The Potential Role of Hamstring Extensibility on Sagittal Pelvic Tilt, Sagittal Spinal Curves and Recurrent Low Back Pain in Team Sports Players: A Gender Perspective Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Self-Administered Questionnaire
2.4. Assessment of Hamstring Extensibility
2.5. Sagittal Pelvic Tilt and Spinal Curves Assessed
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Trompeter, K.; Fett, D.; Platen, P. Prevalence of Back Pain in Sports: A Systematic Review of the Literature. Sports Med. 2017, 47, 1183–1207. [Google Scholar] [CrossRef] [Green Version]
- Farahbakhsh, F.; Rostami, M.; Noormohammadpour, P.; Mehraki Zade, A.; Hassanmirazaei, B.; Faghih Jouibari, M.; Kordi, R.; Kennedy, D. Prevalence of low back pain among athletes: A systematic review. J. Back Musculoskelet. Rehabil. 2018, 31, 901–916. [Google Scholar] [CrossRef] [PubMed]
- Eirale, C.; Hamilton, B.; Bisciotti, G.; Grantham, J.; Chalabi, H. Injury epidemiology in a national football team of the Middle East. Scand. J. Med. Sci. Sports 2012, 22, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Noormohammadpour, P.; Mirzaei, S.; Moghadam, N.; Mansournia, M.; Kordi, R. Comparison of lateral abdominal muscle thickness in young male soccer players with and without low back pain. Int. J. Sports Phys. Ther. 2019, 14, 273–281. [Google Scholar] [CrossRef]
- Grosdent, S.; Demoulin, C.; Rodriguez, C.; Cruz, L.; Giop, R.; Tomasella, M.; Crielaard, J.-M.; Vanderthommen, M. Lumbopelvic motor control and low back pain in elite soccer players: A cross-sectional study. J. Sports Sci. 2015, 34, 1021–1029. [Google Scholar] [CrossRef] [PubMed]
- Pasanen, K.; Rossi, M.; Parkkari, J.; Kannus, P.; Heinonen, A.; Tokola, K.; Myklebust, G. Low back pain in young basketball and floorball players. Clin. J. Sport Med. 2016, 26, 376–380. [Google Scholar] [CrossRef]
- Yabe, Y.; Hagiwara, Y.; Sekiguchi, T.; Momma, H.; Tsuchiya, M.; Kanazawa, K.; Itaya, N.; Yoshida, S.; Sogi, Y.; Yano, T.; et al. High prevalence of low back pain among young basketball players with lower extremity pain: A cross-sectional study. BMC Sports Sci. Med. Rehabil. 2020, 12, 40. [Google Scholar] [CrossRef] [PubMed]
- Hagiwara, Y.; Yabe, Y.; Sekiguchi, T.; Momma, H.; Tsuchiya, M.; Kanazawa, K.; Yoshida, S.; Sogi, Y.; Yano, T.; Onoki, T.; et al. Association of Upper Extremity Pain with Lower Back Pain Upper Extremity Pain Is Associated with Lower Back Pain among Young Basketball Players: A Cross-Sectional Study. Tohoku J. Exp. Med. 2020, 250, 79–85. [Google Scholar] [CrossRef] [Green Version]
- Wilson, F.; Ardern, C.; Hartvigsen, J.; Dane, K.; Trompeter, K.; Trease, L.; Vinther, A.; Gissane, C.; McDonnell, S.; Caneiro, J.; et al. Prevalence and risk factors for back pain in sports: A systematic review with meta-analysis. Br. J. Sports Med. 2021, 55, 601–607. [Google Scholar] [CrossRef]
- Raza, A.; Jamshaid, M.; Riaz, T.; Bashir, I.; Majeed, I.; Akram, W.; Town Lahore, J. Correlation of back pain with obesity and posture among teenagers. Anaesth. Pain Intensive Care 2017, 21, 112–116. [Google Scholar]
- Cho, K.; Beom, J.; Lee, T.; Lim, J.; Lee, T.; Yuk, J. Trunk muscles strength as a risk factor for nonspecific low back pain: A pilot study. Ann. Rehabil. Med. 2014, 38, 234–240. [Google Scholar] [CrossRef] [Green Version]
- Araújo, L.; Dell’Antonio, E.; Hubert, M.; Ruschel, C.; Roesler, H.; Pereira, S. Trunk muscular endurance, lumbar spine mobility and hip flexibility in sailors with and without low back pain. Fisioter. Mov. 2020, 33, 1–8. [Google Scholar] [CrossRef]
- Cejudo, A.; Ginés-Díaz, A.; Sainz de Baranda, P. Asymmetry and Tightness of Lower Limb Muscles in Equestrian Athletes: Are They Predictors for Back Pain? Symmetry 2020, 12, 1679. [Google Scholar] [CrossRef]
- Patel, D.; Kinsella, E. Evaluation and management of lower back pain in young athletes. Transl. Pediatr. 2017, 6, 225–235. [Google Scholar] [CrossRef] [Green Version]
- Halbertsma, J.; Göeken, L.; Hof, A.; Groothoff, J.; Eisma, W. Extensibility and stiffness of the hamstrings in patients with nonspecific low back pain. Arch. Phys. Med. Rehabil. 2001, 82, 232–238. [Google Scholar] [CrossRef]
- Congdon, R.; Bohannon, R.; Tiberio, D. Intrinsic and imposed hamstring length influence posterior pelvic rotation during hip flexion. Clin. Biomech. 2005, 20, 947–951. [Google Scholar] [CrossRef] [PubMed]
- Sainz de Baranda, P.; Andújar, P.; Collazo-Diéguez, M.; Pastor, A.; Santonja-Renedo, F.; Martínez-Romero, M.; Aparicio-Sarmiento, A.; Cejudo, A.; Rodríguez-Ferrán, O.; Santonja-Medina, F. Sagittal standing spinal alignment and back pain in 8 to 12-year-old children from the Region of Murcia, Spain: The ISQUIOS Program. J. Back Musculoskelet. Rehabil. 2020, 33, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Esola, M.; McClure, P.; Fitzgerald, G.; Siegler, S. Analysis of lumbar spine and hip motion during forward bending in subjects with and without a history of low back pain. Spine 1996, 21, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Nourbakhsh, M.; Arab, A. Relationship between mechanical factors and incidence of low back pain. J. Orthop. Sports Phys. Ther. 2002, 32, 447–460. [Google Scholar] [CrossRef] [PubMed]
- Daniels, J.; Pontius, G.; El-Amin, S.; Gabriel, K. Evaluation of low back pain in players. Sports Health 2011, 3, 336–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarcevic, Z.; Tepavcevic, A. Association Among Dyskinesia of the Lumbar Spine Segment, Inclination Angle of the Lumbosacral Spine, and Low Back Pain in Young Athletes: A Predictive. J. Manip. Physiol. Ther. 2020, 43, 646–654. [Google Scholar] [CrossRef] [PubMed]
- Cejudo, A.; Gómez-Lozano, S.; Sainz de Baranda, P.; Vargas-Macías, A.; Santonja-Medina, F. Sagittal integral morphotype of female classical ballet dancers and predictors of sciatica and low back pain. Int. J. Environ. Res. Public Health 2021, 18, 5039. [Google Scholar] [CrossRef] [PubMed]
- Swärd, L.; Hellstrom, M.; Jacobsson, B.; Pëterson, L. Back pain and radiologic changes in the thoraco-lumbar spine of athletes. Spine 1990, 15, 124–129. [Google Scholar] [CrossRef]
- Neumann, D. Kinesiology of the Musculoskeletal System: Foundation for Rehabilitation; Mosby, Inc.: New York, NY, USA, 2013; ISBN 9780323039895. [Google Scholar]
- Baranto, A.; Hellström, M.; Cederlund, C.; Nyman, R.; Swärd, L. Back pain and MRI changes in the thoraco-lumbar spine of top athletes in four different sports: A 15-year follow-up study. Knee Surg. Sports Traumatol. Arthrosc. 2009, 17, 1125–1134. [Google Scholar] [CrossRef]
- Drakos, M.; Domb, B.; Starkey, C.; Callahan, L.; Allen, A. Injury in the National Basketball Association: A 17-year overview. Sports Health 2010, 2, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Dunn, I.; Proctor, M.; Day, A. Lumbar Spine Injuries in Athletes. Neurosurg. Focus 2006, 21, E4. [Google Scholar] [CrossRef] [Green Version]
- Micheli, L.; Wood, R. Back pain in young athletes: Significant differences from adults in causes and patterns. Arch. Pediatr. Adolesc. Med. 1995, 149, 15–18. [Google Scholar] [CrossRef]
- Trainor, T.; Trainor, M. Etiology of Low Back Pain in Athletes. Curr. Sports Med. Rep. 2004, 3, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Hangai, M.; Kaneoka, K.; Hinotsu, S.; Shimizu, K.; Okubo, Y.; Miyakawa, S.; Mukai, N.; Sakane, M.; Ochiai, N.; The, F. Lumbar Intervertebral Disk Degeneration in Athletes. Am. J. Sports Med. 2009, 37, 149–155. [Google Scholar] [CrossRef]
- Purcell, L.; Micheli, L. Low back pain in young athletes. Sports Health 2009, 1, 212–222. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, K.; Elser, T.; Stromberg, R. Lumbar spondylolysis in the adolescent athlete. Phys. Ther. Sport 2016, 20, 56–60. [Google Scholar] [CrossRef] [PubMed]
- Congeni, J.; McCulloch, J.; Swanson, K. Lumbar spondylolysis. A study of natural progression in athletes. Am. J. Sports Med. 1997, 25, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Deleo, T.; Merotto, S.; Smith, C.; D’Angelo, K. A posterior ring apophyseal fracture and disc herniation in a 21-year-old competitive basketball player: A case report. J. Can. Chiropr. Assoc. 2015, 59, 373–382. [Google Scholar] [PubMed]
- Wodecki, P.; Guigui, P.; Hanotel, M.; Cardinne, L.; Deburge, A. Sagittal alignment of the spine: Comparison between soccer players and subjects without sports activities. Rev. Chir. Orthop. Repar. LAppar. Mot. 2002, 88, 328–336. [Google Scholar]
- Kapandji, A. Fisiología Articular III: Miembro Inferior; Medica Panamericana: Madrid, Spain, 2007; ISBN 9788498350470. [Google Scholar]
- Kendall, F.; McCreary, E.; Provance, P.; Rodgers, M.; Romani, W. Muscles: Testing and Function with Posture and Pain; Lippincott Williams & Wilkins: Baltimore, MD, USA, 2005; ISBN 0781747805. [Google Scholar]
- Kolber, M.; Fiebert, I. Addressing flexibility of the rectus femoris in the athlete with low back pain. Strength Cond. J. 2005, 27, 66–73. [Google Scholar] [CrossRef]
- Bogduk, N.; Pearcy, M.; Hadfield, G. Anatomy and biomechanics of psoas major. Clin. Biomech. 1992, 7, 109–119. [Google Scholar] [CrossRef]
- Kim, H.; Chung, S.; Kim, S.; Shin, H.; Lee, J.; Kim, S.; Song, M. Influences of trunk muscles on lumbar lordosis and sacral angle. Eur. Spine J. 2006, 15, 409–414. [Google Scholar] [CrossRef] [Green Version]
- Van Wingerden, J.; Vleeming, A.; Buyruk, H.; Raissadat, K. Stabilization of the sacroiliac joint in vivo: Verification of muscular contribution to force closure of the pelvis. Eur. Spine J. 2004, 13, 199–205. [Google Scholar] [CrossRef] [Green Version]
- Fasuyi, F.; Fabunmi, A.; Adegoke, B. Hamstring muscle length and pelvic tilt range among individuals with and without low back pain. J. Bodyw. Mov. Ther. 2017, 21, 246–250. [Google Scholar] [CrossRef]
- Norris, C.; Matthews, M. Correlation between hamstring muscle length and pelvic tilt range during forward bending in healthy individuals: An initial evaluation. J. Bodyw. Mov. Ther. 2006, 10, 122–126. [Google Scholar] [CrossRef]
- Janda, V. Muscle Function Testing; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Morris, C.E.; Bonnefin, D.; Darville, C. The Torsional Upper Crossed Syndrome: A multi-planar update to Janda’s model, with a case series introduction of the mid-pectoral fascial lesion as an associated etiological factor. J. Bodyw. Mov. Ther. 2015, 19, 681–689. [Google Scholar] [CrossRef] [PubMed]
- Rockey, A. The Relationship between Anterior Pelvic Tilt, Hamstring Extensibility and Hamstring Strength; University of North Carolina: Greensboro, NC, USA, 2008. [Google Scholar]
- Day, J.; Smidt, G.; Lehmann, T. Effect of Pelvic Tilt on Standing Posture. Phys. Ther. 1984, 64, 510–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Youdas, J.; Garrett, T.; Egan, K.; Therneau, T. Lumbar lordosis and pelvic inclination in adults with chronic low back pain. Phys. Ther. 2000, 80, 261–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashmen, K.; Swanik, C.; Lephart, S. Strength and flexibility characteristics of athletes with chronic low-back pain. J. Sport Rehabil. 1996, 5, 275–286. [Google Scholar] [CrossRef]
- Small, K.; McNaughton, L.; Greig, M.; Lohkamp, M.; Lovell, R. Soccer fatigue, sprinting and hamstring injury risk. Int. J. Sports Med. 2009, 30, 573–578. [Google Scholar] [CrossRef]
- Kayacan, Y.; Ciftcioglu, E.; Soslu, R. The effect of basketball sport on some postural parameters. J. Acad. Res. 2014, 6, 23–27. [Google Scholar] [CrossRef]
- Li, Y.; McClure, P.; Pratt, N. The Effect of Hamstring Muscle Stretching on Standing Posture and on Lumbar and Hip Motions During Forward Bending. Phys. Ther. 1996, 76, 836–849. [Google Scholar] [CrossRef] [Green Version]
- Gajdosik, R.; Hatcher, C.; Whitsell, S. Influence of short hamstring muscles on the pelvis and lumbar spine in standing and during the toe-touch test. Clin. Biomech. 1992, 7, 38–42. [Google Scholar] [CrossRef]
- López-Miñarro, P.; Alacid, F. Influence of hamstring muscle extensibility on spinal curvatures in young athletes. Sci. Sports 2010, 25, 188–193. [Google Scholar] [CrossRef]
- Sainz de Baranda, P.; Santonja-Medina, F.; Rodríguez-Iniesta, M. Valoración de la disposición sagital del raquis en gimnastas especialistas en trampolín. RICYDE Rev. Int. Cienc. Deporte 2009, 5, 21–33. [Google Scholar] [CrossRef]
- Ginés-Díaz, A.; Martinez-Romero, M.; Cejudo, A.; Aparicio-Sarmiento, A.; Sainz de Baranda, P. Sagittal Spinal Morphotype Assessment in Dressage and Show Jumping Riders Physical. J. Sport Rehabil. 2019, 29, 533–540. [Google Scholar] [CrossRef]
- Sanz-Mengibar, J.; Sainz de Baranda, P.; Santonja-Medina, F. Training intensity and sagittal curvature of the spine in male and female artistic gymnasts. J. Sports Med. Phys. Fit. 2018, 58, 465–471. [Google Scholar] [CrossRef]
- Vialle, R.; Levassor, N.; Rillardon, L.; Templier, A.; Skalli, W.; Guigui, P. Radiographic analysis of the sagittal alignment and balance of the spine in asymptomatic subjects. J. Bone Jt. Surg. 2005, 87, 260–267. [Google Scholar] [CrossRef]
- Sainz de Baranda, P.; Santonja-Medina, F.; Rodríguez-Iniesta, M. Training time and sagittal curvature of the spine in trampolin gymnasts. Rev. Int. Med. Cienc. Act. Fís. Deporte 2010, 10, 521–536. [Google Scholar]
- Grabara, M. Anteroposterior curvatures of the spine in adolescent athletes. J. Back Musculoskelet. Rehabil. 2014, 27, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Arampatzis, A.; Frank, J.; Laube, G.; Mersmann, F. Trunk muscle strength and lumbo-pelvic kinematics in adolescent athletes: Effects of age and sex. Scand. J. Med. Sci. Sports 2019, 29, 1691–1698. [Google Scholar] [CrossRef] [PubMed]
- Sainz de Baranda, P.; Cejudo, A.; Moreno-Alcaraz, V.; Martinez-Romero, M.; Aparicio-Sarmiento, A.; Santonja, F. Sagittal spinal morphotype assessment in 8 to 15 years old Inline Hockey players. PeerJ 2020, 8, e8229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faherty, M.; Varnell, M.; Csonka, J.; Salesi, K.; Gomez, S.; Sell, T.; Krzyzewski, M.W. Science and Medicine in Football Sex differences in lower extremity musculoskeletal and neuromuscular characteristics in intercollegiate soccer athletes. Sci. Med. Footb. 2019, 4, 45–51. [Google Scholar] [CrossRef]
- Nikolaidis, P.; Buśko, K.; Clemente, F.; Tasiopoulos, I.; Knechtle, B. Age-and sex-related differences in the anthropometry and neuromuscular fitness of competitive taekwondo athletes. Open Access J. Sports Med. Sports Med. 2016, 7, 177–186. [Google Scholar] [CrossRef] [Green Version]
- Korff, M. Studying the Natural History of Back Pain. Spine 1994, 19, 2041S–2046S. [Google Scholar] [CrossRef]
- Van Dillen, L.; Bloom, N.; Gombatto, S.; Susco, T. Hip rotation range of motion in people with and without low back pain who participate in rotation-related sports. Phys. Ther. Sport 2008, 9, 72–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cejudo, A.; Sainz de Baranda, P.; Ayala, F.; De Ste Croix, M.; Santonja-Medina, F. Assessment of the Range of Movement of the Lower Limb in Sport: Advantages of the ROM-SPORT I Battery. Int. J. Environ. Res. Public Health 2020, 17, 7606. [Google Scholar] [CrossRef] [PubMed]
- Cejudo, A.; Sainz de Baranda, P.; Ayala, F.; Santonja, F. Test-retest reliability of seven common clinical tests for assessing lower extremity muscle flexibility in futsal and handball players. Phys. Ther. Sport 2015, 16, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Santonja-Medina, F.; Collazo-Diéguez, M.; Martínez-Romero, M.; Rodríguez-Ferrán, O.; Aparicio-Sarmiento, A.; Cejudo, A.; Andújar, P.; Sainz De Baranda, P. Classification System of the Sagittal Integral Morphotype in Children from the ISQUIOS Programme (Spain). Int. J. Environ. Res. Public Health 2020, 17, 2467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hopkins, W.; Marshall, S.; Batterham, A.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sports Exerc. 2009, 41, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Lee, D. Alternatives to P value: Confidence interval and effect size. Korean J. Anesthesiol. 2016, 69, 555. [Google Scholar] [CrossRef] [Green Version]
- Raftry, S.M.; Marshall, P.W.M. Does a ‘tight’ hamstring predict low back pain reporting during prolonged standing? J. Electromyogr. Kinesiol. 2012, 22, 407–411. [Google Scholar] [CrossRef] [PubMed]
- Cejudo, A.; Robles-Palazón, F.; Sainz De Baranda, P. Fútbol sala de élite: Diferencias de flexibilidad según sexo. E-Balonmano.Com Rev. Cienc. Deporte 2019, 15, 37–48. [Google Scholar]
- Nyland, J.; Kocabey, Y.; Caborn, D. Sex Differences in Perceived Importance of Hamstring Stretching among High School Athletes. Percept. Mot. Ski. 2016, 99, 3–11. [Google Scholar] [CrossRef]
- Krivickas, L.; Feinberg, J. Lower extremity injuries in college athletes: Relation between ligamentous laxity and lower extremity muscle tightness. Arch. Phys. Med. Rehabil. 1996, 77, 1139–1143. [Google Scholar] [CrossRef]
- Pereira, A.; Teixeira, C.; Pereira, K.; Ferreira, L.; Marques, M.; Silva, A. Neural Mobilization Short-Term Dose Effect on the Lower-Limb Flexibility and Performance in Basketball Athletes: A Randomized, Parallel, and Single-Blinded Study. J. Sport Rehabil. 2021, 1, 1–7. [Google Scholar] [CrossRef]
- Hewett, T. Neuromuscular and Hormonal Factors Associated with Knee Injuries in Female Athletes. Sports Med. 2000, 29, 313–327. [Google Scholar] [CrossRef]
- Bale, P.; Mayhe, J.; Piper, F.; Ball, T. Biological and performance variables in relation to age. J. Sports Med. Phys. Fit. 1992, 32, 142–148. [Google Scholar]
- Blackburn, J.; Riemann, B.; Padua, D.; Guskiewicz, K. Sex comparison of extensibility, passive, and active stiffness of the knee flexors. Clin. Biomech. 2004, 19, 36–43. [Google Scholar] [CrossRef]
- Granata, K.; Wilson, S.; Padua, D. Gender differences in active musculoskeletal stiffness. Part I: Quantification in controlled measurements of knee joint dynamics. J. Electromyogr. Kinesiol. 2002, 12, 119–126. [Google Scholar] [CrossRef]
- McPherson, A.; Nagai, T.; Schilaty, N.; Hale, R.; Hewett, T.; Bates, N. High school male basketball athletes exhibit greater hamstring muscle stiffness than females as assessed with shear wave elastography. Skelet. Radiol. 2020, 49, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.; Lelas, J.; Kerrigan, D. Gender differences in pelvic motions and center of mass displacement during walking: Stereotypes quantified. J. Womens Health 2002, 11, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.; Corcos, D.; Hasan, Z. The Influence of Gender on Spine, Hip, Knee, and Ankle Motions During a Reaching Task. J. Mot. Behav. 2010, 30, 98–103. [Google Scholar] [CrossRef]
- Jorgensen, M.; Marras, W.; Granata, K.; Wiand, J. MRI-derived moment-arms of the female and male spine loading muscles. Clin. Biomech. 2001, 16, 182–193. [Google Scholar] [CrossRef]
- Marras, W.; Jorgensen, M.; Granata, K.; Wiand, B. Female and male trunk geometry: Size and prediction of the spine loading trunk muscles derived from MRI. Clin. Biomech. 2001, 16, 38–46. [Google Scholar] [CrossRef]
- Di Santo, M. Amplitud de Movimiento; Paidotribo: Barcelona, Spain, 2018. [Google Scholar]
- McClure, P.; Esola, M.; Schreier, R.; Siegler, S. Kinematic analysis of lumbar and hip motion while rising from a forward, flexed position in patients with and without a history of low back pain. Spine 1997, 22, 552–558. [Google Scholar] [CrossRef]
- Harris-Hayes, M.; Sahrmann, S.; Van Dillen, L. Relationship between the hip and low back pain in athletes who participate in rotation-related sports. J. Sport Rehabil. 2009, 18, 60. [Google Scholar] [CrossRef] [Green Version]
- Laird, R.; Gilbert, J.; Kent, P.; Keating, J. Comparing lumbo-pelvic kinematics in people with and without back pain: A systematic review and meta-analysis. BMC Musculoskelet. Disord. 2014, 15, 229. [Google Scholar] [CrossRef]
- Toppenberg, R.; Bullock, M. The interrelation of spinal curves, pelvic tilt and muscle lengths in the adolescent female. Aust. J. Physiother. 1986, 32, 6–12. [Google Scholar] [CrossRef] [Green Version]
- Link, C.; Nicholson, G.; Shaddeau, S.; Birch, R. Lumbar curvature in standing and sitting in two types of chairs: Relationship of hamstring and hip flexor muscle length. Phys. Ther. 1990, 70, 611–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-García, P.; López-Miñarro, P.; Yuste, J.; Sáinz de Baranda, P. Comparison of hamstring criterion-related validity, sagittal spinal curvatures, pelvic tilt and score between sit-and-reach and toe-touch tests in athletes. Med. Dello Sport 2008, 61, 11–20. [Google Scholar]
- López-Miñarro, P.; Muyor, J.; Alacid, F. Influence of hamstring extensibility on sagittal spinal curvatures and pelvic tilt in highly trained young kayakers. Eur. J. Sport Sci. 2012, 12, 469–474. [Google Scholar] [CrossRef]
- Stutchfield, B.; Coleman, S. The relationships between hamstring flexibility, lumbar flexion, and low back pain in rowers. Eur. J. Sport Sci. 2006, 6, 255–260. [Google Scholar] [CrossRef]
- Muyor, J.; Alacid, F.; Rodríguez-García, P.; López-Miñarro, P. Influence of hamstring extensibility on sagittal spinal curvatures and pelvic inclination in athletes. Int. J. Morphol. 2012, 30, 176–181. [Google Scholar] [CrossRef] [Green Version]
- Haladay, D.; Miller, S.; Challis, J. Quality of systematic reviews on specific spinal stabilization exercise for chronic low back pain. J. Orthop. Sports Phys. Ther. 2013, 242, 242–250. [Google Scholar] [CrossRef]
- Dreischarf, M.; Shirazi-Adl, A.; Arjmand, N. Estimation of loads on human lumbar spine: A review of in vivo and computational model studies. J. Biomech. 2016, 49, 833–845. [Google Scholar] [CrossRef] [PubMed]
- Nachemson, A. Disc pressure measurements. Spine 1981, 6, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Wilke, H.; Neef, P.; Caimi, M.; Hoogland, T.; Claes, L. New In Vivo Measurements of Pressures in the Intervertebral Disc in Daily Life. Spine 1999, 24, 755–762. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, B.; Kotani, Y.; McNulty, P.; Cappuccino, A. The effect of spinal destabilization and instrumentation on lumbar intradiscal pressure: An in vitro biomechanical analysis. Spine 1997, 22, 2655–2663. [Google Scholar] [CrossRef]
- Hori, M.; Hasegawa, H.; Takasaki, H. Comparisons of hamstring flexibility between individuals with and without low back pain: Systematic review with meta-analysis. Physiother. Theory Pract. 2019, 37, 559–582. [Google Scholar] [CrossRef]
- Radwan, A.; Bigney, K.; Buonomo, H.; Jarmak, M.; Moats, S.; Ross, J.; Tatarevic, E.; Tomko, M. Evaluation of intra-subject difference in hamstring flexibility in patients with low back pain: An exploratory study. J. Back Musculoskelet. Rehabil. 2015, 28, 61–66. [Google Scholar] [CrossRef]
- Nadler, S.; Malanga, G.; Bartoli, L.; Feinberg, J.; Prybicien, M.; Deprince, M. Hip muscle imbalance and low back pain in athletes: Influence of core strengthening. Med. Sci. Sports Exerc. 2002, 34, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Reis, F.; Macedo, A. Influence of hamstring tightness in pelvic, lumbar and trunk range of motion in low back pain and asymptomatic volunteers during forward bending. Asian Spine J. 2015, 9, 535–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables (Degrees) | Male (n = 61) | Female (n = 33) | p-Value | Effect Size Hedge’s g | Total 1 (n = 94) | |
---|---|---|---|---|---|---|
HF-KE | 70.71 ± 12.16 | 82.67 ± 12.84 | 0.000 | Moderate (g = −0.95) | 74.91 ± 13.16 * | |
Pelvic position | LH-SSP | 103.43 ± 7.89 | 95.45 ± 9.17 | 0.000 | Moderate (g = 0.94) | 100.63 ± 9.15 * |
LH-MTFP | 100.26 ± 13.44 | 86.64 ± 15.70 | 0.000 | Moderate (g = 0.94) | 95.48 ± 15.62 * | |
Thoracic curve | RSP | 49.23 ± 8.15 | 44.94 ± 10.09 | 0.052 | Small (g = 0.47) | 47.72 ± 9.07 |
SSP | 51.92 ± 9.48 | 44.55 ± 9.76 | 0.001 | Moderate (g = 0.76) | 49.33 ± 10.16 * | |
MTFP | 73.25 ± 9.87 | 68.97 ± 9.90 | 0.061 | Small (g = 0.42) | 71.74 ± 10.04 | |
Lumbar curve | RSP | −32.51 ± 7.27 | −43.33 ± 8.24 | 0.000 | Large (g = −1.40) | 36.30 ± 9.20 * |
SSP | 9.79 ± 8.09 | 1.55 ± 11.01 | 0.000 | Moderate (g = 0.88) | 6.89 ± 9.98 * | |
MTFP | 17.49 ± 6.62 | 12.94 ± 9.43 | 0.018 | Small (g = 0.58) | 15.89 ± 7.98 |
Variables (Degrees) | Low-HE (<71°) | High-HE (≥71°) | p-Value | Effect Size Hedge’s g | |
---|---|---|---|---|---|
HF-KE | 60.96 ± 7.47 | 78.46 ± 9.23 | 0.000 | Very large (g = −2.03) * | |
Pelvic position | LH-SSP | 105.44 ± 6.05 | 101.82 ± 8.85 | 0.153 | Small (g = 0.46) |
LH-MTFP | 110.81 ± 7.80 | 91.88 ± 10.81 | 0.000 | Large (g = 1.94) * | |
Thoracic curve | RSP | 49.00 ± 8.37 | 49.41 ± 8.10 | 0.615 | Trivial (g = −0.04) |
SSP | 52.93 ± 10.05 | 51.12 ± 9.07 | 0.448 | Trivial (g = 0.18) | |
MTFP | 75.07 ± 10.68 | 71.79 ± 9.07 | 0.107 | Trivial (g = 0.33) | |
Lumbar curve | RSP | −31.52 ± 8.86 | −33.26 ± 5.74 | 0.211 | Trivial (g = −0.23) |
SSP | 11.37 ± 6.45 | 8.53 ± 9.08 | 0.186 | Trivial (g = 0.34) | |
MTFP | 18.41 ± 6.12 | 16.76 ± 6.99 | 0.718 | Trivial (g = 0.24) |
Variables (Degrees) | Low-HE (<75°) | High-HE (≥75°) | p-Value | Effect Size Hedge’s g | |
---|---|---|---|---|---|
HF-KE | 61.50–4.80 | 87.37–8.50 | 0.000 | Very large (d = −3.74) * | |
Pelvic position | LH-SSP | 98.17–7.81 | 94.85–9.47 | 0.508 | Small (d = 0.35) |
LH-MTFP | 110.33–7.00 | 81.37–11.65 | 0.000 | Very large (d = 2.62) * | |
Thoracic curve | RSP | 45.83–9.97 | 44.77–10.30 | 0.838 | Trivial (d = 0.10) |
SSP | 49.33–9.44 | 43.48–9.67 | 0.205 | Moderate (d = 0.60) | |
MTFP | 74.33–8.33 | 67.78–9.96 | 0.145 | Moderate (d = 0.66) | |
Lumbar curve | RSP | −46.33–11.48 | −42.67–7.46 | 0.424 | Small (d = 0.41) |
SSP | 0.01–16.83 | 1.89–9.70 | 0.946 | Trivial (d = 0.15) | |
MTFP | 6.00–15.07 | 14.48–7.23 | 0.158 | Moderate (d = −0.86) |
Variables | Low-HE (≤71°) | High-HE (>71°) | Chi-Squared Test (ꭕ2) | p-Value | Cramér’s V | Guttman’s Lambda | |
---|---|---|---|---|---|---|---|
LH-SSP * | Normal | 3 (16.7%) | 15 (83.3%) | 7.882 | 0.005 | Moderate 0.359 | Weak 0.185 |
Restricted | 24 (55.8%) | 19 (44.2%) | |||||
LH-MTFP * | Normal | 3 (10%) | 27 (90%) | 28.089 | 0.000 | Strong 0.679 | Strong 0.630 |
Restricted | 24 (77.4%) | 7 (22.6%) | |||||
Lumbar curve * | Normal | 15 (34.9%) | 28 (65.1%) | 5.195 | 0.023 | Moderate 0.292 | 0.222 Weak |
Spinal misalignment | 12 (66.7%) | 6 (33.3%) | |||||
LBP * | LBP-free | 14 (32.6%) | 29 (67.4%) | 8.091 | 0.004 | Moderate 0.364 | 0.296 Weak |
Recurrent LBP | 13 (72.2%) | 5 (27.8%) |
Variables | Low-HE (≤75°) | High-HE (>75°) | Chi-Squared Test (ꭕ2) | p-Value | Cramér’s V | Guttman’s Lambda | |
---|---|---|---|---|---|---|---|
LH-MTFP * | Normal | 0 (0%) | 25 (100%) | 22.917 | 0.000 | Strong 0.667 | Strong 0.833 |
Restricted | 6 (75%) | 2 (25%) | |||||
Lumbar curve * | Normal | 0 (0%) | 14 (100%) | 5.404 | 0.020 | Relatively strong 0.405 | 0.000 Weak |
Spinal misalignment | 8 (42.1%) | 11 (57.9%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cejudo, A.; Centenera-Centenera, J.M.; Santonja-Medina, F. The Potential Role of Hamstring Extensibility on Sagittal Pelvic Tilt, Sagittal Spinal Curves and Recurrent Low Back Pain in Team Sports Players: A Gender Perspective Analysis. Int. J. Environ. Res. Public Health 2021, 18, 8654. https://doi.org/10.3390/ijerph18168654
Cejudo A, Centenera-Centenera JM, Santonja-Medina F. The Potential Role of Hamstring Extensibility on Sagittal Pelvic Tilt, Sagittal Spinal Curves and Recurrent Low Back Pain in Team Sports Players: A Gender Perspective Analysis. International Journal of Environmental Research and Public Health. 2021; 18(16):8654. https://doi.org/10.3390/ijerph18168654
Chicago/Turabian StyleCejudo, Antonio, Josep María Centenera-Centenera, and Fernando Santonja-Medina. 2021. "The Potential Role of Hamstring Extensibility on Sagittal Pelvic Tilt, Sagittal Spinal Curves and Recurrent Low Back Pain in Team Sports Players: A Gender Perspective Analysis" International Journal of Environmental Research and Public Health 18, no. 16: 8654. https://doi.org/10.3390/ijerph18168654
APA StyleCejudo, A., Centenera-Centenera, J. M., & Santonja-Medina, F. (2021). The Potential Role of Hamstring Extensibility on Sagittal Pelvic Tilt, Sagittal Spinal Curves and Recurrent Low Back Pain in Team Sports Players: A Gender Perspective Analysis. International Journal of Environmental Research and Public Health, 18(16), 8654. https://doi.org/10.3390/ijerph18168654