Estimates of COVID-19 Risk Factors among Social Strata and Predictors for a Vulnerability to the Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. E-Surveillance Strategy
2.2. WBQ Design
2.3. Population-Based Sample
2.4. WBQ Administration
2.5. Statistical Analysis
3. Results
3.1. The Distribution of Genders, Generations, and Economic Sectors
3.2. Estimates of COVID-19 Severity Risk Factors
3.3. Vulnerability to Infection-Related Clinical Characteristics among Genders, Generation's and Economic Sectors
3.4. COVID-19 Prevalence in Genders, Generations, and Economic Sectors
3.5. Investigation of Independent Predictors for Vulnerability to COVID-19 Infection
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef]
- CDC Cases, Data, and Surveillance. Assessing Risk Factors for Severe COVID-19 Illness. Available online: https://www.cdc.gov/coronavirus/2019-ncov/covid-data/investigations-discovery/assessing-risk-factors.html (accessed on 17 April 2021).
- Gray, D.M.; Anyane-Yeboa, A.; Balzora, S.; Issaka, R.B.; May, F.P. COVID-19 and the Other Pandemic: Populations Made Vulnerable by Systemic Inequity. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 520–522. [Google Scholar] [CrossRef]
- Georges, A.; Chinet, L.; Hagon-Traub, I. Non-communicable diseases and vulnerable populations: Overview of the situation and vision for the future. Rev. Med. Suisse 2020, 16, 1763–1766. [Google Scholar] [PubMed]
- Braveman, P.; Gottlieb, L. The Social Determinants of Health: It’s Time to Consider the Causes of the Causes. Public Health Rep. 2014, 129, 19–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engering, A.; Hogerwerf, L.; Slingenbergh, J. Pathogen–Host–Environment Interplay and Disease Emergence. Emerg. Microbes Infect. 2013, 2, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Morawska, L.; Milton, D.K. It Is Time to Address Airborne Transmission of Coronavirus Disease 2019 (COVID-19). Clin. Infect. Dis. 2020, 71, 2311–2313. [Google Scholar] [CrossRef] [PubMed]
- Santiago-Alarcon, D.; MacGregor-Fors, I. Cities and Pandemics: Urban Areas Are Ground Zero for the Transmission of Emerging Human Infectious Diseases. J. Urban Ecol. 2020, 6, 6. [Google Scholar] [CrossRef]
- Aletta, F.; Oberman, T.; Mitchell, A.; Tong, H.; Kang, J. Assessing the Changing Urban Sound Environment during the COVID-19 Lockdown Period Using Short-Term Acoustic Measurements. Noise Mapp. 2020, 7, 123–134. [Google Scholar] [CrossRef]
- Aiello, A.E.; Renson, A.; Zivich, P.N. Social Media– and Internet-Based Disease Surveillance for Public Health. Annu. Rev. Public Health 2020, 41, 101–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salathé, M.; Bengtsson, L.; Bodnar, T.J.; Brewer, D.D.; Brownstein, J.S.; Buckee, C.; Campbell, E.M.; Cattuto, C.; Khandelwal, S.; Mabry, P.L.; et al. Digital Epidemiology. PLoS Comput. Biol. 2012, 8, e1002616. [Google Scholar] [CrossRef] [Green Version]
- van Gelder, M.M.H.J.; Bretveld, R.W.; Roeleveld, N. Web-Based Questionnaires: The Future in Epidemiology? Am. J. Epidemiol. 2010, 172, 1292–1298. [Google Scholar] [CrossRef]
- Vergnaud, A.-C.; Touvier, M.; Méjean, C.; Kesse-Guyot, E.; Pollet, C.; Malon, A.; Castetbon, K.; Hercberg, S. Agreement between Web-Based and Paper Versions of a Socio-Demographic Questionnaire in the NutriNet-Santé Study. Int. J. Public Health 2011, 56, 407–417. [Google Scholar] [CrossRef]
- Moustris, K.P.; Proias, G.T.; Larissi, I.K.; Nastos, P.T.; Koukouletsos, K.V.; Paliatsos, A.G. Health Impacts Due to Particulate Air Pollution in Volos City, Greece. J. Environ. Sci. Health Part A 2016, 51, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Andersson, C.; Vasan, R.S. Epidemiology of Cardiovascular Disease in Young Individuals. Nat. Rev. Cardiol. 2018, 15, 230–240. [Google Scholar] [CrossRef] [PubMed]
- Tafiadis, D.; Toki, E.I.; Miller, K.J.; Ziavra, N. Effects of Early Smoking Habits on Young Adult Female Voices in Greece. J. Voice 2017, 31, 728–732. [Google Scholar] [CrossRef] [PubMed]
- Entringer, S.; Buss, C.; Heim, C. Early-life stress and vulnerability for disease in later life. Bundesgesundheitsblatt Gesundh. Gesundh. 2016, 59, 1255–1261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stephenson, J.; Heslehurst, N.; Hall, J.; Schoenaker, D.A.J.M.; Hutchinson, J.; Cade, J.E.; Poston, L.; Barrett, G.; Crozier, S.R.; Barker, M.; et al. Before the Beginning: Nutrition and Lifestyle in the Preconception Period and Its Importance for Future Health. Lancet 2018, 391, 1830–1841. [Google Scholar] [CrossRef]
- Zhao, Q.; Meng, M.; Kumar, R.; Wu, Y.; Huang, J.; Lian, N.; Deng, Y.; Lin, S. The Impact of COPD and Smoking History on the Severity of COVID-19: A Systemic Review and Meta-analysis. J. Med. Virol. 2020, 92, 1915–1921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO|COPD Predicted to Be Third Leading Cause of Death in 2030. Available online: https://www.who.int/respiratory/copd/World_Health_Statistics_2008/en/ (accessed on 19 March 2021).
- Karunanayake, C.P.; Rennie, D.C.; Pahwa, P.; Chen, Y.; Dosman, J.A. Predictors of Respiratory Symptoms in a Rural Canadian Population: A Longitudinal Study of Respiratory Health. Can. Respir. J. 2011, 18, 149–153. [Google Scholar] [CrossRef] [Green Version]
- Ho, C.S.H.; Tan, E.L.Y.; Ho, R.C.M.; Chiu, M.Y.L. Relationship of Anxiety and Depression with Respiratory Symptoms: Comparison between Depressed and Non-Depressed Smokers in Singapore. Int. J. Environ. Res. Public Health 2019, 16, 163. [Google Scholar] [CrossRef] [Green Version]
- Chong, E.Y.L.; Chan, A.H.S. Subjective Health Complaints of Teachers from Primary and Secondary Schools in Hong Kong. Int. J. Occup. Saf. Ergon. 2010, 16, 23–39. [Google Scholar] [CrossRef] [PubMed]
- Mebarki, B.; Ahmed Fouatih, M.E.A.; Mokdad, M. Quality of Work Life and Differences in Demographic Characteristics among Managerial Staff in Algerian Tertiary Sector. In Congress of the International Ergonomics Association; Springer: Cham, Switzerland, 2019; Volume 62, pp. 435–442. [Google Scholar] [CrossRef]
- Wilson, N.M.; Norton, A.; Young, F.P.; Collins, D.W. Airborne Transmission of Severe Acute Respiratory Syndrome Coronavirus-2 to Healthcare Workers: A Narrative Review. Anaesthesia 2020, 75, 1086–1095. [Google Scholar] [CrossRef] [PubMed]
- Mouliou, D.S.; Gourgoulianis, K.I. False-Positive and False-Negative COVID-19 Cases: Respiratory Prevention and Management Strategies, Vaccination, and Further Perspectives. Expert Rev. Respir. Med. 2021, 15, 993–1002. [Google Scholar] [CrossRef] [PubMed]
- Estiri, H.; Strasser, Z.H.; Klann, J.G.; Naseri, P.; Wagholikar, K.B.; Murphy, S.N. Predicting COVID-19 Mortality with Electronic Medical Records. NPJ Digit. Med. 2021, 4, 15. [Google Scholar] [CrossRef] [PubMed]
- Travaglio, M.; Yu, Y.; Popovic, R.; Selley, L.; Leal, N.S.; Martins, L.M. Links between Air Pollution and COVID-19 in England. Environ. Pollut. 2021, 268, 115859. [Google Scholar] [CrossRef] [PubMed]
- Bobker, S.M.; Robbins, M.S. COVID-19 and Headache: A Primer for Trainees. Headache J. Head Face Pain 2020, 60, 1806–1811. [Google Scholar] [CrossRef]
- Nandha, R.; Singh, H. Renin Angiotensin System: A Novel Target for Migraine Prophylaxis. Indian J. Pharmacol. 2012, 44, 157–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, N.; Ariumi, Y.; Nishida, N.; Yamamoto, R.; Bauer, G.; Gojobori, T.; Shimotohno, K.; Mizokami, M. SARS-CoV-2 Infections and COVID-19 Mortalities Strongly Correlate with ACE1 I/D Genotype. Gene 2020, 758, 144944. [Google Scholar] [CrossRef] [PubMed]
Economic Sectors | n | Total Males (% Out of n) | Total Females (% Out of n) | p-Value | Generation Z (% Out of n) | Millennials (% Out of n) | Generation X (% Out of n) | Baby Boomers (% Out of n) |
---|---|---|---|---|---|---|---|---|
Primary | 71 | 45 (63.4) | 26 (36.6) | <0.001 | 2 (2.8) a | 29 (40.8) a | 34 (47.9) a | 6 (8.5) a |
Secondary | 95 | 75 (78.9) | 20 (21.1) | <0.001 | 3 (3.2) a | 35 (36.8) a,b | 50 (52.6) b | 7 (7.4) a,b |
Tertiary Services Public | 146 | 87 (59.6) | 59 (40.4) | <0.001 | 2 (1.4) a | 44 (30.1) b | 91 (62.3) c | 9 (6.2) a,b,c |
Private services | 362 | 195 (53.9) | 167 (46.1) | NS | 7 (1.9) a | 183 (50.6) b | 158 (43.6) c | 14 (3.9) a |
Healthcare | 106 | 47 (44.3) | 59 (53.7) | NS | 4 (3.8) a | 46 (43.4) a | 53 (50) a | 3 (2.8) a |
Food | 264 | 143 (54.2) | 121 (45.8) | NS | 24 (9.1) a,b | 129 (48.9) b | 99 (37.5) a | 12 (4.5) a |
Education | 146 | 49 (33.6) | 97 (66.4) | <0.01 | 4 (2.7) a | 52 (35.6) b | 77 (52.7) b | 13 (8.9) a |
Freelancers | 220 | 144 (65.5) | 76 (34.5) | <0.001 | 7 (3.2) a | 87 (39.5) b | 107 (48.6) b | 19 (8.6) b |
Retirees | 130 | 54 (41.5) | 76 (58.5) | NS | 0 (0) a | 2 (1.5) a | 37 (28.5) b | 91 (70) c |
Unemployed | 287 | 98 (34.1) | 189 (65.9) | <0.001 | 7 (2.4) a | 127 (44.3) b | 134 (46.7) b | 19 (6.6) b |
Undergraduates | 173 | 66 (38.2) | 107 (61.8) | <0.001 | 157 (90.8) a | 16 (9.2) b | 0 (0) c | 0 (0) b,c |
Common Certain Medical Conditions | Total n (% Out of n), n = 2000 | Total Men n (% Out of n), n = 1003 | Total Women n (% Out of n), n = 997 | p-Value | Generation Z n (% Out of n) n = 217 | Millennials n (% Out of n) n = 750 | Generation X n (% Out of n) n = 840 | Baby Boomers n (% Out of n) n = 193 |
---|---|---|---|---|---|---|---|---|
Chronic Lung Diseases 1 | 220 (11.1) | 93 (9.3) | 127 (12.7) | 0.013 | 21 (9.7) a | 78 (10.4) a | 83 (11.1) a | 28 (14.5) a |
Heart Conditions 2 | 358 (17.9) | 168 (16.7) | 190 (19.0) | 0.178 | 26 (12.0) a | 99 (13.2) a | 149 (17.7) a | 73 (37.8) b |
Other Chronic Diseases 3 | 247 (12.4) | 92 (9.2) | 155 (15.2) | <0.001 | 17 (7.8) a | 82 (10.9) a | 106 (12.6) a | 42 (21.8) b |
Smokers | 1197 (60.0) | 628 (62.6) | 569 (57.0) | 0.011 | 58 (26.7) a | 444 (59.2) b | 565 (67.3) c | 130 (67.4) c |
Overweight /Obesity | 770 (38.5) | 394 (39.0) | 376 (38.0) | 0.470 | 57 (26.3) a | 265 (35.3) a | 359 (42.7) b | 89 (46.1) b |
Total Risk 4 | 1625 (81.2) | 812 (81.0) | 813 (81.05) | 0.736 | 123 (56.7) a | 593 (79.1) b | 736 (87.6) b | 173 (89.6) b |
Sectors of Economy | n | Cough (% Out of n) | Dyspnea (% Out of n) | Sputum (% Out of n) | Sniffle (% Out of n) | Fever (% Out of n) | Headache (% Out of n) | Flu (% Out of n) |
---|---|---|---|---|---|---|---|---|
Primary | 71 | 17 (23.9) a | 20 (28.2) a | 15 (21.1) a | 16 (22.5) a | 4 (5.6) a | 25 (35.2) a,b | 16 (25.5) b |
Secondary | 95 | 19 (20) a | 26 (27.4) a | 25 (26.2) a | 23 (24.2) a | 4 (4.2) a | 31 (32.6) a,b | 16 (16.9) a |
Tertiary Services Public | 146 | 37 (25.3) a | 49 (33.6) a | 39 (26.7) a | 32 (21.9) a | 8 (5.5) a | 54 (37) a,b | 25 (17.1) a |
Private | 362 | 97 (26.8) a | 119 (32.9) a | 103 (27.4) a | 113 (31.2) a | 32 (8.8) a | 134 (37) a,b | 67 (18.5) a |
Healthcare | 106 | 26 (24.5) a | 26 (24.5) a | 19 (17.9) a | 30 (28.2) a | 5 (4.7) a | 40 (37.8) a,b | 15 (14.1) a |
Food | 265 | 72 (27.3) a | 73 (27.7) a | 67 (25.4) a | 81 (30.7) a | 24 (9.1) a | 108 (50.9) c | 54 (20.5) a,b |
Education | 145 | 51 (32.8) a | 51 (34.9) a | 38 (26) a | 70 (47.9) b | 21 (14.4) a | 68 (46.5) b,c | 50 (34.2) c |
Freelancers | 220 | 54 (22.7) a | 74 (33.6) a | 42 (19.1) a | 62 (28.2) a | 15 (6.8) a | 81 (36.8) a | 38 (17.3) a |
Retirees | 130 | 37 (28.5) a | 54 (41.5) b | 35 (26.9) a | 34 (26.1) a | 11 (8.5) a | 34 (26.1) a | 21 (16.1) a |
Unemployed | 287 | 87 (29.7) a | 41 (36.9) a | 81 (28.2) a | 82 (28.6) a | 22 (7.7) a | 116 (40.5) b,c | 54 (18.8) a |
Undergraduates | 173 | 46 (26) a | 60 (34.7) a | 33 (19.1) a | 77 (44.6) b | 20 (11.6) a | 93 (53.7) c | 48 (27.8) b,c |
Variables | Subgroups | n | No Identified COVID-19 Infection (% Within n) | Identified COVID-19 Infection (% Within n) | p Value 1 | Total CLF Symptoms 2 (% Within n) | p Value 3 |
---|---|---|---|---|---|---|---|
Generations | Generation Z | 217 | 209 (96.3) | 8 (3.7) | 0.483 | 27 (12.4) | 0.055 |
Millennials | 750 | 717 (95.6) | 33 (4.4) | 84 (11.2) | |||
Generation X | 840 | 810 (96.4) | 30 (3.6) | 68 (8.1) | |||
Baby Boomers | 193 | 189 (97.9) | 4 (2.1) | 14 (7.3) | |||
Economic Sectors | Primary | 71 | 69 (97.2) | 2 (2.8) | 0.604 | 6 (8.5) | 0.286 |
Secondary | 95 | 93 (97.9) | 2 (2.1) | 6 (6.3) | |||
Tertiary Services Public | 146 | 141 (96.6) | 5 (3.4) | 9 (6.2) | |||
Private | 362 | 348 (96.1) | 14 (3.9) | 32 (8.8) | |||
Healthcare | 106 | 99 (93.4) | 7 (6.6) | 10 (9.4) | |||
Food | 264 | 253 (95.8) | 11 (4.2) | 32 (12.1) | |||
Education | 146 | 138 (94.5) | 8 (5.5) | 17 (11.6) | |||
Freelancers | 220 | 211 (95.9) | 9 (4.1) | 26 (11.8) | |||
Retirees | 130 | 124 (95.4) | 6 (4.6) | 11 (8.5) | |||
Unemployed | 287 | 282 (98.3) | 5 (1.7) | 21 (7.3) | |||
Undergraduates | 173 | 167 (96.5) | 6 (3.5) | 23 (13.3) |
Variables | B | S.E. | Wald | df | Sig. | Exp(B) | 95% C.I. for EXP(B) | |
---|---|---|---|---|---|---|---|---|
Lower | Upper | |||||||
Sum Risk factors | 0.058 | 0.313 | 0.034 | 1 | 0.853 | 1.059 | 0.574 | 1.956 |
Prior pneumonia | 0.544 | 0.265 | 4.197 | 1 | 0.04 | 1.822 | 1.024 | 2.898 |
Headache | 0.638 | 0.237 | 7.233 | 1 | 0.007 | 1.993 | 1.189 | 3.01 |
Millennials | 0.261 | 0.239 | 1.189 | 1 | 0.275 | 1.297 | 0.813 | 2.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mouliou, D.S.; Kotsiou, O.S.; Gourgoulianis, K.I. Estimates of COVID-19 Risk Factors among Social Strata and Predictors for a Vulnerability to the Infection. Int. J. Environ. Res. Public Health 2021, 18, 8701. https://doi.org/10.3390/ijerph18168701
Mouliou DS, Kotsiou OS, Gourgoulianis KI. Estimates of COVID-19 Risk Factors among Social Strata and Predictors for a Vulnerability to the Infection. International Journal of Environmental Research and Public Health. 2021; 18(16):8701. https://doi.org/10.3390/ijerph18168701
Chicago/Turabian StyleMouliou, Dimitra S., Ourania S. Kotsiou, and Konstantinos I. Gourgoulianis. 2021. "Estimates of COVID-19 Risk Factors among Social Strata and Predictors for a Vulnerability to the Infection" International Journal of Environmental Research and Public Health 18, no. 16: 8701. https://doi.org/10.3390/ijerph18168701
APA StyleMouliou, D. S., Kotsiou, O. S., & Gourgoulianis, K. I. (2021). Estimates of COVID-19 Risk Factors among Social Strata and Predictors for a Vulnerability to the Infection. International Journal of Environmental Research and Public Health, 18(16), 8701. https://doi.org/10.3390/ijerph18168701