E-Waste in Africa: A Serious Threat to the Health of Children
Abstract
:1. Introduction
2. Methods
3. Results
3.1. What Chemicals Are Present in E-Waste?
3.2. How Does E-Waste Pollute the Environment?
3.3. Health Effects Associated with Chemicals Found in E-Waste
3.4. Where Does E-Waste in Africa Come from?
3.4.1. Local Sources
3.4.2. Import of Used Electronic and Electrical Equipment (UEEE)
3.4.3. Export of E-Waste for the Sole Purpose of Disposal
3.5. Which Countries Are Most Affected by E-Waste?
3.6. Why Do African Countries Accept E-Waste?
3.6.1. Economic Benefits
3.6.2. Lack of Regulation
3.6.3. Interventions
3.6.4. The Basel Convention and Other Multilateral Environmental Agreements
- Legal status: Legally binding
- Adoption: 13–15 June 2017
- Entry into force: 15 June 2017
- Parties: 53 Member States of the WHO European Region (as of July 2021)
- Objectives: to improve outdoor and indoor air quality as one of the most important environmental risk factors in the region through actions towards meeting the WHO air quality guideline values in a continuous process of improvement
- Scope: to shape policies and actions on environment and health, support the implementation of effective evidence-based policies and advance actions on environment, health, and well-being in the WHO European Region (as of February 2021)
- Key provisions:Improve air quality for all by ensuring access to safe drinking water, sanitation, and hygiene. Minimize the adverse effects of chemicals. preventing, and eliminating the adverse effects of waste management and contaminated sites. Strengthen adaptation to and mitigation of climate change. Build environmentally sustainable health systems
4. The Way Forward
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garcia-Perez, J.; Fernandez-Navarro, P.; Castello, A.; Lopez-Cima, M.F.; Ramis, R.; Boldo, E.; Lopez-Abente, G. Cancer mortality in towns in the vicinity of incinerators and installations for the recovery or disposal of hazardous waste. Environ. Int. 2012, 51, 31–44. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.-W.; Sju, C.M. Health effects of waste incineration: A review of epidemiologic studies. J. Air Waste Manag. Assoc. 2001, 51, 1100–1109. [Google Scholar] [CrossRef] [PubMed]
- Gourmelon, G. Global Plastic Production Rises, Recycling Lags; Vital Signs, Worldwatch Institute: Washington, DC, USA, 2015; pp. 91–95. [Google Scholar]
- Wright, R.O.; Amarasiriwardeena, C.; Woolf, A.D.; Jim, R.; Bellinger, D.C. Neuropsychological Correlates of Hair Arsenic, Manganese, and Cadmium Levels in School-Age Children Residing Near a Hazardous Waste Site. NeuroToxicology 2000, 27, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Elliott, P.; Briggs, D.; Morris, S.; de Hoogh, C.; Hurt, C.; Jensen, T.K.; Maitland, I.; Richardson, S.; Wakefield, J.; Jarup, L. Risk of adverse birth outcomes in populations living near landfill sites. BMJ 2001, 323, 363–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- UNEP (United Nations Environment Programme). Technical Guidelines on Transboundary Movements of Electrical and Electronic Waste and Used Electrical and Electronic Equipment, in Particular Regarding the Distinction between Waste and Non-Waste under the Basel Convention. 2019. Available online: http://www.basel.int/Implementation/TechnicalMatters/DevelopmentofTechnicalGuidelines/TechnicalGuidelines/tabid/8025/Default.aspx (accessed on 20 December 2020).
- Kaya, M. Recovery of metals and nonmetals from electronic waste by physical and chemical recycling processes. Waste Manag. 2016, 57, 64–90. [Google Scholar] [CrossRef]
- Ongondo, F.O.; Williams, I.D.; Cherrett, T.J. How are WEEE doing? A global review of the management of electrical and electronic wastes. Waste Manag. 2011, 31, 714–730. [Google Scholar] [CrossRef]
- Carpenter, D.O. Occurrence and human health risk of emerging organic contaminants in e-waste. Compr. Anal. Chem. 2015, 67, 347–362. [Google Scholar] [CrossRef]
- Iqbal, M.; Syed, J.H.; Breivik, K.; Chaudhry, M.J.I.; Li, J.; Zhang, G.; Malik, R.N. E-waste driven pollution in Pakistan: The first evidence of environmental and human exposure to flame retardants (frs) in Karachi city. Environ. Sci. Technol. 2017, 51, 13895–13905. [Google Scholar] [CrossRef]
- Forti, V.; Balde, C.P.; Kuehr, R.; Bel, G. The Global E-Waste Monitor 2020. 2020. Available online: https://www.iswa.org/home/news/news-detail/article/-21c8325490/109/ (accessed on 11 September 2020).
- Prakash, S.; Manhart, A.; Amoyaw-Osie, Y.; Agyekum, O.O. Socio-Economic Assessment and Feasibility Study on Sustainable E-Waste Management in Ghana. Commissioned by Inspectorate of the Ministry of Housing, Spatial Planning and the Environment of the Netherlands and the Dutch Association for the Disposal of Metal and Electrical Products. Available online: https://www.oeko.de/oekodoc/1057/2010-105-en.pdf (accessed on 6 March 2020).
- Oteng-Ababio, M.; van der Velden, M.; Taylor, M.B. Building policy coherence for sound waste electrical and electronic equipment management in a developing country. J. Environ. Dev. 2020, 29, 306–328. [Google Scholar] [CrossRef]
- Deng, W.J.; Louie, P.K.K.; Liu, W.K.; Bid, X.H.; Fu, J.M.; Wong, M.H. Atmospheric levels and cytotoxicity of PAHs and heavy metal in TSP and PM2.5 at an electronic waste recycling site in southeast China. Atmos. Environ. 2006, 40, 56945–56955. [Google Scholar] [CrossRef]
- Leung, A.O.W.; Duzgoren-Aydin, N.S.; Cheung, K.C.; Wong, M.H. Heavy metals concentrations of surface dust from e-waste recycling and its human health implications in Southeast China. Environ. Sci. Technol. 2008, 42, 2674–2680. [Google Scholar] [CrossRef]
- Asante, K.A.; Agusa, T.; Biney, C.A.; Agyekum, W.A.; Bello, M.; Otsuka, M.; Itai, T.; Takahashi, S.; Tanabe, S. Multi-trace element levels and arsenic speciation in urine of e-waste recycling workers from Agbogbloshie, Accra in Ghana. Sci. Total Environ. 2012, 424, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Feldt, T.; Fobil, J.N.; Willsiepe, J.; Wilhelm, M.; Till, H.; Zoufaly, A.; Burchard, G.; Goen, T. High levels of PAH-metabolites in urine of e-waste recycling workers from Agbogbloshie, Ghana. Sci. Total Environ. 2014, 466–467, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Heacock, M.; Kelly, C.B.; Suk, W.A. E-waste: The growing global problem and next steps. Rev. Environ. Health 2016, 31, 131–135. [Google Scholar] [CrossRef] [PubMed]
- Kaifie, A.; Schettgen, T.; Bertram, J.; Löhndorf, K.; Waldschmidt, S.; Felten, M.K.; Kraus, T.; Fobil, J.N.; Küpper, T. Informal e-waste recycling and plasma levels of non-dioxin-like polychlorinated biphenyls (NDL-PCBs)—A cross-sectional study at Agbogbloshie, Ghana. Sci. Total Environ. 2020, 723, 138073. [Google Scholar] [CrossRef]
- Srigboh, R.K.; Basu, N.; Stephens, J.; Asampong, E.; Perkins, M.; Neitzel, R.L.; Fobil, J. Multiple elemental exposures amongst workers at the Agbogbloshie electronic waste (e-waste) site in Ghana. Chemosphere 2016, 164, 68–74. [Google Scholar] [CrossRef] [Green Version]
- Tue, N.M.; Goto, A.; Takahashi, S.; Itai, T.; Asante, K.A.; Kunisue, T.; Tanabe, S. Release of chlorinated, brominated, and mixed halogenated dioxin-related compounds to soils from open burning of e-waste in Agbogbloshie (Accra, Ghana). J. Hazard. Mater. 2016, 302, 151–157. [Google Scholar] [CrossRef]
- Wittsiepe, J.; Fobil, J.N.; Till, H.; Burchard, G.D.; Wilhelm, M.; Feldt, T. Levels of polychlorinated dibenzo-p-dioxins, dibenzofurans (PCDD/Fs) and biphenyls (PCBs) in blood of informal e-waste recycling workers from Agbogbloshie, Ghana, and controls. Environ. Int. 2015, 79, 65–73. [Google Scholar] [CrossRef]
- Grant, K.; Goldizen, F.; Sly, P.; Bruné, M.; Neira, M.; Berg, M.V.; Norman, R. Health consequences of exposure to e-waste: A systematic review. Lancet Glob. Health 2013, 1, e350–e361. [Google Scholar] [CrossRef] [Green Version]
- Ohajinwa, C.M.; van Bodegom, P.M.; Osibanjo, O.; Xie, Q.; Chen, J.; Vijver, M.G.; Peijnenburg, W. Health risks of polybrominated diphenyl ethers (PBDES) and metals at informal electronic waste recycling sites. Int. J. Environ. Res. Public Health 2019, 16, 906. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.; Dietrich, K.N.; Huo, X.; Ho, S.M. Developmental neurotoxicants in e-waste: An emerging health concern. Environ. Health Perspect. 2011, 119, 431–438. [Google Scholar] [CrossRef]
- Heacock, M.; Kelly, C.B.; Asante, K.A.; Birnbaum, L.S.; Bergman, A.L.; Bruné, M.N.; Buka, I.; Carpenter, D.O.; Chen, A.; Huo, X.; et al. E-waste and harm to vulnerable populations: A growing global problem. Environ. Health Perspect. 2015, 124, 550–555. [Google Scholar] [CrossRef]
- Suk, W.A.; Ruchirawat, K.M.; Balakristnan, K.; Berger, M.; Carpenter, D.; Damstra, T.; de Garbino, P.J.; Koh, D.; Landrigan, P.J.; Makalinao, I.; et al. Environmental threats to children’s health in Southeast Asia and the Western Pacific. Environ. Health Perspect. 2003, 111, 1340–1347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsydenova, O.; Bengtsson, M. Chemical hazards associated with treatment of waste electrical and electronic equipment. Waste Manag. 2011, 31, 45–58. [Google Scholar] [CrossRef] [PubMed]
- Schlummer, M.; Gruber, A.; Wolz, G.; van Eldik, R. Characterization of polymer fractions from waste electrical and electronic equipment (WEEE) and implications for waste management. Chemosphere 2007, 67, 1866–1876. [Google Scholar] [CrossRef] [PubMed]
- Frazzoli, C.; Orisakwe, O.E.; Dragone, R.; Mantovani, A. Diagnostic health risk assessment of electronic waste on the general population in developing countries scenarios. Environ. Impact Assess. Rev. 2010, 30, 388–399. [Google Scholar] [CrossRef]
- Kiddee, P.; Naidu, R.; Wong, M.H. Metals and polybrominated diphenyl ethers leaching from electronic waste in simulated landfills. J. Hazard. Mater. 2013, 252–253, 243–249. [Google Scholar] [CrossRef]
- Isimekhai, K.A.; Garelick, H.; Watt, J.; Purchase, D. Heavy metals distribution and risk assessment in soil from an informal e-waste recycling site in Lagos State, Nigeria. Environ. Sci. Pollut. Res. Int. 2017, 24, 17206–17219. [Google Scholar] [CrossRef]
- Alabi, O.A.; Bakare, A.A.; Xu, X.; Li, B.; Zhang, Y.; Huo, X. Comparative evaluation of environmental contamination and DNA damage induced by electronic waste in Nigeria and China. Sci. Total Environ. 2012, 423, 62–72. [Google Scholar] [CrossRef]
- Li, Z.; Li, X.; Qian, Y.; Guo, C.; Liu, H.; Wang, Z.; Wei, Y. The sustaining effects of e-waste on HPA axis reactivity and oxidative stress and their association with metals of blood. Sci. Total Environ. 2019, 739, 139964. [Google Scholar] [CrossRef] [PubMed]
- Wittsiepe, J.; Feldt, T.; Till, H.; Burchard, G.; Wilhelm, M.; Fobil, J.N. Pilot study on the internal exposure to heavy metals of informal-level electronic waste workers in Agbogbloshie, Accra, Ghana. Environ. Sci. Pollut. Res. Int. 2017, 24, 3097–3107. [Google Scholar] [CrossRef]
- Asante, K.A.; Pwamang, J.A.; Amoyaw-Osei, Y.; Ampofo, J.A. E-waste interventions in Ghana. Rev. Environ. Health 2016, 31, 145–148. [Google Scholar] [CrossRef]
- Perkins, D.N.; Brune Drisse, M.N.; Nxele, T.; Sly, P.D. E-waste: A global hazard. Ann. Glob. Health 2014, 80, 286–295. [Google Scholar] [CrossRef]
- Okwu, P.I.; Onyeje, I.N. Extraction of valuable substances from e-waste. Am. J. Eng. Res. 2014, 3, 299–304. [Google Scholar]
- Nnorom, I.C.; Osibanjo, O. Electronic waste (e-waste): Material flows and management practices in Nigeria. Waste Manag. 2008, 28, 1472–1479. [Google Scholar] [CrossRef]
- Daum, K.; Stoler, J.; Grant, R. Toward a more sustainable trajectory for e-waste policy: A review of a decade of e-waste research in Accra, Ghana. Int. J. Environ. Res. Public Health 2017, 14, 135. [Google Scholar] [CrossRef] [Green Version]
- Needhidasan, S.; Samuel, M.; Chidambaram, R. Electronic waste—An emerging threat to the environment of urban India. J. Environ. Health Sci. Eng. 2014, 12, 36. [Google Scholar] [CrossRef] [Green Version]
- Ohajinwa, C.M.; van Bodegom, P.M.; Vijver, M.G.; Olumide, A.O.; Osibanjo, O.; Peijenburg, W.J. Prevalence and injury patterns among electronic waste workers in the informal sector in Nigeria. Inj. Prev. 2018, 24, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Needleman, H.L. Deficits in psychological and classroom performance of children with elevated dentine lead levels. N. Engl. J. Med. 1979, 300, 689–695. [Google Scholar] [CrossRef] [PubMed]
- Lanphear, B.P.; Horning, R.; Khoury, J.; Yolton, K.; Baghurst, P.; Bellinger, D.C.; Canfield, R.L.; Dietrich, K.N.; Bornschein, R.; Greene, T.; et al. Low-level environmental lead exposure and children’s intellectual function: An international pooled analysis. Environ. Health Perspect. 2005, 113, 894–899. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Xu, X.; Wu, K.; Piao, Z.; Huang, J.; Cuo, Y.; Li, W.; Zhang, Y.; Chen, A.; Huo, X. Association between lead exposure from electronic waste recycling and child temperament alterations. Neurotoxicology 2011, 32, 458–464. [Google Scholar] [CrossRef]
- Yang, H.; Huo, X.; Tekeen, T.A.; Zheng, Q.; Zheng, M.; Xu, X. Effects of lead and cadmium exposure from electronic waste on child physical growth. Environ. Sci. Pollut. Res. Int. 2013, 20, 4441–4447. [Google Scholar] [CrossRef]
- Orisakwe, O.E.; Frazzoli, C.; Ilo, C.E.; Oritesemuelebi, B. Public health burden of e-waste in Africa. J. Health Pollut. 2019, 9, 190610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zota, A.R.; Ettinger, A.S.; Bouchard, M.; Amarasiriwardena, C.J.; Schwartz, J.; Hu, H.; Wright, R.O. Maternal blood manganese levels and infant birth weight. Epidemiology 2009, 20, 367–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Claus, H.B.; Ettinger, A.S.; Schwart, J.; Tellez-Rojo, M.M.; Lamadrid-Figueroa, H.; Hernandez-Avila, M.; Schnaas, L.; Amarasirwardena, C.; Bellinger, D.C.; Hu, H.; et al. Early postnatal blood manganese levels and children’s neurodevelopment. Epidemiology 2010, 21, 433–439. [Google Scholar] [CrossRef]
- Carpenter, D.O.; Arcaro, K.; Spink, D.C. Understanding the human health effects of chemical mixtures. Environ. Health Perspect. 2002, 110, 25–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, G.; Xu, X.M.; Bi, B.; Wu, K.; Yekeen, T.A.; Huo, X. Association between lung function in school children and exposure to three transition metals from an e-waste recycling area. J. Expo. Sci. Environ. Epidemiol. 2013, 23, 67–72. [Google Scholar] [CrossRef]
- Diaz, S.M.; Palma, R.M.; Munoz, M.N.; Becerra-Arias, C.; Fernández Niño, J.A. Factors associated with high mercury levels in women and girls from the Mojana Region, Colombia, 2013–2015. Int. J. Environ. Res. Public Health 2020, 17, 1827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monger, A.; Wangdi, K. Lead and mercury exposure and related health problems in metal artisan workplaces and high-risk household contacts in Thimphu, Bhutan. Sci. World J. 2020, 9267181. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Liao, W.; Lin, Y.; Dai, Y.; Shi, Z.; Huo, X. Blood concentrations of lead, cadmium, mercury and their association with biomarkers of DNA oxidative damage in preschool children living in an e-waste recycling area. Environ. Geochem. Health 2018, 40, 1481–1494. [Google Scholar] [CrossRef] [PubMed]
- Das, K.K.; Das, S.N.; Dhundasi, S.A. Nickel, its adverse health effects, and oxidative stress. Indian J. Med. Res. 2008, 128, 412–425. [Google Scholar] [PubMed]
- ATSDR (Agency for Toxic Substances and Disease Registry). Public Health Statement for Nickel. 2005. Available online: https://www.atsdr.cdc.gov/phs/phs.asp?id=243&tid=44 (accessed on 8 May 2020).
- Ni, W.; Huang, Y.; Wang, X.; Zhang, J.; Wu, K. Associations of neonatal lead, cadmium, chromium and nickel co-exposure with DNA oxidative damage in an electronic waste recycling town. Sci. Total Environ. 2014, 472, 354–362. [Google Scholar] [CrossRef]
- Dong, J.; Su, S.Y. The association between arsenic and children’s intelligence: A meta-analysis. Biol. Trace Elem. Res. 2009, 129, 88–93. [Google Scholar] [CrossRef]
- Wang, S.X.; Wang, Z.H.; Cheng, X.T.; Li, J.; Sang, Z.P.; Zhang, X.D.; Han, L.; Qiao, X.; Wu, Z.; Wang, Z. Arsenic and fluoride exposure in drinking water: Children’s IQ and growth in Shanyin County, Shanxi Province, China. Environ. Health Perspect. 2007, 115, 643–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parajuli, R.P.; Fujiwara, T.; Umezaki, M.; Watanabe, C. Association of cord blood levels of lead, arsenic and zinc with neurodevelopmental indicators in newborns: A birth cohort study in Chitwan Valley, Nepal. Environ. Res. 2013, 121, 45–51. [Google Scholar] [CrossRef]
- Liu, Y.; McDermott, S.; Lawson, A.; Aelion, C.M. The relationship between mental retardation and developmental delays in children and level in soil samples of arsenic, mercury and lead in soil samples taken near their mother’s residence during pregnancy. Int. J. Hyg. Environ. Health 2010, 213, 116–123. [Google Scholar] [CrossRef] [Green Version]
- Rodriquez-Barrancco, M.; Lacasan, M.; Aguilar-Garduno, C.; Alguacil, J.; Gil, F.; González-Alzaga, B.; Rojas-García, A. Association of arsenic, cadmium, and manganese exposure with neurodevelopment and behavioural disorders in children: A systematic review and meta-analysis. Sci. Total Environ. 2013, 454–455, 562–577. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.H.; Goycolea, M.; Haque, R.; Biggs, M.L. Marked increase in bladder and lung cancer mortality in a region of Northern Chile due to arsenic in drinking water. Am. J. Epidemiol. 1998, 147, 660–669. [Google Scholar] [CrossRef] [PubMed]
- Navas-Acien, A.; Silbergeld, E.K.; Sharrett, A.R.; Calderon-Aranda, E.; Selvin, E.; Guailar, E. Metals in urine and peripheral arterial disease. Environ. Health Perspect. 2005, 113, 164–169. [Google Scholar] [CrossRef]
- Bao, Q.S.; Lu, C.Y.; Song, H.; Wang, M.; Ling, W.; Chen, W.Q.; Deng, X.Q.; Hao, Y.T.; Rao, S. Behavioral development of school-aged children who live around a multi-metal sulphide mine in Guangdong province, China: A cross-sectional study. BMC Public Health 2009, 9, 217. [Google Scholar] [CrossRef] [Green Version]
- Caserta, D.; Granziano, A.; LoMonte, G.; Bordi, G.; Moscarini, M. Heavy metals and placental fetal-maternal barrier: A mini review on the major concerns. Eur. Rev. Med. Pharmacol. Sci. 2013, 17, 2198–2206. [Google Scholar] [PubMed]
- Kippler, M.; Bottai, M.; Georgiou, V.; Konra, K.; Chalkiadaki, G.; Kampouri, M.; Kyriklaki, A.; Vafeiadi, M.; Fthenou, E.; Vassilaki, M.; et al. Impact of prenatal exposure to cadmium on cognitive development at preschool age and the importance of selenium and iodine. Eur. J. Epidemiol. 2016, 31, 1123–1134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, L.; Zhao, Y.C.; Wang, X.C.; Gu, J.L.; Sun, Z.I.; Zhang, Y.; Wang, J. Effects of gestational cadmium exposure on pregnancy outcome and development in the offspring at age 4.5 years. Biol. Trace Elem. Res. 2009, 132, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Ge, J.; Huo, X.; Zhang, Y.; Lau, A.T.Y.; Xu, X. Differential proteomic expression of human placenta and fetal development following e-waste lead and cadmium exposure in utero. Sci. Total Environ. 2016, 550, 1163–1170. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, X.; Chen, A.; Davuljigari, C.B.; Zheng, X.; Kim, S.S.; Dietrich, K.N.; Ho, S.M.; Reponen, T.; Huo, X. Maternal urinary cadmium levels during pregnancy associated with risk of sex-dependent birth outcomes from an e-waste pollution site in China. Reprod. Toxicol. 2018, 75, 49–55. [Google Scholar] [CrossRef]
- Pellerin, C.; Booker, S.M. Reflections on hexavalent chromium: Health hazards of an industrial heavyweight. Environ. Health Perspect. 2000, 108, A402–A407. [Google Scholar] [CrossRef]
- Li, Y.; Xu, X.; Liu, J.; Wu, K.; Gu, C.; Shao, G.; Chen, S.; Chen, G.; Huo, X. The hazard of chromium exposure to neonates in Guiyu of China. Sci. Total Environ. 2008, 403, 99–104. [Google Scholar] [CrossRef]
- Xu, X.; Uekeen, T.A.; Liu, J.; Zhuang, B.; Li, W.; Huo, X. Chromium exposure among children from an electronic waste recycling town of China. Environ. Sci. Pollut. Res. Int. 2013, 22, 1778–1785. [Google Scholar] [CrossRef]
- Zeng, X.; Xu, X.; Boezen, H.M.; Vonk, J.M.; Wu, W.; Huo, X. Decreased lung function with mediation of blood parameters linked to e-waste lead and cadmium exposure in preschool children. Environ. Pollut. 2017, 230, 838–848. [Google Scholar] [CrossRef]
- Rahman, F.; Langford, K.H.; Scrimshaw, M.D.; Lester, J.N. Polybrominated diphenyl ether (PBDE) flame retardants. Sci. Total Environ. 2001, 275, 1–17. [Google Scholar] [CrossRef]
- Jacobson, M.H.; Barr, D.B.; Marcus, M.; Muri, A.B.; Lyles, R.H.; Howards, P.P.; Pardo, L.; Darrow, L.A. Serum diphenyl ether concentrations and thyroid function in young children. Environ. Res. 2016, 149, 222–230. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.; Yoltan, K.; Rauch, S.A.; Webster, G.M.; Hornung, R.; Sjodin, A.; Dietrich, K.N.; Lanphear, B.P. Prenatal polybrominated diphenyl ether exposures and neurodevelopment in US children through 5 years of age: The HOME study. Environ. Health Perspect. 2014, 122, 856–862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erkin-Cakmak, A.; Harley, K.G.; Chevrier, J.; Bradman, A.; Kogut, K.; Huen, K.; Eskenazi, B. In utero and childhood polybrominated diphenyl ether exposures and body mass at age 7 years: The CHAMACOS study. Environ. Health Perspect. 2015, 123, 636–642. [Google Scholar] [CrossRef] [Green Version]
- Hoppe, A.A.; Carey, G.B. Polybrominated diphenyl ethers as endocrine disruptors of adipocyte metabolism. Obesity 2007, 15, 2942–2950. [Google Scholar] [CrossRef] [PubMed]
- Dishaw, L.V.; Macaulay, L.J.; Roberts, S.C.; Stapleton, H.M. Exposures, mechanisms, and impact of endocrine-active flame retardants. Curr. Opin. Pharmacol. 2014, 19, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Zhou, Q.; Wang, Y.; Zhang, Q.; Cai, Z.; Jiang, G. E-waste recycling induced polybrominated diphenyl ethers, polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins and dibenzo-furans pollution in the ambient environment. Environ. Int. 2008, 34, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Chen, L.; Chen, D.; Guo, H.; Bi, X.; Ju, Y.; Jiang, P.; Shi, J.; Yu, Z.; Yang, J.; et al. Elevated serum polybrominated diphenyl ethers and thyroid-stimulating hormone associated with lymphocytic micronuclei in Chinese workers from an e-waste dismantling site. Environ. Sci. Technol. 2008, 42, 2195–2200. [Google Scholar] [CrossRef]
- Li, M.; Huo, X.; Pan, Y.; Cai, H.; Dai, Y.; Xu, X. Proteomic evaluation of human umbilical cord tissue exposed to polybrominated diphenyl ethers in an e-waste recycling area. Environ. Int. 2018, 111, 362–371. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Huo, X.; Zhang, Y.; Li, W.; Zhang, J.; Xu, X. Polybrominated diphenyl ethers in human placenta associated with neonatal physiological development at a typical e-waste recycling area in China. Environ. Pollut. 2015, 196, 414–422. [Google Scholar] [CrossRef]
- Xu, P.; Lou, X.; Ding, G.; Shen, H.; Wu, L.; Chen, Z.; Han, J.; Han, G.; Wang, X. Association of PCB, PBDE and PCDD/F body burdens with hormone levels for children in an e-waste dismantling area of Zhejiang province, China. Sci. Total Environ. 2014, 499, 55–61. [Google Scholar] [CrossRef]
- Xu, P.; Lou, X.; Ding, G.; Shen, H.; Wu, L.; Chen, Z.; Han, J.; Wang, X. Effects of PCBs and PBDEs on thyroid hormone, lymphocyte proliferation, hematology and kidney injury markers in residents of an e-waste dismantling area in Zhejiang, China. Sci. Total Environ. 2015, 536, 215–222. [Google Scholar] [CrossRef]
- Yu, Y.J.; Lin, B.G.; Liang, W.B.; Li, L.Z.; Hong, Y.D.; Chen, X.C.; Xu, X.Y.; Xiang, M.D.; Huang, S. Associations between PBDEs exposure from house dust and human semen quality at an e-waste area in South China: A pilot study. Chemosphere 2018, 198, 266–273. [Google Scholar] [CrossRef]
- IARC (International Agency for Research on Cancer). Chemical Agents and Related Occupations: IARC Monographs on the Evaluation of Carcinogenic Risk to Humans; IARC: Lyon, France, 2012; Volume 100F, pp. 225–248. ISBN 978-92-832-1323-9. [Google Scholar]
- IARC (International Agency for Research on Cancer). Polychlorinated Biphenyls and Polybrominated Biphenyls; IARC Press: Lyon, France, 2016. [Google Scholar]
- Tue, N.M.; Takahashi, S.; Subramanian, A.; Sakai, S.; Tanabe, S. Environmental contamination and human exposure to dioxin-related compounds in e-waste recycling sites of developing countries. Environ. Sci. Process. Impacts 2013, 15, 1326–1331. [Google Scholar] [CrossRef]
- Fujimori, T.; Itai, T.; Goto, A.; Asante, K.A.; Otsuka, M.; Takahashi, S.; Tanabe, S. Interplay of metals and bromine with dioxin-related compounds concentrated in e-waste open burning soil from Agbogbloshie in Accra, Ghana. Environ. Pollut. 2016, 209, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Wang, Z.; Dong, M.H.; Rao, K.; Luo, J.; Wang, D.; Zha, J.; Huang, S.; Xu, Y.; Ma, M. PBBs, PBDEs and PCBs levels in hair of residents around e-waste disassembly sites in Zhejiang Province, China, and their potential sources. Sci. Total Environ. 2008, 397, 46–57. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, Z.; Zhou, H.; Zhao, Q. Burden for PBBs, PBDEs, and PCBs in tissues of the cancer patients in the e-waste disassembly sites in Zhejiang, China. Sci. Total Environ. 2009, 407, 4831–4837. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Ding, G.; Han, G.; Wang, X.; Xu, X.; Han, J.; Lou, X.; Xu, C.; Cai, D.; Song, Y.; et al. Distribution of PCDD/Fs, PCBs, PBDEs and organochlorine residues in children’s blood from Zhejiang, China. Chemosphere 2010, 80, 170–175. [Google Scholar] [CrossRef] [PubMed]
- ATSDR (Agency for Toxic Substances and Disease Registry). Toxicological Profile for Polychlorinated Biphenyls. US Department of Health and Human Services. 2000. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=142&tid=26 (accessed on 8 May 2020).
- Carpenter, D.O. Exposure to and health effects of volatile PCBs. Rev. Environ. Health 2015, 30, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, D.O. Polychlorinated biphenyls: Routes of exposure and effects on human health. Rev. Environ. Health 2006, 21, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Stolevik, S.B.; Nygaard, U.C.; Namork, E.; Haugen, M.; Kvalem, H.E.; Meltzer, H.M.; Alexander, J.; van Delft, J.; Loveren, H.; Lovik, M.; et al. Prenatal exposure to polychlorinated biphenyls and dioxins is associated with increased risk of wheeze and infections in infants. Food Chem. Toxicol. 2011, 49, 1843–1848. [Google Scholar] [CrossRef]
- Tusscher, G.W.; de Weerdt, J.; Roos, C.M.; Griffioen, R.W.; De Jongh, F.H.; Westra, M.; van der Slikke, J.W.; Oosting, J.; Olie, K.; Koppe, J.G. Decreased lung function associated with perinatal exposure to Dutch background levels of dioxins. Acta Paediatr. 2001, 90, 1292–1298. [Google Scholar] [CrossRef]
- Eguchi, A.; Nomiyama, K.; Minh Tue, N.; Trang, P.T.; Hung Viet, P.; Takahashi, S.; Tanabe, S. Residue profiles of organohalogen compounds in human serum from e-waste recycling sites in north Vietnam: Association with thyroid hormone levels. Environ. Res. 2015, 137, 440–449. [Google Scholar] [CrossRef]
- Li, R.; Yang, Q.; Qiu, X.; Li, K.; Li, G.; Zhu, P.; Zhu, T. Reactive oxygen species alteration of immune cells in local residents at an electronic waste recycling site in northern China. Environ. Sci. Technol. 2013, 47, 3344–3352. [Google Scholar] [CrossRef]
- Lv, Q.X.; Wang, W.; Li, X.H.; Yu, L.; Zhang, Y.; Tian, Y. Polychlorinated biphenyls and polybrominated biphenyl ethers in adipose tissue and matched serum from an e-waste recycling area (Wenling, China). Environ. Pollut. 2015, 199, 219–226. [Google Scholar] [CrossRef]
- Yu, N.; Wen, H.; Wang, X.; Yamazaki, E.; Taniyasu, S.; Yamashita, N.; Yu, H.; Wei, S. Nontarget discovery of per- and polyfluoroalkyl substances in atmospheric particulate matter and gaseous phase using cryogenic air sampler. Environ. Sci. Technol. 2020, 54, 3103–3113. [Google Scholar] [CrossRef]
- Poothong, S.; Papadopoulou, E.; Padilla-Sanchez, J.A.; Thomsen, C.; Haug, L.S. Multiple pathways of human exposure to poly-and perfluoroalkyl substances (PFAS): From external exposure to human blood. Environ. Int. 2020, 134, 105–244. [Google Scholar] [CrossRef] [PubMed]
- Vieira, V.M.; Hoffman, K.; Shin, H.M.; Weinberg, J.M.; Webster, T.F.; Fletcher, T. Perfluorooctanoic acid exposure and cancer outcomes in a contaminated community: A geographic analysis. Environ. Health Perspect. 2013, 121, 318–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Looker, C.; Luster, M.I.; Callafat, A.M.; Johnson, V.J.; Burleson, G.R.; Fletcher, T. Influenza vaccine response in adults exposed to perfluorooctanoate and perfluorooctanesulfonate. Toxicol. Sci. 2014, 138, 76–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Rogan, W.J.; Chen, P.C.; Lien, G.W.; Chen, H.Y.; Tseng, Y.C.; Longnecker, M.P.; Wang, S.L. Association between maternal serum perfluoroalkyl substances during pregnancy and maternal and cord thyroid hormones: Taiwan maternal and infant cohort study. Environ. Health Perspect. 2014, 122, 5290534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, K.; Xu, X.; Peng, L.; Liu, J.; Guo, Y.; Huo, X. Association between maternal exposure to perfluorooctanoic acid (PFOA) from electronic waste recycling and neonatal health outcomes. Environ. Int. 2012, 48, 1–8. [Google Scholar] [CrossRef]
- Chen, S.C.; Liao, C.M. Health risk assessment on human exposed to environmental polycyclic aromatic hydrocarbons pollution sources. Sci. Total Environ. 2006, 366, 112–123. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Tao, S.; Liu, J.; Huang, Y.; Chen, H.; Li, W.M.; Zhang, Y.; Chen, Y.; Su, S.; Lin, B.; et al. Global lung cancer risk from PAH exposure highly depends on emission sources and individual susceptibility. Sci. Rep. 2014, 4, 6561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barraza-Villarreal, A.; Escamilla-Nunez, M.C.; Schilmann, A.; Hernandez-Cadena, L.; Li, Z.; Romanoff, L.; Sjodin, A.; Rio-Navarro, B.E.; Diaz-Sanchez, D.; Diaz-Barriga, F.; et al. Lung function, airway inflammation, and polycyclic aromatic hydrocarbons exposure in Mexican schoolchildren: A pilot study. J. Occup. Environ. Med. 2014, 56, 415–419. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Xu, C.; Jiang, Z.Y.; Gu, A. Association of polycyclic aromatic hydrocarbons and asthma among children 6-19 years: NHANES 2001–2008 and NHANES 2011–2012. Respir. Med. 2016, 110, 20–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edwards, S.C.; Jedrychlowki, W.; Butscher, M.; Camann, D.; Kieltyka, A.; Mroz, E.; Flak, E.; Li, Z.; Wang, S.; Rauh, V.; et al. Prenatal exposure to airborne polycyclic aromatic hydrocarbons and children’s intelligence at 5 years of age in a prospective cohort study in Poland. Environ. Health Perspect. 2010, 118, 1326–1331. [Google Scholar] [CrossRef]
- Perera, F.P.; Tang, D.; Wang, S.; Vishnevetsky, J.; Zhang, Z.; Diaz, D.; Ccamann, D.; Rauh, V. Prenatal polycyclic aromatic hydrocarbon (PAH) exposure and child behavior at age 6–7 years. Environ. Health Perspect. 2012, 120, 921–926. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Chen, S.; Tian, M.; Zheng, X.; Gonzales, L.; Ohura, T.; Mai, B.; Massey Simonich, S.L. Inhalation cancer risk associated with exposure to complex polycyclic aromatic hydrocarbon mixtures in an electronic waste and urban area in South China. Environ. Sci. Technol. 2012, 46, 9745–9752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huo, X.; Wu, Y.; Xu, L.; Zeng, X.; Qin, Q.; Xu, X. Maternal urinary metabolites of PAHs and its association with adverse birth outcomes in an intensive e-waste recycling area. Environ. Pollut. 2019, 245, 453–461. [Google Scholar] [CrossRef]
- Xu, X.; Liu, J.; Huang, C.; Lu, F.; Chiung, Y.M.; Huo, X. Association of polycyclic aromatic hydrocarbons (PAHs) and lead co-exposure with child physical growth and development in an e-waste recycling town. Chemosphere 2015, 139, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Huo, X.; Zhang, Y.; Wang, Q.; Zhang, Y.; Xu, X. Cardiovascular endothelial inflammation by chronic coexposure to lead (Pb) and polycyclic aromatic hydrocarbons from preschool children in an e-waste recycling area. Environ. Pollut. 2019, 246, 587–596. [Google Scholar] [CrossRef]
- WHO (World Health Organization). Air Pollution and Child Health: Prescribing Clean Air Summary; World Health Organization: Geneva, Switzerland, 2018; Available online: https://apps.who.int/iris/handle/10665/275545 (accessed on 3 June 2020).
- Lee, B.; Kim, B.; Lee, K. Air pollution exposure and cardiovascular disease. Toxicol. Res. 2014, 30, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Phosri, A.; Ueda, K.; Phung, V.; Tawatsupa, B.; Honda, A.; Takanoa, H. Effects of ambient air pollution on daily hospital admissions for respiratory and cardiovascular diseases in Bangkok, Thailand. Sci. Total Environ. 2018, 651, 1144–1163. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Guo, Y.; Markevych, I.; Qian, Z.; Bloom, M.S.; Heinrich, J.; Dharmage, S.C.; Rolling, C.A.; Jordan, S.S.; Kompula, M.; et al. Association of long-term exposure to ambient air pollutants with risk factors for cardiovascular disease in China. J. Am. Med. Assoc. Netw. Open 2019, 2, e190318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luong, L.; Phung, D.; Sly, P.; Morawska, L.; Thai, P. The association between particulate air pollution and respiratory admissions among young children in Hanoi, Vietnam. Sci. Total Environ. 2016, 578, 249–255. [Google Scholar] [CrossRef] [Green Version]
- Tomášková, H.; Tomášek, I.; Šlachtová, H.; Polaufová, P.; Splíchalová, A.; Michalík, J.; Feltl, D.; Lux, J.; Marsová, M. PM10 air pollution and acute hospital admissions for cardiovascular and respiratory causes in Ostrava. Cent. Eur. J. Public Health 2016, 24, S33–S39. [Google Scholar] [CrossRef] [Green Version]
- Rivas, I.; Basagana, X.; Cirach, M.; Lopex-Vicente, M.; Suades-Gonzalez, E.; Garcia-Esteban, R.; Álvarez-Pedrerol, M.; Dadvand, P.; Sunyer, J. Association between early life exposure to air pollution and working memory and attention. Environ. Health Perspect. 2019, 127, 057002. [Google Scholar] [CrossRef]
- Loomis, D.; Grosse, Y.; Lauby-Secretan, B.; Ghissassi, F.E.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Baan, R.; Mattock, H.; Straif, K. The carcinogenicity of outdoor air pollution. Lancet Oncol. 2013, 14, 1262–1263. [Google Scholar] [CrossRef]
- Zhang, S.; Huo, X.; Zhang, Y.; Huang, Y.; Zheng, X.; Xu, X. Ambient fine particulate matter inhibits innate airway antimicrobial activity in preschool children in e-waste areas. Environ. Int. 2019, 123, 535–542. [Google Scholar] [CrossRef]
- Nti, A.A.; Arko-Mensah, J.; Botwe, P.K.; Dwomoh, D.; Kwarteng, L.; Takyi, S.A.; Acquah, A.A.; Tettey, P.; Basu, N.; Batterman, S.; et al. Effect of particulate matter exposure on respiratory health of e-waste workers at Agbogbloshie, Accra, Ghana. Int. J. Environ. Res. Public Health 2020, 17, 3042. [Google Scholar] [CrossRef]
- Loh, M.M.; Levy, J.I.; Spengler, J.D.; Houseman, E.A.; Bennett, D.H. Ranking cancer risks of organic hazardous air pollutants in the United States. Environ. Health Perspect. 2007, 115, 1160–1168. [Google Scholar] [CrossRef]
- Cipolla, M.; Bruzzone, M.; Stagnaro, E.; Ceppi, M.; Izzotti, A.; Culotta, C.; Piccardo, M.T. Health issues of primary school students residing in proximity of an oil terminal with environmental exposure to volatile organic compounds. Biomed. Res. Int. 2016, 2016, 4574138. [Google Scholar] [CrossRef] [Green Version]
- Rumchev, K.; Spickett, J.; Bulsara, M.; Phillips, M.; Stick, S. Association of domestic exposure to volatile organic compounds with asthma in young children. Thorax 2004, 59, 729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doherty, B.T.; Kwok, R.K.; Curry, M.D.; Ekenga, C.; Chambers, D.; Sandler, D.P.; Engel, L.S. Associations between blood BTEXS concentrations and hematologic parameters among adult residents of the U.S. Gulf States. Environ. Res. 2017, 156, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Van der Hoek, J.A.F.; Verberk, M.M.; Hageman, G. Criteria for solvent-induced chronic toxic encephalopathy: A systematic review. Int. Arch. Occup. Environ. Health 2000, 73, 362–368. [Google Scholar] [CrossRef]
- Jiang, M.; Li, Y.; Zhang, B.; Zhou, A.; Zhu, Y.; Li, J.; Xu, S. Urinary concentrations of phthalate metabolites associated with changes in clinical hemostatic and hematologic parameters in pregnant women. Environ. Int. 2018, 120, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Kay, V.R.; Chambers, C.; Foster, W.G. Reproductive and developmental effects of phthalate diesters in females. Crit. Rev. Toxicol. 2013, 43, 200–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Leung, A.O.W.; Chu, L.H.; Wong, M.H. Phthalates contamination in China: Status, trends and human exposure-with an emphasis on oral intake. Environ. Pollut. 2018, 238, 771–782. [Google Scholar] [CrossRef]
- Goodson, W.H.; Lowe, L.; Carpenter, D.O.; Gilbertson, M.; Manaf Ali, A.; Lopez de Cerain Salsamendi, A.; Lasfar, A.; Carnero, A.; Azqueta, A.; Amedei, A.; et al. Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: The challenge ahead. Carcinogenesis 2015, 36, S254–S296. [Google Scholar] [CrossRef] [Green Version]
- Hauser, R.; Calafat, A.M. Phthalates and human health. Occup. Environ. Med. 2005, 62, 806–818. [Google Scholar] [CrossRef] [Green Version]
- Song, S.; Duan, Y.; Zhang, T.; Zhang, B.; Zhao, Z.; Bai, X.; Xie, L.; He, Y.; Ouyang, J.P.; Huang, X.; et al. Serum concentrations of bisphenol A and its alternatives in elderly population living around e-waste recycling facilities in China: Associations with fasting blood glucose. Ecotoxicol. Environ. Saf. 2019, 169, 822–828. [Google Scholar] [CrossRef]
- Zhang, T.; Xue, J.; Gao, C.Z.; Qiu, R.L.; Li, Y.X.; Li, X.; Huang, M.Z.; Kannan, K. Urinary concentrations of bisphenols and their association with biomarkers of oxidative stress in people living near e-waste recycling facilities in China. Environ. Sci. Technol. 2016, 50, 4045–4053. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, D.O.; Arcaro, K.F.; Bush, B.; Niemi, W.D.; Pang, S.; Vakharia, D.D. Human health and chemical mixtures: An overview. Environ. Health Perspect. 1998, 106, 1263–1270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, S.; Lin, L.; Zeng, F.; Zhang, J.; Dong, G.; Yang, B.; Jing, Y.; Chen, S.; Zhang, G.; Yu, Z.; et al. Effects of lead, cadmium, arsenic, and mercury co-exposure on children’s intelligence quotient in an industrialized area of southern China. Environ. Pollut. 2018, 235, 47–54. [Google Scholar] [CrossRef]
- Lundgren, K. The Global Impact of E-Waste: Addressing the Challenge. International Labor Office. 2012. Available online: http://www.ilo.org/wcmsp5/groups/public/@ed_dialogue/@sector/documents/publication/wcms_196105.pdf (accessed on 11 August 2020).
- Asante, K.A.; Amoyaw-Osei, Y.; Agusa, T. E-waste recycling in Africa: Risks and opportunities. Curr. Opin. Green Sustain. Chem. 2019, 18, 109–117. [Google Scholar] [CrossRef]
- Widmer, R.; Oswald-Krapf, H.; Sinha-Khetriwal, D.; Schnellmann, M.; Böni, H. Global perspectives on e-waste. Environ. Impact Assess. 2005, 25, 436–458. [Google Scholar] [CrossRef]
- Amera, T.; Edwards, S. Guide for Conducting an E-Waste Inventory in Africa. Pesticide Action Nexus Association-Ethiopia. 2013. Available online: https://ipen.org/sites/default/files/documents/ipen-guide-ewaste-inventory-en.pdf (accessed on 27 February 2020).
- Wasswa, J.; Schluep, M. E-Waste Assessment in Uganda: A Situational Analysis of E-Waste Management and Generation with Special Emphasis on Personal Computers. 2008. Available online: https://www.unido.org/sites/default/files/2008-10/E_Waste_Study_0.pdf (accessed on 3 June 2020).
- Mureithi, M.; Waema, T. E-Waste Management in Kenya. Kenya ICT Action Network (KICTANet), Kenya. 2008. Available online: http://ewasteguide.info/Waema_2008_KICTANet (accessed on 11 August 2020).
- Odeyingbo, O.; Nnorom, I.; Deubzer, O. Assessing Import of Used Electrical and Electronic Equipment into Nigeria: Person in the Port Project. United Nations University. 2017. Available online: https://collections.unu.edu/eserv/UNU:6349/PiP_Report.pdf (accessed on 14 September 2020).
- Baldé, C.P.; Forti, V.; Gray, V.; Kuehr, R.; Stegmann, P. The Global E-Waste Monitor—2017: Quantities, Flows, and Resources. United Nations University (UNU), International Telecommunication Union (ITU) & International Solid Waste Association (ISWA), Bonn/Geneva/Vienna. 2017. Available online: https://collections.unu.edu/eserv/UNU:6341/Global-E-waste_Monitor_2017__electronic_single_pages_.pdf (accessed on 6 March 2020).
- Schluep, M.; Terekhova, T.; Manhart, A.; Müller, E.; Rochat, D.; Osibanjo, O. Where are WEEE in Africa? In Electronics Goes Green 2012+; IEEE: Berlin, Germany, 2012; pp. 1–6. [Google Scholar]
- Ilankoon, I.M.S.K.; Ghorbani, Y.; Chong, M.N.; Herath, G.; Moyo, T.; Petersen, J. E-waste in the international context—A review of trade flows, regulations, hazards, waste management strategies and technologies for value recovery. Waste Manag. 2018, 82, 258–275. [Google Scholar] [CrossRef]
- Ackah, M. Soil elemental concentrations, geoaccumulation index, non-carcinogenic and carcinogenic risks in functional areas of an informal e-waste recycling area in Accra, Ghana. Chemosphere 2019, 235, 908–917. [Google Scholar] [CrossRef]
- Akortia, E.; Olukunle, O.I.; Daso, A.P.; Okonkwo, J.O. Soil concentrations of polybrominated diphenyl ethers and trace metals from an electronic waste dump site in the Greater Accra Region, Ghana: Implications for human exposure. Ecotoxicol. Environ. Saf. 2017, 137, 247–255. [Google Scholar] [CrossRef]
- Cao, P.; Fujimori, T.; Juhasz, A.; Takaoka, M.; Oshita, K. Bioaccessibility and human health risk assessment of metal(loid)s in soil from an e-waste open burning site in Agbogbloshie, Accra, Ghana. Chemosphere 2020, 240, 124909. [Google Scholar] [CrossRef]
- Moeckel, C.; Breivik, K.; Nøst, T.H.; Sankoh, A.; Jones, K.; Sweetman, A. Soil pollution at a major West African e-waste recycling site: Contamination pathways and implications for potential mitigation strategies. Environ. Int. 2020, 137, 105563. [Google Scholar] [CrossRef]
- Tokumaru, T.; Ozaki, H.; Onwona-Agyeman, S.; Ofosu-Anim, J.; Watanabe, I. Determination of the extent of trace metals pollution in soils, sediments and human hair at e-waste recycling site in Ghana. Arch. Environ. Contam. Toxicol. 2017, 73, 377–390. [Google Scholar] [CrossRef] [PubMed]
- Petrlik, J.; Adu-Kumi, S.; Hogarth, J.; Akortia, E.; Kueupo, G.; Behnisch, P.; Bell, L.; Digangi, J. Persistent Organic Pollutants (POPs) in Eggs: Report for Africa. 2019. Available online: https://ipen.org/sites/default/files/documents/pops_in_eggs_report_for_africa.pdf (accessed on 14 September 2020).
- Huang, J.; Nkrumah, P.N.; Anim, D.O.; Mensah, E. E-waste disposal effects on the aquatic environment: Accra, Ghana. Rev. Environ. Contam. Toxicol. 2014, 229, 19–34. [Google Scholar] [CrossRef]
- Kyere, V.N.; Greve, K.; Atiemo, S.M.; Ephraim, J. Spatial assessment of potential ecological risk of heavy metals in soils from informal e-waste recycling in Ghana. Environ. Health Toxicol. 2017, 32, e2017018. [Google Scholar] [CrossRef]
- Babayemi, J.; Sindiku, O.; Osibanjo, O.; Weber, R. Substance flow analysis of polybrominated diphenyl ethers in plastic from EEE/WEEE in Nigeria in the frame of Stockholm Convention as a basis for policy advice. Environ. Sci. Pollut. Res. Int. 2015, 22, 14502–14514. [Google Scholar] [CrossRef] [PubMed]
- Sindiku, O.; Bahayemi, J.; Osibanjo, O.; Schlummer, M.; Schluep, M.; Watson, A.; Weber, R. Polybrominated diphenyl ethers listed as Stockholm Convention POPS, other brominated flame retardants and heavy metals in e-waste polymers in Nigeria. Environ. Sci. Pollut. Res. 2015, 14489–14501. [Google Scholar] [CrossRef] [PubMed]
- Ouabo, R.E.; Ogundiran, M.B.; Sangodoyin, A.Y.; Babalola, B.A. Ecological risk and human health implications of heavy metals contamination of surface soil in e-waste recycling sites in Douala, Cameroun. J. Health Pollut. 2019, 9, 190310. [Google Scholar] [CrossRef] [PubMed]
- Mmereki, D.; Li, B.; Liao, W. Waste electrical and electronic equipment management in Botswana: Prospects and challenges. J. Air Waste Manag. Assoc. 2015, 65, 11–26. [Google Scholar] [CrossRef]
- Abafe, O.A.; Martincigh, B.S. An assessment of polybrominated diphenyl ethers and polychlorinated biphenyls in the indoor dust of e-waste recycling facilities in South Africa: Implications for occupational exposure. Environ. Sci. Pollut. Res. Int. 2015, 22, 14078–14086. [Google Scholar] [CrossRef] [PubMed]
- UNEP (United Nations Environmental Programme). Developing Integrated Solid Waste Management Plan Training Manual: Vol. 2. Assessment of Current Waste Management Systems and Gaps Therein. Osaka/Shiga, Japan, 2009. Available online: https://wedocs.unep.org/bitstream/handle/20.500.11822/7609/ISWMPlan_Vol2.pdf?sequence=3&isAllowed=y (accessed on 3 June 2020).
- StEP (Solving the E-Waste Problem). Green Paper: E-Waste Country Study Ethiopia. 2013. Available online: https://www.step-initiative.org/step-papers-copy.html (accessed on 20 December 2020).
- Otieno, I.; Omwenga, E. E-waste management in Kenya: Challenges and opportunities. J. Emerg. Trends Comput. Inf. Sci. 2015, 6, 661–665. Available online: https://profiles.uonbi.ac.ke/eomwenga/publications/e-waste-management-kenya-challenges-and-opportunities (accessed on 14 September 2020).
- Roldan, M.; Gibby, A. Developing an E-Waste National Policy and Regulatory Framework for Malawi. International Telecommunications Union. 2018. Available online: https://www.itu.int/en/ITU-D/Climate-Change/Documents/2018/Developing_e-waste_national_policy_and_regulatory_framework_Malawi.pdf (accessed on 14 September 2020).
- Magashi, A.; Schluep, M. E-Waste Assessment Tanzania; UNIDO E-Waste Initiative for Tanzania. United Nations Industrial Development Organization. 2011. Available online: https://www.unido.org/sites/default/files/2011-03/110120_Assessment-Tanzania_FINAL_01_0.PDF (accessed on 10 August 2020).
- Nasasira, J.M. Guidelines for E-Waste Management in Uganda. Ministry of Information and Communications Technology. 2016. Available online: http://kanagwa.com/wp-content/uploads/2016/05/e-waste-guidelines-uganda.pdf (accessed on 11 August 2020).
- Henríquez-Hernández, L.A.; Boada, L.D.; Carranza, C.; Pérez-Arellano, J.L.; González-Antuña, A.; Camacho, M.; Almeida-González, M.; Zumbado, M.; Luzardo, O.P. Blood levels of toxic metals and rare earth elements commonly found in e-waste may exert subtle effects on hemoglobin concentration in sub-Saharan immigrants. Environ. Int. 2017, 109, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Tetteh, D.; Lengel, L. The urgent need for health impact assessment: Proposing a transdisciplinary approach to the e-waste crisis in Sub Saharan Africa. Glob. Health Promot. 2017, 24, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Heacock, M.; Trottier, B.; Adhikary, S.K.; Asante, K.A.; Basu, N.; Brune, M.N.; Caravanos, J.; Carpenter, D.O.; Cazabon, D.; Chakraborty, P.; et al. Prevention-intervention strategies to reduce exposure to e-waste. Rev. Environ. Health 2018, 33, 219–228. [Google Scholar] [CrossRef] [PubMed]
- StEP (Solving the E-Waste Problem). StEP Projects. 2019. Available online: https://www.step-initiative.org/projects-59.html (accessed on 3 June 2020).
- ILO. Decent Work in the Management of Electrical and Electronic Waste (E-Waste): Issue Paper for the Global Dialogue on Decent Work in the Management of Electrical and Electronic Waste (E-Waste) (Geneva 9–11 April 2019); International Labour Organization: Geneva, Swizerland, 2019; Available online: https://www.ilo.org/sector/activities/sectoral-meetings/WCMS_673662/lang--en/index.htm (accessed on 3 June 2020).
- UNEP (United Nations Environmental Programme). Bamako Convention: Preventing Africa from Becoming a Dumping Ground for Toxic Wastes. 2018. Available online: https://www.unenvironment.org/news-and-stories/press-release/bamako-convention-preventing-africa-becoming-dumping-ground-toxic (accessed on 11 September 2020).
- Petrlik, J.; Puckett, J.; Bell, L.; Digangi, J. Weak controls: European E-Waste Poisons Africa’s Food Chain. IPEN. 2019. Available online: https://ipen.org/sites/default/files/documents/final_ghana-egg-report-v1_6-web_copy.pdf (accessed on 14 September 2020).
- WEF (World Economic Forum). A New Circular Vision for Electronics: Time for a Global Reboot. Geneva: World Economic Forum. 2019. Available online: https://www.weforum.org/reports/a-new-circular-vision-for-electronics-time-for-a-global-reboot (accessed on 3 June 2020).
- WHO (World Health Organization). Children and Digital Dumpsites: E-Waste Exposure and Child Health. 2021. Available online: https://www.who.int/publications/i/item/9789240023901 (accessed on 12 March 2020).
Material | Kilotons (kt) | Million USD |
---|---|---|
Ag | 1.2 | 579 |
Al | 3046 | 6062 |
Au | 0.2 | 9481 |
Bi | 0.1 | 1.3 |
Co | 13 | 1036 |
Cu | 1808 | 10,960 |
Fe | 20,466 | 24,645 |
Ge | 0.01 | 0.4 |
In | 0.2 | 17 |
Ir | 0.001 | 5 |
Os | 0.01 | 108 |
Pd | 0.1 | 3532 |
Pt | 0.002 | 71 |
Rh | 0.01 | 320 |
Ru | 0.0003 | 3 |
Sb | 76 | 644 |
Central Africa | Legislation | East Africa | Legislation | North Africa | Legislation | South Africa | Legislation | West Africa | Legislation |
---|---|---|---|---|---|---|---|---|---|
Central African Republic | no | Burundi | No | Algeria | no | Angola | No | Benin | no |
Cameroon | yes | Comoros | No | Egypt | yes | Botswana | No | Burkina Faso | no |
Chad | no | Djibouti | No | Libya | no | Lesotho | No | Cabo Verde | no |
Congo | no | Ethiopia | No | Mauritania | no | Madagascar | yes | Cote d’Ivoire | yes |
DR Congo | * | Kenya | Yes | Morocco | no | Malawi | No | Gambia | no |
Equatorial Guinea | * | Rwanda | Yes | Tunisia | no | Mauritius | No | Ghana | yes |
Gabon | no | Seychelles | No | Mozambique | No | Guinea | no | ||
Somalia | * | Namibia | No | Guinea Bissau | no | ||||
South Sudan | * | South Tome and Principe | yes | Liberia | * | ||||
Sudan | No | South Africa | yes | Mali | no | ||||
Tanzania | Yes | Swaziland | No | Niger | no | ||||
Uganda | Yes | Zambia | yes | Nigeria | Yes | ||||
Zimbabwe | No | Senegal | No | ||||||
Sierra Leone | No | ||||||||
Togo | No |
Basel Convention | Legal status: Legally binding Adoption: 22 March 1989 Entry into force: 10 September 1998 Number of parties: 188 (as of February 2021) Objectives: To protect human health and the environment against the adverse effects of hazardous and other wastes Scope: Hazardous wastes in Annexes I and VIII based on their origin and/or composition and hazardous characteristics listed in Annex III; other wastes in Annex II Key provisions: Minimization of the generation of hazardous and other wastes Control system for transboundary movements of hazardous and other wastes based on notification and prior informed consent Environmentally sound management of hazardous and other wastes in relation to transboundary movements |
Rotterdam Convention | Legal status: Legally binding Adoption: 10 September 1998 Entry into force: 24 February 2004 Number of parties: 164 (as of February 2021) Objectives: To promote shared responsibility and cooperative efforts among parties in the international trade of certain hazardous chemicals to protect human health and the environment from potential harm and to contribute to their environmentally sound use Scope: 52 pesticides, severely hazardous pesticide formulations and industrial chemicals that have been banned or severely restricted for health or environmental reasons by parties and which have been notified by parties for inclusion in the prior informed consent procedure and met the criteria set out in the convention (as of February 2021) Key provisions: Prior informed consent procedure based on import responses and export notifications for other banned/severely restricted chemicals Exchange of information on a broad range of potentially hazardous chemicals |
Stockholm Convention | Legal status: Legally binding Adoption: 23 May 2001 Entry into force: 17 May 2004 Number of parties: 184 (as of February 2021) Objectives: Protect human health and the environment from POPs Scope: 30 POPs (as of February 2021) Key provisions: Elimination of POPs, listed in Annex A Restriction of POPs, listed in Annex B Specific exemptions and acceptable purposes for certain POPs Reduction or elimination of unintentionally produced POPs listed in Annex C |
Bamako Convention | Legal status: Legally binding Adoption: 30 January 1991 Entry into force: 22 April 1998 Number of parties: 25 (as of March 2021) Objectives: Protect human health and the environment from hazardous wastes in African countries Scope: Hazardous wastes in listed Annex 1, or wastes which have the characteristics defined in Annex II as hazardous, or wastes defined by national legislation. Key provisions: Prohibit import of hazardous wastes into African countries for any reason Minimize and control transboundary movements of hazardous wastes within the African continent Prohibit ocean and inland water dumping or burning of hazardous wastes Ensure environmentally sound disposal of wastes Promote cleaner production over the pursuit of a permissible emissions approach Establish the precautionary principle |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lebbie, T.S.; Moyebi, O.D.; Asante, K.A.; Fobil, J.; Brune-Drisse, M.N.; Suk, W.A.; Sly, P.D.; Gorman, J.; Carpenter, D.O. E-Waste in Africa: A Serious Threat to the Health of Children. Int. J. Environ. Res. Public Health 2021, 18, 8488. https://doi.org/10.3390/ijerph18168488
Lebbie TS, Moyebi OD, Asante KA, Fobil J, Brune-Drisse MN, Suk WA, Sly PD, Gorman J, Carpenter DO. E-Waste in Africa: A Serious Threat to the Health of Children. International Journal of Environmental Research and Public Health. 2021; 18(16):8488. https://doi.org/10.3390/ijerph18168488
Chicago/Turabian StyleLebbie, Tamba S., Omosehin D. Moyebi, Kwadwo Ansong Asante, Julius Fobil, Marie Noel Brune-Drisse, William A. Suk, Peter D. Sly, Julia Gorman, and David O. Carpenter. 2021. "E-Waste in Africa: A Serious Threat to the Health of Children" International Journal of Environmental Research and Public Health 18, no. 16: 8488. https://doi.org/10.3390/ijerph18168488
APA StyleLebbie, T. S., Moyebi, O. D., Asante, K. A., Fobil, J., Brune-Drisse, M. N., Suk, W. A., Sly, P. D., Gorman, J., & Carpenter, D. O. (2021). E-Waste in Africa: A Serious Threat to the Health of Children. International Journal of Environmental Research and Public Health, 18(16), 8488. https://doi.org/10.3390/ijerph18168488