Comparison of the Effect of Amaranth Oil vs. Rapeseed Oil on Selected Atherosclerosis Markers in Overweight and Obese Subjects: A Randomized Double-Blind Cross-Over Trial
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. The Top 10 Causes of Death. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 17 May 2021).
- Barroso, T.A.; Marins, L.B.; Alves, R.; Gonçalves, A.C.S.; Barroso, S.G.; Rocha, G.S. Association of central obesity with the incidence of cardiovascular diseases and risk factors. Int. J. Cardiovasc. Sci. 2017, 30, 416–424. [Google Scholar] [CrossRef]
- Rocha, V.Z.; Libby, P. Obesity, inflammation, and atherosclerosis. Nat. Rev. Cardiol. 2009, 6, 399–409. [Google Scholar] [CrossRef] [PubMed]
- Government of Canada. The Biology of Brassica napus L. (Canola/Rapeseed). Available online: https://inspection.canada.ca/plant-varieties/plants-with-novel-traits/applicants/directive-94-08/biology-documents/brassica-napus-l-/eng/1330729090093/1330729278970 (accessed on 17 July 2021).
- USDA Economic Research Services. Oil Crops Yearbook. Available online: https://www.ers.usda.gov/data-products/oil-crops-yearbook/ (accessed on 18 July 2021).
- Dupont, J.; White, P.J.; Johnston, K.M.; Heggtveit, H.A.; McDonald, B.E.; Grundy, S.M.; Bonanome, A. Food safety and health effects of canola oil. J. Am. Coll. Nutr. 1989, 8, 360–375. [Google Scholar] [CrossRef]
- Gunstone, F.D. Vegetable Oils in Food Technology: Composition, Properties and Uses, 2nd ed; Wiley-Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2011; p. 365. [Google Scholar]
- Orlovius, K. Fertilizing for High Yield and Quality Oilseed Rape. Available online: moz-extension://418f0c82-883e-4149-838d-624d93f7c2dd/enhanced-reader.html?openApp&pdf=https%3A%2F%2Fwww.ipipotash.org%2Fuploads%2Fudocs%2FNo%252016%2520Oilseed%2520rape.pdf (accessed on 18 July 2021).
- Lin, L.; Allemekinders, H.; Dansby, A.; Campbell, L.; Durance-Tod, S.; Berger, A.; Jones, P.J. Evidence of health benefits of canola oil. Nutr. Rev. 2013, 71, 370–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwab, U.S.; Vogel, S.; Lammi-Keefe, C.J.; Ordovas, J.M.; Schaefer, E.J.; Li, Z.; Ausman, L.M.; Gualtieri, L.; Goldin, B.R.; Furr, H.C.; et al. Varying dietary fat type of reduced-fat diets has little effect on the susceptibility of LDL to oxidative modification in moderately hypercholesterolemic subjects. J. Nutr. 1998, 128, 1703–1709. [Google Scholar] [CrossRef] [Green Version]
- Mendez, C.; Jurkovich, G.J.; Wener, M.H.; Garcia, I.; Mays, M.; Maier, R.V. Effects of supplemental dietary arginine, canola oil, and trace elements on cellular immune function in critically injured patients. Shock 1996, 6, 7–12. [Google Scholar] [CrossRef]
- Chmelík, Z.; Šnejdrlová, M.; Vrablík, M. Amaranth as a potential dietary adjunct of lifestyle modification to improve cardiovascular risk profile. Nutr. Res. 2019, 72, 36–45. [Google Scholar] [CrossRef]
- Ulbricht, C.; Abrams, T.; Conquer, J.; Costa, D.; Grimes Serrano, J.M.; Taylor, S.; Varghese, M. An evidence-based systematic review of amaranth (Amaranthus spp.) by the natural standard research collaboration. J. Diet. Suppl. 2009, 6, 390–417. [Google Scholar] [CrossRef]
- Mosyakin, S.L. New taxa of Corispermum L. (Chenopodiaceae), with preliminary comments on the taxonomy of the genus in North America. Novon 1995, 5, 340–353. [Google Scholar] [CrossRef]
- Lorenz, K.; Hwang, Y. Lipids in amaranths. Nutr. Rep. Int. 1985, 31, 83. [Google Scholar]
- Czaplicki, S.; Ogrodowska, D.; Zadernowski, R.; Derewiaka, D. Characteristics of biologically-active substances of amaranth oil obtained by various techniques. Pol. J. Food Nutr. Sci. 2012, 62, 235–239. [Google Scholar] [CrossRef] [Green Version]
- Kulakova, S.; Pozdniakov, A.; Korf, I.; Karagodina, Z.; Medvedev, F.; Viktorova, E.; Gonor, K.V.; Kamysheva, I.M.; Gadzhieva, Z.M. Amaranths oil: peculiarities of chemical composition and influence on lipid metabolism by rats. Vopr. Pitan. 2006, 75, 36–42. [Google Scholar]
- Kabiri, N.; Asgary, S.; Setorki, M. Lipid lowering by hydroalcoholic extracts of Amaranthus caudatus L. induces regression of rabbits atherosclerotic lesions. Lipids Health Dis. 2011, 10, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duś-Żuchowska, M.; Walkowiak, J.; Morawska, A.; Krzyżanowska-Jankowska, P.; Miśkiewicz-Chotnicka, A.; Przysławski, J.; Lisowska, A. Amaranth oil increases total and LDL cholesterol levels without influencing early markers of atherosclerosis in an overweight and obese population: a randomized double-blind cross-over study in comparison with rapeseed oil supplementation. Nutrients 2019, 11, 3069. [Google Scholar] [CrossRef] [Green Version]
- Martirosyan, D.M.; Miroshnichenko, L.A.; Kulakova, S.N.; Pogojeva, A.V.; Zoloedov, V.I. Amaranth oil application for coronary heart disease and hypertension. Lipids Health Dis. 2007, 6, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maier, S.M.; Turner, N.D.; Lupton, J.R. Serum lipids in hypercholesterolemic men and women consuming oat bran and amaranth products. Cereal Chem. 2000, 77, 297–302. [Google Scholar] [CrossRef]
- Chmelík, Z.; Kotolová, H.; Piekutowská, Z.; Horská, K.; Bartosová, L.; Suchý, P.; Kollár, P. A comparison of the impact of amaranth flour and squalene on plasma cholesterol in mice with diet-induced dyslipidemia. Berl. Munch. Tierarztl. Wochenschr. 2013, 126, 251–255. [Google Scholar]
- Chmelík, Z.; Kotolová, H.; Zavalova, V.; Bartošová, L.; Suchý, P.; Kollár, P. The effect of amaranth flour on plasma cholesterol profile in mice with diet-induced dyslipidaemia. Curr. Top. Nutraceut. R. 2013, 11, 67–73. [Google Scholar]
- Shin, D.H.; Heo, H.J.; Lee, Y.J.; Kim, H.K. Amaranth squalene reduces serum and liver lipid levels in rats fed a cholesterol diet. Br. J. Biomed. Sci. 2004, 61, 11–14. [Google Scholar] [CrossRef]
- Vecchi, B.; Añón, M.C. ACE inhibitory tetrapeptides from Amaranthus hypochondriacus 11S globulin. Phytochemistry 2009, 70, 864–870. [Google Scholar] [CrossRef]
- Masciaelli, R.; Tosi, E.A.; Ciappini, M.C. Ulización de la harina integral de amaranto (Amaranthus cruentus) en la fabricación de galletas para celíacos-Dialnet. Aliment. Rev. Tecnol. Hig. Los Aliment. 1996, 269, 49–52. [Google Scholar]
- Tiengo, A.; Faria, M.; Netto, F.M. Characterization and ACE-inhibitory activity of amaranth proteins. J. Food Sci. 2009, 74, H121–H126. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.K.; Kim, M.J.; Cho, H.Y.; Kim, E.K.; Shin, D.H. Antioxidative and anti-diabetic effects of amaranth (Amaranthus esculantus) in streptozotocin-induced diabetic rats. Cell Biochem. Funct. 2006, 24, 195–199. [Google Scholar] [CrossRef] [PubMed]
- Moszak, M.; Zawada, A.; Juchacz, A.; Grzymisławski, M.; Bogdański, P. Comparison of the effect of rapeseed oil or amaranth seed oil supplementation on weight loss, body composition, and changes in the metabolic profile of obese patients following 3-week body mass reduction program: a randomized clinical trial. Lipids Health Dis. 2020, 19, 143. [Google Scholar] [CrossRef]
- Gonor, K.V.; Pogozheva, A.V.; Kulakova, S.N.; Medvedev, F.A.; Miroshnichenko, L.A. The influence of diet with including amaranth oil on lipid metabolism in patients with ischemic heart disease and hyperlipoproteidemia. Vopr. Pitan. 2006, 75, 17–21. [Google Scholar] [PubMed]
- Berger, A.; Gremaud, G.; Baumgartner, M.; Rein, D.; Monnard, I.; Kratky, E.; Geiger, W.; Burri, J.; Dionisi, F.; Allan, M.; et al. Cholesterol-lowering properties of amaranth grain and oil in hamsters. Int. J. Vitam. Nutr. Res. 2003, 73, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Kabiri, N.; Asgary, S.; Madani, H.; Mahzouni, P. Effects of Amaranthus caudatus L. extract and lovastatin on atherosclerosis in hypercholesterolemic rabbits. J. Med. Plant. Res. 2010, 4, 355–361. [Google Scholar]
- Dwan, K.; Li, T.; Altman, D.G.; Elbourne, D. CONSORT 2010 statement: extension to randomised crossover trials. BMJ 2019, 366, 4378. [Google Scholar] [CrossRef] [Green Version]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katz, A.; Nambi, S.S.; Mather, K.; Baron, A.D.; Follmann, D.A.; Sullivan, G.; Quon, M.J. Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J. Clin. Endocrinol. Metab. 2000, 85, 2402–2410. [Google Scholar] [CrossRef]
- León-Pedroza, J.I.; González-Tapia, L.A.; del Olmo-Gil, E.; Castellanos-Rodríguez, D.; Escobedo, G.; González-Chávez, A. Low-grade systemic inflammation and the development of metabolic diseases: from the molecular evidence to the clinical practice. Cirugia Cirujanos. 2015, 83, 543–551. [Google Scholar] [CrossRef] [Green Version]
- Mahley, R.W.; Innerarity, T.L.; Rall, S.C.; Weisgraber, K.H. Plasma lipoproteins: apolipoprotein structure and function. J. Lipid Res. 1984, 25, 1277–1294. [Google Scholar] [CrossRef]
- Maiolino, G.; Rossitto, G.; Caielli, P.; Bisogni, V.; Rossi, G.P.; Calò, L.A. The role of oxidized low-density lipoproteins in atherosclerosis: the myths and the facts. Mediators Inflamm. 2013, 2013, 714653. [Google Scholar] [CrossRef] [Green Version]
- Fattore, E.; Fanelli, R. Palm oil and palmitic acid: A review on cardiovascular effects and carcinogenicity. Int. J. Food Sci. Nutr. 2013, 64, 648–659. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.K.; Kim, M.J.; Shin, D.H. Improvement of lipid profile by amaranth (Amaranthus esculantus) supplementation in streptozotocin-induced diabetic rats. Ann. Nutr. Metab. 2006, 50, 277–281. [Google Scholar] [CrossRef] [PubMed]
- Miroshnichenko, L.; Zoloedov, V.; Volynkina, A.; Kulakova, S. Influence dietary therapy with use sunflower and amaranth oils on parameters of immune reactivity in patients with diabetes mellitus 2 types. Vopr. Pitan. 2009, 78, 30–36. [Google Scholar] [PubMed]
- Achari, A.E.; Jain, S.K. Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. Int. J. Mol. Sci. 2017, 18, 1321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gómez-Cardona, E.E.; Hernández-Domínguez, E.E.; Huerta-Ocampo, J.Á.; Jiménez-Islas, H.; Díaz-Gois, A.; Velarde-Salcedo, A.J.; Barrera-Pacheco, A.; Goñi-Ochoa, A.; de la Rosa, A.P.B. Effect of amaranth consumption on diabetes-related biomarkers in patients with diabetes. Diab. Obes. Metab. Disor. 2017, 3, 5–10. [Google Scholar]
- He, H.; Cai, Y.; Sun, M.; Corke, H. Extraction and purification of squalene from amaranthus grain. J. Agric. Food Chem. 2002, 50, 368–372. [Google Scholar] [CrossRef]
- Gillingham, L.G.; Gustafson, J.A.; Han, S.Y.; Jassal, D.S.; Jones, P.J. High-oleic rapeseed (canola) and flaxseed oils modulate serum lipids and inflammatory biomarkers in hypercholesterolaemic subjects. Br. J. Nutr. 2011, 105, 417–427. [Google Scholar] [CrossRef] [Green Version]
- Bowen, K.J.; Kris-Etherton, P.M.; West, S.G.; Fleming, J.A.; Connelly, P.W.; Lamarche, B.; Couture, P.; Jenkins, D.J.A.; Taylor, C.G.; Zahradka, P.; et al. Diets enriched with conventional or high-oleic acid canola oils lower atherogenic lipids and lipoproteins compared to a diet with a western fatty acid profile in adults with central adiposity. J. Nutr. 2019, 149, 471–478. [Google Scholar] [CrossRef]
Total (n = 44) | Arm I (n = 23) | Arm II (n = 21) | p | ||||
---|---|---|---|---|---|---|---|
Mean ± SD (95%CI) | Median (IQR) | Mean ± SD (95%CI) | Median (IQR) | Mean ± SD (95%CI) | Median (IQR) | ||
Sex [% of women] 1 | 32 (72.7%) | 17 (73.9%) | 15 (71.4%) | 0.8534 | |||
Age [years] | 49 ± 10 (46–52) | 49 (42–56) | 49 ± 9 (45–54) | 51 (42–59) | 48 ± 11 (43–53) | 48 (42–56) | 0.5409 |
Body weight [kg] | 87.7 ± 15.1 (83.1–92.3) | 89.8 (73.4–100.3) | 83.8 ± 16.3 (76.8–90.9) | 85.9 (68.8–95.6) | 91.9 ± 12.6 (86.2–97.7) | 90.2 (85.8–101.4) | 0.1074 |
BMI [kg/m2] | 31.00 ± 4.61 (29.60–32.40) | 30.60 (27.44–33.16) | 29.86 ± 4.65 (27.85–31.87) | 28.36 (25.73–32.35) | 32.25 ± 4.33 (30.27–34.22) | 31.04 (30.10–34.52) | 0.0668 |
TNF-α [pg/mL] | 4.91 ± 1.19 (4.55–5.27) | 4.85 (3.87–5.70) | 4.88 ± 1.12 (4.40–5.36) | 4.85 (3.87–5.52) | 4.94 ± 1.29 (4.35–5.53) | 4.91 (3.79–6.07) | 0.6382 |
ox-LDL [ng/mL] | 722.6 ± 357.3 (613.9–831.2) | 498.3 (428.3–1200.0) | 704.3 ± 347.0 (554.2–854.3) | 502.8 (420.8–1170.3) | 742.6 ± 375.7 (571.6–913.6) | 487.4 (446.5–1200.0) | 0.8304 |
ApoE [µg/mL] | 101.5 ± 67.1 (81.1–121.9) | 82.6 (62.8–120.4) | 99.7 ± 68.6 (70.1–129.4) | 75.2 (54.8–125.6) | 103.5 ± 67.2 (72.9–134.1) | 85.6 (65.2–106.0) | 0.6217 |
ApoA1 [g/l] | 1.67 ± 0.35 (1.57–1.78) | 1.67 (1.43–1.85) | 1.64 ± 0.39 (1.48–1.82) | 1.58 (1.41–1.90) | 1.70 ± 0.31 (1.56–1.84) | 1.72 (1.55–1.83) | 0.5333 |
ApoB [g/l] | 1.08 ± 0.26 (1.00–1.16) | 1.01 (0.95–1.18) | 1.10 ± 0.28 (0.98–1.23) | 0.99 (0.94–1.25) | 1.05 ± 0.23 (0.95–1.16) | 1.01 (0.95–1.09) | 0.8051 |
ApoB/A1 | 0.68 ± 0.23 (0.61–0.75) | 0.62 (0.51–0.81) | 0.71 ± 0.27 (0.60–0.83) | 0.72 (0.49–0.92) | 0.64 ± 0.17 (0.56–0.71) | 0.58 (0.53–0.75) | 0.4521 |
Glucose [mg/dl] | 105 ± 14 (100–109) | 101 (97–108) | 102 ± 10 (98–107) | 102 (96–112) | 108 ± 18 (100–116) | 100 (98–107) | 0.5100 |
Inulin [µU/mL] | 18.1 ± 15.4 (13.4–22.7) | 13.4 (9.1–19.3) | 13.6 ± 6.4 (10.8–16.3) | 12.1 (8.4–19.0) | 22.9 ± 20.4 (13.6–32.3) | 13.6 (11.2–24.1) | 0.1842 |
HOMA | 5.00 ± 5.68 (3.27–6.73) | 3.36 (2.36–5.10) | 3.46 ± 1.78 (2.68–4.23) | 2.91 (2.06–4.36) | 6.69 ± 7.75 (3.16–10.22) | 3.48 (2.63–5.83) | 0.1326 |
QUICKI | 0.53 ± 0.08 (0.51–0.56) | 0.53 (0.49–0.58) | 0.55 ± 0.07 (0.52–0.58) | 0.55 (0.50–0.60) | 0.51 ± 0.08 (0.47–0.55) | 0.53 (0.47–0.57) | 0.1326 |
Adiponectin [µg/mL] | 7.55 ± 4.50 (6.18–8.92) | 6.19 (4.56–8.76) | 7.89 ± 4.64 (5.89–9.90) | 7.85 (4.22–11.61) | 7.17 ± 4.43 (5.15–9.19) | 5.80 (4.58–7.64) | 0.6384 |
Amaranth Oil | Rapeseed Oil | p | |||
---|---|---|---|---|---|
Mean ± SD (95%CI) | Median (IQR) | Mean ± SD (95%CI) | Median (IQR) | ||
Δ TNF-α [pg/mL] | 0.03 ± 0.90 (−0.24–0.30) | 0.21 (−0.58–0.60) | 0.16 ± 1.55 (−0.31–0.63) | 0.21 (−0.73–0.54) | 0.9071 |
Δ ox-LDL [ng/mL] | 1.2 ± 89.5 (−26.0–28.4) | 0.0 (−46.9–31.5) | −7.6 ± 101.7 (−38.5–23.3) | 0.0 (−56.5–41.2) | 0.7005 |
Δ ApoE [µg/mL] | 1.4 ± 43.6 (−11.9–14.7) | 2.6 (−16.6–27.7) | −7.0 ± 45.9 (−20.9–6.9) | −7.6 (−16.2–11.5) | 0.3104 |
Δ ApoA1 [g/l] | 0.03 ± 0.22 (−0.04–0.10) | 0.02 (−0.11–0.20) | −0.01 ± 0.21 (−0.07–0.06) | 0.01 (−0.10–0.11) | 0.6526 |
Δ ApoB [g/l] | 0.05 ± 0.20 (−0.01–0.11) | 0.07 (0.01–0.14) | −0.03 ± 0.11 (−0.07–0.00) | −0.01 (−0.12–0.03) | 0.0004 |
Δ ApoB/A1 | 0.01 ± 0.14 (−0.03–0.05) | 0.04 (0.00–0.07) | −0.02 ± 0.06 (−0.04–0.00) | −0.01 (−0.06–0.02) | 0.0113 |
Δ glucose [mg/dl] | −2 ± 10 (−5–1) | −3 (−8–5) | −2 ± 15 (−6–3) | −3 (−8–5) | 0.4763 |
Δ inulin [µU/mL] | −1.4 ± 12.6 (−5.2–2.5) | −0.6 (−4.8–1.9) | −2.5 ± 14.7 (−7.0–2.0) | −1.6 (−4.3–0.9) | 0.1352 |
Δ HOMA | −0.58 ± 4.14 (−1.84–0.68) | −0.30 (−1.21–0.51) | −0.74 ± 6.14 (−2.61–1.12) | −0.47 (−1.41–0.20) | 0.1446 |
Δ QUICKI | 0.01 ± 0.05 (−0.01–0.02) | 0.01 (−0.03–0.05) | 0.03 ± 0.06 (0.01–0.04) | 0.02 (−0.01–0.06) | 0.1758 |
Δ adiponectin [µg/mL] | 0.55 ± 1.10 (0.22–0.89) | 0.46 (0.02–1.01) | −0.29 ± 1.50 (−0.75–0.16) | −0.36 (−0.94–0.16) | 0.0002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jamka, M.; Morawska, A.; Krzyżanowska-Jankowska, P.; Bajerska, J.; Przysławski, J.; Walkowiak, J.; Lisowska, A. Comparison of the Effect of Amaranth Oil vs. Rapeseed Oil on Selected Atherosclerosis Markers in Overweight and Obese Subjects: A Randomized Double-Blind Cross-Over Trial. Int. J. Environ. Res. Public Health 2021, 18, 8540. https://doi.org/10.3390/ijerph18168540
Jamka M, Morawska A, Krzyżanowska-Jankowska P, Bajerska J, Przysławski J, Walkowiak J, Lisowska A. Comparison of the Effect of Amaranth Oil vs. Rapeseed Oil on Selected Atherosclerosis Markers in Overweight and Obese Subjects: A Randomized Double-Blind Cross-Over Trial. International Journal of Environmental Research and Public Health. 2021; 18(16):8540. https://doi.org/10.3390/ijerph18168540
Chicago/Turabian StyleJamka, Małgorzata, Anna Morawska, Patrycja Krzyżanowska-Jankowska, Joanna Bajerska, Juliusz Przysławski, Jarosław Walkowiak, and Aleksandra Lisowska. 2021. "Comparison of the Effect of Amaranth Oil vs. Rapeseed Oil on Selected Atherosclerosis Markers in Overweight and Obese Subjects: A Randomized Double-Blind Cross-Over Trial" International Journal of Environmental Research and Public Health 18, no. 16: 8540. https://doi.org/10.3390/ijerph18168540
APA StyleJamka, M., Morawska, A., Krzyżanowska-Jankowska, P., Bajerska, J., Przysławski, J., Walkowiak, J., & Lisowska, A. (2021). Comparison of the Effect of Amaranth Oil vs. Rapeseed Oil on Selected Atherosclerosis Markers in Overweight and Obese Subjects: A Randomized Double-Blind Cross-Over Trial. International Journal of Environmental Research and Public Health, 18(16), 8540. https://doi.org/10.3390/ijerph18168540