C1q domain protein ↓ - nucleoside transporter ↓ | - protease inhibition - iron binding - activation of complement system - nucleoside transport | [60] |
Danio rerio | ZnNPs | Embryos | - Cu/Zn SOD ↑ - metallothionein ↑ - c-jun ↓ - MxA ↓ - TNF-α ↓ | - response to ROS - binding of heavy metals - transcription factor domain - GTP-metabolizing protein - cytokine | [61] |
- bax ↑ - puma ↑ - apaf1 ↑ - bcl-2 ↓ | - proapoptotic activity - proapoptotic activity - proapoptotic activity - anti-apoptotic activity | [62] | |||
- ogfrl2 ↑ - cyb5d1 ↑ - intelectin 2 ↓ | -inhibition of DNA synthesis - detoxification - development/innate immunity | [63] | |||
Danio rerio | ZnNPs | Eleuthero-embryos | - CuZn SOD ↓ - TNF-α ↓ | - response to ROS - cytokine | [61] |
Oryzias niloticus | SeNPs | Overall impact on body | - TNFα ↑ - IL-1β ↑ - SOD ↑ - Hsp70 ↓ | - cytokine - cytokine - response to ROS - response to various stressors | [65,66,67] |
Danio rerio | AuNPs | Brain | - sod1 ↑ - sod2 ↑ - cox1 ↑ - mt2 ↑ - gaad ↑ - ache ↑ | - response to ROS - response to ROS - mitochondrial respiration - response to heavy metals - DNA repair - neurotransmission | [69] |
Gills | - sod2 ↓ - cox1 ↓ - raad51 ↓ - gaad ↓ | - response to ROS - mitochondrial respiration - DNA repair - DNA repair | |||
Sparus aurata | AuNPs | Overall impact on body | - selenium binding protein 1 ↑ - L2HGDH ↑ - SULT1A3 ↑ - CYP2N ↑ - NLRP3 ↑ - ST6GAL ↑ - integrin β 1 binding protein 3 ↑ | - response to xenobiotics - oxidoreductive activity - oxidoreductive activity - oxidoreductive activity - immune response - immune response - immune response | [70] |
- perforin 1 ↑ - MSH6 ↑ - MEF2A ↑ - EIF4E ↑ - RPL13a ↑ - ETNK1 ↑ - mitotin ↑ - talin1 ↑ - glucose dehydrogenase ↓ - VPS4B ↓ - c-ski ↓ - ccdc59 ↓ - ABCF2 ↑ - UQCRFS1 ↑ - UQCRH ↑ - CCDC86 ↑ - CHMP4C ↑ - H5C70 ↑ - Farnesyl pyrophosphate synthethase ↑ | - DNA repair/apoptosis - DNA repair/apoptosis - apoptosis regulation - apoptosis regulation - apoptosis regulation - lipid metabolism - cell adhesion - cytoskeleton organization - carbohydrate metabolism - cell cycle regulation - TGFβ repressor - transcription factor - response to xenobiotics - electron transport chain - electron transport chain - immune response - stress response - stress response - lipid/protein metabolism | ||||
- PITRM1 ↑ - TMEM147 ↑ - PSMC3 ↑ - exosome complex exonuclease RRP45 ↑ | - lipid/protein metabolism - lipid/protein metabolism - lipid/protein metabolism - gene expression control | ||||
- TBL3 ↑ - WBP11↑ | - gene expression control - gene expression control | ||||
- chemokine CK-1 ↓ - NGFR ↓ | - immune response - apoptosis induction | ||||
- programmed cell death 7 ↓ - MAP2K7 ↓ - elastase-like serine protease ↓ - ACTN1 ↓ - bloodthirsty ↓ - ankyrin repeat-containing protein ↓ | - apoptosis induction - apoptosis induction - protease - cytoskeleton protein - erythrocyte differentiation - transcription factor | ||||
Danio rerio | FeNPs | Liver | - aldh5a1 ↑ - gpx1a ↑ - gstm3 ↑ - hsd3b7 ↑ - hspbl ↑ - ugt5c ↑ | - response to ROS - response to ROS - response to ROS - response to ROS - response to ROS - response to ROS | [73] |
Livergills | - mt-nd4 ↑ - mt-nd5 ↑ - mt-cyb ↑ - cox17 ↑ - cox6a1 ↑ - mtco2 ↑ - mt-co3 ↑ - ferroportin-1 ↑ - alas2 ↑ - TfR1 ↑ - TfR2 ↑ - cyp1a ↑ - abcb4 ↑ - fen1 ↓ - sgk1 ↓ - tsc22d3 ↑ - sirt7 ↓ - stat2 ↓ | - pro-apoptotic - pro-apoptotic - pro-apoptotic - pro-apoptotic - pro-apoptotic - proapoptotic - proapoptotic - iron metabolism - iron metabolism - iron metabolism - iron metabolism - response to stressors - response to stressors - DNA repair - protein kinase - anti-inflammatory response - epigenetic regulation - signal transductiontranscription activation | [72] | ||
Overal impact on body | - cmc4 ↑ - pimr214 ↑ - hist1h4l ↓ - hist1h4a ↓ - ighv-5 ↓ - dut ↓ | - mitochondrial protein import - Ser/Thr kinase - histone H4 gene - histone H4 gene - part of immunoglobulin - deoxyuridine triphosphatase | [74] | ||
Oreochromis niloticus | SiNPs | Gills | - Hsp70 ↑ - TNF- α ↑ - IL-1 β ↑ - IL-8 ↑ - CASP3 ↑ | - response to various stressors - cytokine - cytokine - cytokine - pro-apoptotic activity | [71] |
Liver | - SOD ↑ - Hsp70 ↑ - IL-1 β ↑ - IL-8 ↑ - TNF- α ↑ - CASP3 ↑ | - response to ROS - response to various stressors - cytokine - cytokine - cytokine - pro-apoptotic activity | |||
Chlamydomonas reinhardtii | CeNPs | Overall impact on organism | - FAP16↑ - POC7↓ | - flagella detachment - flagella assembly | [75] |
Cyprinus carpio | ZnNPs | Testis | - 20 β-hsd - cyp19a1 - dmrt1 | - steroidogenic enzyme - steroidogenic enzyme - transcription factor | [64] |
- activin β - dax1 - foxt2 - ad4bp - wnt5 | - transcription factor - transcription factor - transcription factor - transcription factor - transcription factor |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulasza, M.; Skuza, L. Changes of Gene Expression Patterns from Aquatic Organisms Exposed to Metal Nanoparticles. Int. J. Environ. Res. Public Health 2021, 18, 8361. https://doi.org/10.3390/ijerph18168361
Kulasza M, Skuza L. Changes of Gene Expression Patterns from Aquatic Organisms Exposed to Metal Nanoparticles. International Journal of Environmental Research and Public Health. 2021; 18(16):8361. https://doi.org/10.3390/ijerph18168361
Chicago/Turabian StyleKulasza, Mateusz, and Lidia Skuza. 2021. "Changes of Gene Expression Patterns from Aquatic Organisms Exposed to Metal Nanoparticles" International Journal of Environmental Research and Public Health 18, no. 16: 8361. https://doi.org/10.3390/ijerph18168361
APA StyleKulasza, M., & Skuza, L. (2021). Changes of Gene Expression Patterns from Aquatic Organisms Exposed to Metal Nanoparticles. International Journal of Environmental Research and Public Health, 18(16), 8361. https://doi.org/10.3390/ijerph18168361