School-Based Prevention of Screen-Related Risk Behaviors during the Long-Term Distant Schooling Caused by COVID-19 Outbreak
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Participants
2.3. Procedure
2.4. Instruments
- the perceived importance in providing prevention interventions during distant schooling in general (item “How important do you consider conducting prevention interventions during the distance schooling?”. Participants responded on a Likert scale from 1 = not at all to 5 = very much),
- the perceived importance in providing distant prevention interventions targeting screen-related risks (item “How important do you consider the prevention of [specific type of risk behavior] during distance schooling?”. Participants responded on a Likert scale from 1 = not at all to 5 = very much),
- the observed presence of risk behaviors (problems) in pupils and students during the distant schooling period (item “Try to estimate the total number of reported cases of [specific type of risk behavior] in students at your school during this wave of distance schooling”), and
- those prevention interventions conducted during the distant schooling (item “Have you conducted preventions of [specific type of risk behavior] during this wave of distance schooling?”. Participants responded yes/no).
2.5. Data Analysis
2.6. Missing Values
3. Results
3.1. The Perceived Importance of Delivering Prevention Interventions in the Situation of Distant Schooling
3.2. The Presence of Problematic Screen-Related Behaviors in Students during Distant Schooling
3.3. The Delivering of Preventive Interventions during Distant Schooling
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hermassi, S.; Sellami, M.; Salman, A.; Al-Mohannadi, A.; Bouhafs, E.G.; Hayes, L.D.; Schwesig, R. Effects of COVID-19 Lockdown on Physical Activity, Sedentary Behavior, and Satisfaction with Life in Qatar: A Preliminary Study. IJERPH 2021, 18, 3093. [Google Scholar]
- Cluver, L.; Lachman, J.M.; Sherr, L.; Wessels, I.; Krug, E. Parenting in a time of COVID-19. Lancet 2020, 395, e64. [Google Scholar] [CrossRef]
- Chen, I.-H.; Chen, C.-Y.; Pakpour, A.H.; Griffiths, M.D.; Lin, C.-Y.; Li, X.-D.; Tsang, H.W.B. Problematic internet-related behaviors mediate the associations between levels of internet engagement and distress among schoolchildren during COVID-19 lockdown: A longitudinal structural equation modeling study. J. Behav. Addict. 2021, 10, 135–148. [Google Scholar]
- Fernandes, B.; Biswas, U.N.; Tan-Mansukhani, R.; Vallejo, A.; Essau, C.A. The impact of COVID-19 lockdown on internet use and escapism in adolescents. Rev. Psicol. Clínica Con. Niños Y Adolesc. 2020, 7, 59–65. [Google Scholar]
- Teng, Z.; Pontes, H.M.; Nie, Q.; Griffiths, M.D.; Guo, C. Depression and anxiety symptoms associated with internet gaming disorder before and during the COVID-19 pandemic: A longitudinal study. J. Behav. Addict. 2021, 10, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Yang, F.; Lu, X.; Hao, W. Internet Addiction and Related Psychological Factors Among Children and Adolescents in China During the Coronavirus Disease 2019 (COVID-19) Epidemic. Front. Psychiatry 2020, 11, 00751. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Galán, J.; Martínez-López, J.; Lázaro-Pérez, C.; Sarasola Sánchez-Serrano, J.L. Social Networks Consumption and Addiction in College Students during the COVID-19 Pandemic: Educational Approach to Responsible Use. Sustainability 2020, 12, 7737. [Google Scholar] [CrossRef]
- Lin, M.-P. Prevalence of Internet Addiction during the COVID-19 Outbreak and Its Risk Factors among Junior High School Students in Taiwan. IJERPH 2020, 17, 8547. [Google Scholar] [CrossRef]
- Perales, J.C.; King, D.L.; Navas, J.F.; Schimmenti, A.; Sescousse, G.; Starcevic, V.; van Holst, R.J.; Billieux, J. Learning to lose control: A process-based account of behavioral addiction. Neurosci. Biobehav. Rev. 2020, 108, 771–780. [Google Scholar] [CrossRef]
- Bőthe, B.; Tóth-Király, I.; Griffiths, M.D.; Potenza, M.N.; Orosz, G.; Demetrovics, Z. Are sexual functioning problems associated with frequent pornography use and/or problematic pornography use? Results from a large community survey including males and females. Addict. Behav. 2021, 112, 106603. [Google Scholar]
- Bőthe, B.; Lonza, A.; Štulhofer, A.; Demetrovics, Z. Symptoms of Problematic Pornography Use in a Sample of Treatment Considering and Treatment Non-Considering Men: A Network Approach. J. Sex. Med. 2020, 17, 2016–2028. [Google Scholar] [CrossRef] [PubMed]
- Bőthe, B.; Tóth-Király, I.; Potenza, M.N.; Orosz, G.; Demetrovics, Z. High-Frequency Pornography Use May Not Always Be Problematic. J. Sex. Med. 2020, 17, 793–811. [Google Scholar] [CrossRef] [PubMed]
- Raine, G.; Khouja, C.; Scott, R.; Wright, K.; Sowden, A. Pornography use and sexting amongst children and young people: A systematic overview of reviews. Syst. Rev. 2020, 9, 283. [Google Scholar] [CrossRef]
- Fineberg, N.; Demetrovics, Z.; Stein, D.; Ioannidis, K.; Potenza, M.N.; Grünblatt, E.; Brand, M.; Billieux, J.; Carmi, L.; King, D.I.; et al. Manifesto for a European research network into Problematic Usage of the Internet. Eur. Neuropsychopharmacol. 2018, 28, 1232–1246. [Google Scholar] [CrossRef] [PubMed]
- Bányai, F.; Zsila, Á.; Király, O.; Maraz, A.; Elekes, Z.; Griffiths, M.D.; Andreassen, C.S.; Demetrovics, Z. Problematic Social Media Use: Results from a Large-Scale Nationally Representative Adolescent Sample. PLoS ONE 2017, 12, e0169839. [Google Scholar]
- Cheng, C.; Li, A.Y. Internet Addiction Prevalence and Quality of (Real) Life: A Meta-Analysis of 31 Nations Across Seven World Regions. Cyberpsychol. Behav. Soc. Netw. 2014, 17, 755–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demetrovics, Z.; Király, O.; Koronczai, B.; Griffiths, M.D.; Nagygyörgy, K.; Elekes, Z.; Tamás, D.; Kun, B.; Kökönyei, G.; Urbán, R.; et al. Psychometric Properties of the Problematic Internet Use Questionnaire Short-Form (PIUQ-SF-6) in a Nationally Representative Sample of Adolescents. PLoS ONE 2016, 11, e0159409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuss, D.J.; Griffiths, M.D.; Karila, L.; Billieux, J. Internet addiction: A systematic review of epidemiological research for the last decade. Curr. Pharm. Des. 2014, 20, 4026–4052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lukavská, K.; Vacek, J.; Gabrhelík, R. The effects of parental control and warmth on problematic internet use in adolescents: A prospective cohort study. JBA 2020. [CrossRef]
- Pápay, O.; Urbán, R.; Griffiths, M.D.; Nagygyörgy, K.; Farkas, J.; Kökönyei, G.; Felvinczi, K.; Oláh, A.; Elekes, Z.; Demetrovics, Z. Psychometric Properties of the Problematic Online Gaming Questionnaire Short-Form and Prevalence of Problematic Online Gaming in a National Sample of Adolescents. Cyberpsychol. Behav. Soc. Netw. 2013, 16, 340–348. [Google Scholar] [CrossRef] [Green Version]
- Petruzelka, B.; Vacek, J.; Gavurova, B.; Kubak, M.; Gabrhelik, R.; Rogalewicz, V.; Bartak, M. Interaction of Socioeconomic Status with Risky Internet Use, Gambling and Substance Use in Adolescents from a Structurally Disadvantaged Region in Central Europe. IJERPH 2020, 17, 4803. [Google Scholar] [CrossRef]
- Becoña, E.; Martínez, Ú.; Calafat, A. Parental permissiveness, control, and affect and drug use among adolescents. Psicothema 2013, 292–298. [Google Scholar]
- Collier, K.M.; Coyne, S.M.; Rasmussen, E.E.; Hawkins, A.J.; Padilla-Walker, L.M.; Erickson, S.E.; Memmott-Elison, M.K. Does parental mediation of media influence child outcomes? A meta-analysis on media time, aggression, substance use, and sexual behavior. Dev. Psychol. 2016, 52, 798–812. [Google Scholar] [PubMed]
- Elsaesser, C.; Russell, B.; Ohannessian, C.M.; Patton, D. Parenting in a digital age: A review of parents’ role in preventing adolescent cyberbullying. Aggress. Violent Behav. 2017, 35, 62–72. [Google Scholar] [CrossRef]
- Nielsen, P.; Favez, N.; Liddle, H.; Rigter, H. Linking parental mediation practices to adolescents’ problematic online screen use: A systematic literature review. J. Behav. Addict. 2019, 8, 649–663. [Google Scholar] [CrossRef]
- Nielsen, P.; Favez, N.; Rigter, H. Parental and Family Factors Associated with Problematic Gaming and Problematic Internet Use in Adolescents: A Systematic Literature Review. Curr. Addict. Rep. 2020, 7, 365–386. [Google Scholar] [CrossRef]
- Miovsky, M.; Skacelova, L.; Cablova, L.; Vesela, M.; Zapletalova, J. School-based prevention of risk behaviour: Proposed structure, scope, and content of the basic preventive programme [Návrh struktury, rozsahu a obsahu minimálního preventivního programu prevence rizikového chování pro základní školy]. Adiktologie 2012, 12, 212–231. [Google Scholar]
- Miovsky, M.; Novak, P.; Stastna, L.; Gabrhelik, R.; Jurystova, L.; Vopravil, J. Resultados del programa de prevención escolar Unplugged sobre el uso del tabaco en la República Checa. Adicciones 2012, 24, 211. [Google Scholar] [CrossRef] [Green Version]
- Faggiano, F.; Vigna-Taglianti, F.; Versino, E.; Zambon, A.; Borraccino, A.; Lemma, P. School-based prevention for illicit drugs’ use. Cochrane Database Syst. Reviews. 2005, 2. [Google Scholar] [CrossRef]
- Gabrhelik, R.; Duncan, A.; Miovsky, M.; Furr-Holden, C.D.M.; Stastna, L.; Jurystova, L. “Unplugged”: A school-based randomized control trial to prevent and reduce adolescent substance use in the Czech Republic. Drug Alcohol Depend. 2012, 124, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Gabrhelík, R.; Orosová, O.; Miovský, M.; Vonkova, H.; Berništerová, M.; Minařík, J. Studying the effectiveness of school-based universal prevention interventions in the Czech Republic and Slovakia. Adiktologie 2014, 14, 402–408. [Google Scholar]
- Miovský, M.; Voňková, H.; Gabrhelík, R.; Šťastná, L. Universality Properties of School-Based Preventive Intervention Targeted at Cannabis Use. Prev. Sci. 2015, 16, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Gabrhelik, R.; Duncan, A.; Lee, M.H.; Stastna, L.; Furr-Holden, C.D.M.; Miovsky, M. Sex specific trajectories in cigarette smoking behaviors among students participating in the Unplugged school-based randomized control trial for substance use prevention. Addict. Behav. 2012, 37, 1145–1150. [Google Scholar] [CrossRef]
- Miovský, M.; Vonkova, H.; Čablová, L.; Gabrhelík, R. Cannabis use in children with individualized risk profiles: Predicting the effect of universal prevention intervention. Addict. Behav. 2015, 50, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Vondráčková, P.; Gabrhelík, R. Prevention of Internet addiction: A systematic review. J. Behav. Addict. 2016, 5, 568–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. 2013, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smahel, D.; Machackova, H.; Mascheroni, G.; Dedkova, L.; Staksrud, E.; Ólafsson, K.; Livingstone, S.; Hasebrink, U. EU Kids Online 2020: Survey Results from 19 Countries. Available online: https://www.eukidsonline.ch/files/Eu-kids-online-2020-international-report.pdf (accessed on 10 August 2021).
- Rumpf, H.J.; Brand, M.; Wegmann, E.; Montag, C.H.; Müller, A.; Müller, K.; Wölfling, K.; Stark, R.; Steins-Löber, S.; Hayer, T.; et al. The COVID-19 Pandemic and Behavioral Addiction-New Challenges for Structural and Behavioral Prevention. Sucht 2020, 66. [Google Scholar] [CrossRef]
Primary School (Grades 1–5) | Secondary School (Grades 6–9) | High School | ||||
---|---|---|---|---|---|---|
Means | Post Hoc Tests | Means | Post Hoc Tests | Means | Post Hoc Tests | |
(SD) | (SD) | (SD) | ||||
1. Cyber-bullying | 4.36 | >3,4; =5; <2 | 4.56 | >3,4; =5; <2, | 4.56 | >3,4; =5; <2 |
(0.904) | (0.737) | (0.882) | ||||
2. At-risk internet use | 4.52 | >1,3,4,5 | 4.73 | >1,3,4,5 | 4.59 | >1,3,4,5 |
(0.822) | (0.589) | (0.688) | ||||
3. Online gambling | 3.08 | >4; <1,2,5 | 3.70 | =4; <1,2,5 | 3.78 | >4; <1,2,5 |
(1.33) | (1.14) | (1.11) | ||||
4. Pornography use | 2.87 | <1,2,3,5 | 3.62 | =3; <1,2,5 | 3.49 | <1,2,3,5 |
(1.39) | (1.13) | (1.12) | ||||
5. Internet/games use | 4.26 | >3,4; =1; <2 | 4.54 | >3,4; =1; <2 | 4.35 | >3,4; =1; <2 |
(0.902) | (0.711) | (0.845) |
t (df = 663) | Mean Difference | SE Difference | Cohen d | ||
---|---|---|---|---|---|
Cyber-bullying | 9.58 | *** | 0.208 | 0.0217 | 0.372 |
At-risk internet use | 10.21 | *** | 0.229 | 0.0224 | 0.396 |
Online gambling | 19.34 | *** | 0.745 | 0.0385 | 0.751 |
Pornoraphy use | 21.66 | *** | 0.895 | 0.0413 | 0.841 |
Internet/games use | 13.01 | *** | 0.330 | 0.0253 | 0.505 |
Primary School (Grades 1–5) | Secondary School (Grades 6–9) | High School | ||||
---|---|---|---|---|---|---|
% of School | Post Hoc Tests | % of School | Post Hoc Tests | % of School | Post Hoc Tests | |
1. Cyber-bullying | 22.8 | >2,3,4,5 | 27.8 | >2,3,4,5 | 21.7 | >3,4,5; =2 |
2. At-risk internet use | 19.1 | >3,4,5; <1 | 23.4 | >3,4,5; <1 | 20.8 | >3,4,5; =1 |
3. Online gambling | 2.0 | =4; <1,2,5 | 3.6 | =4; <1,2,5 | 2.7 | =4, <1,2,5 |
4. Pornography use | 0.7 | =3; <1,2,5 | 2.2 | =3; <1,2,5 | 1.1 | =3, <1,2,5 |
5. Internet/games use | 13.7 | >3,4; <1,2 | 16.8 | >3,4; <1,2 | 15.5 | >3,4; <1,2 |
Predictors | Estimate | SE | z | OR | 95% CI | ||
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
Primary school (Grades 1–5) | |||||||
Intercept | −2.59 | *** | 0.36 | −7.14 | 0.07 | 0.04 | 0.15 |
Perceived importance of screen-related risks | 0.44 | *** | 0.09 | 4.86 | 1.55 | 1.30 | 1.86 |
Presence of screen-related problems | |||||||
Yes | 1.56 | *** | 0.36 | 4.30 | 4.78 | 2.34 | 9.74 |
Secondary school (Grades 6–9) | |||||||
Intercept | −3.36 | *** | 0.55 | −6.13 | 0.03 | 0.01 | 0.10 |
Perceived importance of screen-related risks | 0.61 | *** | 0.13 | 4.85 | 1.84 | 1.44 | 2.36 |
Presence of screen-related problems | |||||||
Yes | 1.49 | *** | 0.25 | 5.90 | 4.42 | 2.70 | 7.25 |
High school | |||||||
Intercept | −3.76 | *** | 0.75 | −5.04 | 0.02 | 0.01 | 0.10 |
Perceived importance of screen-related risks | 0.68 | *** | 0.17 | 3.87 | 1.97 | 1.40 | 2.77 |
Presence of screen-related problems | |||||||
Yes | 1.35 | *** | 0.34 | 3.93 | 3.86 | 1.97 | 7.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lukavská, K.; Burda, V.; Lukavský, J.; Slussareff, M.; Gabrhelík, R. School-Based Prevention of Screen-Related Risk Behaviors during the Long-Term Distant Schooling Caused by COVID-19 Outbreak. Int. J. Environ. Res. Public Health 2021, 18, 8561. https://doi.org/10.3390/ijerph18168561
Lukavská K, Burda V, Lukavský J, Slussareff M, Gabrhelík R. School-Based Prevention of Screen-Related Risk Behaviors during the Long-Term Distant Schooling Caused by COVID-19 Outbreak. International Journal of Environmental Research and Public Health. 2021; 18(16):8561. https://doi.org/10.3390/ijerph18168561
Chicago/Turabian StyleLukavská, Kateřina, Václav Burda, Jiří Lukavský, Michaela Slussareff, and Roman Gabrhelík. 2021. "School-Based Prevention of Screen-Related Risk Behaviors during the Long-Term Distant Schooling Caused by COVID-19 Outbreak" International Journal of Environmental Research and Public Health 18, no. 16: 8561. https://doi.org/10.3390/ijerph18168561
APA StyleLukavská, K., Burda, V., Lukavský, J., Slussareff, M., & Gabrhelík, R. (2021). School-Based Prevention of Screen-Related Risk Behaviors during the Long-Term Distant Schooling Caused by COVID-19 Outbreak. International Journal of Environmental Research and Public Health, 18(16), 8561. https://doi.org/10.3390/ijerph18168561