Biceps Femoris Activation during Hamstring Strength Exercises: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Registration
2.2. Information Sources and Search
2.3. Eligibility Criteria and Study Selection
2.4. Data Collection Process
2.5. Outcomes
2.6. Risk of Bias of Individual Studies
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.3. Quality Assessment
3.4. Muscle Activation
4. Discussion
4.1. Limitations
4.2. Sports and Clinical Applications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Erickson, L.N.; Sherry, M.A. Rehabilitation and return to sport after hamstring strain injury. J. Sport Health Sci. 2017, 6, 262–270. [Google Scholar] [CrossRef]
- Mendiguchia, J.; Alentorn-Geli, E.; Brughelli, M. Hamstring strain injuries: Are we heading in the right direction? Br. J. Sports Med. 2012, 46, 81–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourne, M.N.; Opar, D.A.; Williams, M.D.; Al Najjar, A.; Shield, A.J. Muscle activation patterns in the Nordic hamstring exercise: Impact of prior strain injury. Scand. J. Med. Sci. Sports 2016, 26, 666–674. [Google Scholar] [CrossRef] [Green Version]
- Dalton, S.L.; Kerr, Z.Y.; Dompier, T.P. Epidemiology of Hamstring Strains in 25 NCAA Sports in the 2009–2010 to 2013–2014 Academic Years. Am. J. Sports Med. 2015, 43, 2671–2679. [Google Scholar] [CrossRef] [PubMed]
- Freckleton, G.; Pizzari, T. Risk factors for hamstring muscle strain injury in sport: A systematic review and meta-analysis. Br. J. Sports Med. 2013, 47, 351–358. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.W.Y.; Mok, K.-M.; Chan, H.C.K.; Yung, P.S.H.; Chan, K.-M. Eccentric hamstring strength deficit and poor hamstring-to-quadriceps ratio are risk factors for hamstring strain injury in football: A prospective study of 146 professional players. J. Sci. Med. Sport 2018, 21, 789–793. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Bellmunt, A.; Miguel-Pérez, M.; Brugué, M.B.; Cabús, J.B.; Casals, M.; Martinoli, C.; Kuisma, R. An anatomical and histological study of the structures surrounding the proximal attachment of the hamstring muscles. Man. Ther. 2015, 20, 445–450. [Google Scholar] [CrossRef]
- Maniar, N.; Shield, A.J.; Williams, M.D.; Timmins, R.G.; Opar, D.A. Hamstring strength and flexibility after hamstring strain injury: A systematic review and meta-analysis. Br. J. Sports Med. 2016, 50, 909–920. [Google Scholar] [CrossRef]
- Opar, D.A.; Williams, M.D.; Shield, A.J. Hamstring strain injuries: Factors that lead to injury and re-injury. Sports Med. 2012, 42, 209–226. [Google Scholar] [CrossRef]
- Opar, D.A.; Williams, M.D.; Timmins, R.G.; Hickey, J.; Duhig, S.J.; Shield, A.J. Eccentric Hamstring Strength and Hamstring Injury Risk in Australian Footballers. Med. Sci. Sports Exerc. 2015, 47, 857–865. [Google Scholar] [CrossRef] [Green Version]
- Opar, D.A.; Williams, M.D.; Timmins, R.G.; Dear, N.M.; Shield, A.J. Knee flexor strength and bicep femoris electromyographical activity is lower in previously strained hamstrings. J. Electromyogr. Kinesiol. Off. J. Int. Soc. Electrophysiol. Kinesiol. 2013, 23, 696–703. [Google Scholar] [CrossRef] [Green Version]
- Timmins, R.G.; Bourne, M.N.; Shield, A.J.; Williams, M.D.; Lorenzen, C.; Opar, D.A. Short biceps femoris fascicles and eccentric knee flexor weakness increase the risk of hamstring injury in elite football (soccer): A prospective cohort study. Br. J. Sports Med. 2016, 50, 1524–1535. [Google Scholar] [CrossRef]
- Markovic, G.; Sarabon, N.; Boban, F.; Zoric, I.; Jelcic, M.; Sos, K.; Scappaticci, M. Nordic Hamstring Strength of Highly Trained Youth Football Players and Its Relation to Sprint Performance. J. Strength Cond. Res. 2020, 34, 800–807. [Google Scholar] [CrossRef]
- Ishøi, L.; Aagaard, P.; Nielsen, M.F.; Thornton, K.B.; Krommes, K.K.; Hölmich, P.; Thorborg, K. The Influence of Hamstring Muscle Peak Torque and Rate of Torque Development for Sprinting Performance in Football Players: A Cross-Sectional Study. Int. J. Sports Physiol. Perform. 2019, 14, 665–673. [Google Scholar] [CrossRef]
- O’Brien, J.; Finch, C.F. Injury prevention exercise programmes in professional youth soccer: Understanding the perceptions of programme deliverers. BMJ Open Sport Exerc. Med. 2016, 2, e000075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Read, P.J.; Jimenez, P.; Oliver, J.L.; Lloyd, R.S. Injury prevention in male youth soccer: Current practices and perceptions of practitioners working at elite English academies. J. Sports Sci. 2018, 36, 1423–1431. [Google Scholar] [CrossRef] [PubMed]
- Emery, C.A.; Roy, T.-O.; Whittaker, J.L.; Nettel-Aguirre, A.; van Mechelen, W. Neuromuscular training injury prevention strategies in youth sport: A systematic review and meta-analysis. Br. J. Sports Med. 2015, 49, 865–870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morin, J.-B.; Gimenez, P.; Edouard, P.; Arnal, P.; Jimenez-Reyes, P.; Samozino, P.; Brughelli, M.; Mendiguchia, J. Sprint Acceleration Mechanics: The Major Role of Hamstrings in Horizontal Force Production. Front. Physiol. 2015, 6, 404. [Google Scholar] [CrossRef] [PubMed]
- Hegyi, A.; Csala, D.; Péter, A.; Finni, T.; Cronin, N.J. High-density electromyography activity in various hamstring exercises. Scand. J. Med. Sci. Sports 2019, 29, 34–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCurdy, K.; Walker, J.; Yuen, D. Gluteus Maximus and Hamstring Activation During Selected Weight-Bearing Resistance Exercises. J. Strength Cond. Res. 2018, 32, 594–601. [Google Scholar] [CrossRef]
- Bourne, M.N.; Williams, M.D.; Opar, D.A.; Al Najjar, A.; Kerr, G.K.; Shield, A.J. Impact of exercise selection on hamstring muscle activation. Br. J. Sports Med. 2017, 51, 1021–1028. [Google Scholar] [CrossRef] [Green Version]
- Enoka, R.M.; Duchateau, J. Inappropriate interpretation of surface EMG signals and muscle fiber characteristics impedes understanding of the control of neuromuscular function. J. Appl. Physiol. 2015, 119, 1516–1518. [Google Scholar] [CrossRef] [Green Version]
- Bourne, M.N.; Timmins, R.G.; Opar, D.A.; Pizzari, T.; Ruddy, J.D.; Sims, C.; Williams, M.D.; Shield, A.J. An Evidence-Based Framework for Strengthening Exercises to Prevent Hamstring Injury. Sports Med. 2018, 48, 251–267. [Google Scholar] [CrossRef]
- Neto, W.K.; Soares, E.G.; Vieira, T.L.; Aguiar, R.; Chola, T.A.; Sampaio, V.; de Lima Sampaio, V.; Gama, E.F. Gluteus Maximus Activation during Common Strength and Hypertrophy Exercises: A Systematic Review. J. Sports Sci. Med. 2020, 19, 195–203. [Google Scholar]
- Reiman, M.P.; Bolgla, L.A.; Loudon, J.K. A literature review of studies evaluating gluteus maximus and gluteus medius activation during rehabilitation exercises. Physiother. Theory Pract. 2012, 28, 257–268. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Altman, D.; Antes, G.; Atkins, D.; Barbour, V.; Barrowman, N.; Berlin, J.A.; et al. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Landis, J.R.; Koch, G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics 1977, 33, 159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macadam, P.; Feser, E.H. Examination of Gluteus Maximus Electromyographyic Excitation Associated with Dynamic Hip Extension during Body Weight Exercise: A Systematic Review. Int. J. Sports Phys. Ther. 2019, 14, 14–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, L.-L.; Wang, Y.-Y.; Yang, Z.-H.; Huang, D.; Weng, H.; Zeng, X.-T. Methodological quality (risk of bias) assessment tools for primary and secondary medical studies: What are they and which is better? Mil. Med. Res. 2020, 7, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- Jeon, I.; Hwang, U.; Jung, S.; Kwon, O. Comparison of gluteus maximus and hamstring electromyographic activity and lumbopelvic motion during three different prone hip extension exercises in healthy volunteers. Phys. Ther. Sport 2016, 22, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Kendall, F.P.; McCreary, E.K.; Provance, P.G. Muscle Testing and Function, 5th ed.; Williams & Wilkins: Baltimore, MD, USA, 2005. [Google Scholar]
- Del Monte, M.J.; Opar, D.A.; Timmins, R.G.; Ross, J.A.; Keogh, J.W.; Lorenzen, C. Hamstring Myoelectrical Activity During Three Different Kettlebell Swing Exercises. J. Strength Cond. Res. 2020, 34, 1953–1958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyons, B.C.; Mayo, J.J.; Tucker, W.S.; Wax, B.; Hendrix, R.C. Electromyographical Comparison of Muscle Activation Patterns Across Three Commonly Performed Kettlebell Exercises. J. Strength Cond. Res. 2017, 31, 2363–2370. [Google Scholar] [CrossRef] [PubMed]
- Monajati, A.; Larumbe-Zabala, E.; Goss-Sampson, M.; Naclerio, F. Analysis of the Hamstring Muscle Activation During two Injury Prevention Exercises. J. Hum. Kinet. 2017, 60, 29–37. [Google Scholar] [CrossRef] [Green Version]
- Lehecka, B.J.; Edwards, M.; Haverkamp, R.; Martin, L.; Porter, K.; Thach, K.; Sack, R.J.; Hakansson, N.A. Building a Better Gluteal Bridge: Electromyographyic Analysis of Hip Muscle Activity during Modified Single-leg Bridges. Int. J. Sports Phys. Ther. 2017, 12, 543–549. [Google Scholar]
- Marshall, P.W.M.; Desai, I. Electromyographic analysis of upper body, lower body, and abdominal muscles during advanced Swiss ball exercises. J. Strength Cond. Res. 2010, 24, 1537–1545. [Google Scholar] [CrossRef]
- Khaiyat, O.A.; Norris, J. Electromyographic activity of selected trunk, core, and thigh muscles in commonly used exercises for ACL rehabilitation. J. Phys. Ther. Sci. 2018, 30, 642–648. [Google Scholar] [CrossRef] [Green Version]
- Arias-Poblete, L.; Álvarez-Zúñiga, M.; Contreras-Diaz, G.; Jerez-Mayorga, D.; Antúnez, V.J.; Monteverde Sánchez, A. Classification of strengthening exercises of the lower member posterior chain, based on the amplitude of muscular activation in amateur soccer players between 18–25 years. J. Sport Health Res. 2019, 11, 155–163. [Google Scholar]
- Collazo García, C.L.; Rueda, J.; Suárez Luginick, B.; Navarro, E. Differences in the Electromyographic Activity of Lower-Body Muscles in Hip Thrust Variations. J. Strength Cond. Res. 2020, 34, 2449–2455. [Google Scholar] [CrossRef]
- Contreras, B.; Vigotsky, A.D.; Schoenfeld, B.J.; Beardsley, C.; Cronin, J. A Comparison of Gluteus Maximus, Biceps Femoris, and Vastus Lateralis Electromyography Amplitude for the Barbell, Band, and American Hip Thrust Variations. J. Appl. Biomech. 2016, 32, 254–260. [Google Scholar] [CrossRef]
- Severini, G.; Holland, D.; Drumgoole, A.; Delahunt, E.; Ditroilo, M. Kinematic and electromyographic analysis of the Askling L-Protocol for hamstring training. Scand. J. Med. Sci. Sports 2018, 28, 2536–2546. [Google Scholar] [CrossRef]
- Mausehund, L.; Skard, A.E.; Krosshaug, T. Muscle Activation in Unilateral Barbell Exercises: Implications for Strength Training and Rehabilitation. J. Strength Cond. Res. 2019, 33, S85–S94. [Google Scholar] [CrossRef] [PubMed]
- Vigotsky, A.D.; Harper, E.N.; Ryan, D.R.; Contreras, B. Effects of load on good morning kinematics and EMG activity. PeerJ 2015, 3, e708. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, M.A.; Chin, A.; Swanson, B.T. Biomechanical Comparison of the Reverse Hyperextension Machine and the Hyperextension Exercise. J. Strength Cond. Res. 2019, 33, 2053–2056. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-W.; Han, J.-Y.; Kang, M.-H.; Ha, S.-M.; Oh, J.-S. Comparison of Posterior Oblique Sling Activity during Hip Extension in the Prone Position on the Floor and on a Round Foam Roll. J. Phys. Ther. Sci. 2013, 25, 977–979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeon, I.; Kwon, O.; Weon, J.-H.; Hwang, U.; Jung, S.-H. Comparison of Hip- and Back-Muscle Activity and Pelvic Compensation in Healthy Subjects During 3 Different Prone Table Hip-Extension Exercises. J. Sport Rehabil. 2017, 26, 216–222. [Google Scholar] [CrossRef]
- Kawama, R.; Takahashi, K.; Wakahara, T. Effect of Hip Joint Position on Electromyographic Activity of the Individual Hamstring Muscles During Stiff-Leg Deadlift. J. Strength Cond. Res. 2021, 35, S38–S43. [Google Scholar] [CrossRef] [PubMed]
- Ryu, Y.; Roh, H. Cervical, Trunk, and Lower Extremity Muscle Activities during Bridging Exercise on Stable vs. Unstable Bases of Support. J. Phys. Ther. Sci. 2012, 24, 585–588. [Google Scholar] [CrossRef] [Green Version]
- Choi, K.; Bak, J.; Cho, M.; Chung, Y. The effects of performing a one-legged bridge with hip abduction and use of a sling on trunk and lower extremity muscle activation in healthy adults. J. Phys. Ther. Sci. 2016, 28, 2625–2628. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-K.; Hwang, J.-H.; Kim, C.-M.; Lee, J.K.; Park, J.-W. Influence of muscle activation of posterior oblique sling from changes in activation of gluteus maximus from exercise of prone hip extension of normal adult male and female. J. Phys. Ther. Sci. 2019, 31, 166–169. [Google Scholar] [CrossRef]
- Comfort, P.; Regan, A.; Herrington, L.; Thomas, C.; McMahon, J.; Jones, P. Lack of Effect of Ankle Position During the Nordic Curl on Muscle Activity of the Biceps Femoris and Medial Gastrocnemius. J. Sport Rehabil. 2017, 26, 202–207. [Google Scholar] [CrossRef]
- Park, S.-Y.; Kim, S.-H.; Park, D.-J. Effect of slope angle on muscle activity during variations of the Nordic exercise. J. Exerc. Rehabil. 2019, 15, 832–838. [Google Scholar] [CrossRef]
- Muyor, J.M.; Martín-Fuentes, I.; Rodríguez-Ridao, D.; Antequera-Vique, J.A. Electromyographic activity in the gluteus medius, gluteus maximus, biceps femoris, vastus lateralis, vastus medialis and rectus femoris during the Monopodal Squat, Forward Lunge and Lateral Step-Up exercises. PLoS ONE 2020, 15, e0230841. [Google Scholar] [CrossRef] [PubMed]
- Jónasson, G.; Helgason, A.; Ingvarsson, Þ.; Kristjánsson, A.M.; Briem, K. The Effect of Tibial Rotation on the Contribution of Medial and Lateral Hamstrings During Isometric Knee Flexion. Sports Health A Multidiscip. Approach 2016, 8, 161–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.; Yoo, W. Effects of hand and knee positions on muscular activity during trunk extension exercise with the Roman chair. J. Electromyogr. Kinesiol. 2014, 24, 972–976. [Google Scholar] [CrossRef]
- Contreras, B.; Vigotsky, A.D.; Schoenfeld, B.J.; Beardsley, C.; Cronin, J. A Comparison of Gluteus Maximus, Biceps Femoris, and Vastus Lateralis Electromyography Amplitude in the Parallel, Full, and Front Squat Variations in Resistance-Trained Females. J. Appl. Biomech. 2016, 32, 16–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narouei, S.; Imai, A.; Akuzawa, H.; Hasebe, K.; Kaneoka, K. Hip and trunk muscles activity during nordic hamstring exercise. J. Exerc. Rehabil. 2018, 14, 231–238. [Google Scholar] [CrossRef] [Green Version]
- Andersen, V.; Fimland, M.S.; Mo, D.-A.; Iversen, V.M.; Vederhus, T.; Rockland Hellebø, L.R.; Nordaune, K.I.; Saeterbakken, A.H. Electromyographic Comparison of Barbell Deadlift, Hex Bar Deadlift, and Hip Thrust Exercises: A Cross-Over Study. J. Strength Cond. Res. 2018, 32, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Mjølsnes, R.; Arnason, A.; Østhagen, T.; Raastad, T.; Bahr, R. A 10-week randomized trial comparing eccentric vs. concentric hamstring strength training in well-trained soccer players. Scand. J. Med. Sci. Sports 2004, 14, 311–317. [Google Scholar] [CrossRef]
- Freeman, B.W.; Young, W.B.; Talpey, S.W.; Smyth, A.M.; Pane, C.L.; Carlon, T.A. The effects of sprint training and the Nordic hamstring exercise on eccentric hamstring strength and sprint performance in adolescent athletes. J. Sports Med. Phys. Fitness 2019, 59, 1119–1125. [Google Scholar] [CrossRef]
- Ribeiro-Alvares, J.B.; Marques, V.B.; Vaz, M.A.; Baroni, B.M. Four Weeks of Nordic Hamstring Exercise Reduce Muscle Injury Risk Factors in Young Adults. J. Strength Cond. Res. 2018, 32, 1254–1262. [Google Scholar] [CrossRef] [PubMed]
- Seymore, K.D.; Domire, Z.J.; DeVita, P.; Rider, P.M.; Kulas, A.S. The effect of Nordic hamstring strength training on muscle architecture, stiffness, and strength. Eur. J. Appl. Physiol. 2017, 117, 943–953. [Google Scholar] [CrossRef]
- Medeiros, D.M.; Marchiori, C.; Baroni, B.M. Effect of Nordic Hamstring Exercise Training on Knee Flexors Eccentric Strength and Fascicle Length: A Systematic Review and Meta-Analysis. J. Sport Rehabil. 2020, 30, 482–491. [Google Scholar] [CrossRef] [PubMed]
- Van Dyk, N.; Behan, F.P.; Whiteley, R. Including the Nordic hamstring exercise in injury prevention programmes halves the rate of hamstring injuries: A systematic review and meta-analysis of 8459 athletes. Br. J. Sports Med. 2019, 53, 1362–1370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Attar, W.S.A.; Alshehri, M.A. A meta-analysis of meta-analyses of the effectiveness of FIFA injury prevention programs in soccer. Scand. J. Med. Sci. Sports 2019, 29, 1846–1855. [Google Scholar] [CrossRef] [PubMed]
- Tyler, T.F.; Schmitt, B.M.; Nicholas, S.J.; McHugh, M.P. Rehabilitation After Hamstring-Strain Injury Emphasizing Eccentric Strengthening at Long Muscle Lengths: Results of Long-Term Follow-Up. J. Sport Rehabil. 2017, 26, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Van Dyk, N.; Bahr, R.; Whiteley, R.; Tol, J.L.; Kumar, B.D.; Hamilton, B.; Farooq, A.; Witvrouw, E. Hamstring and Quadriceps Isokinetic Strength Deficits Are Weak Risk Factors for Hamstring Strain Injuries. Am. J. Sports Med. 2016, 44, 1789–1795. [Google Scholar] [CrossRef]
- Abdel-aziem, A.A.; Soliman, E.S.; Abdelraouf, O.R. Isokinetic peak torque and flexibility changes of the hamstring muscles after eccentric training: Trained versus untrained subjects. Acta Orthop. Traumatol. Turc. 2018, 52, 308–314. [Google Scholar] [CrossRef]
- Vigotsky, A.D.; Halperin, I.; Lehman, G.J.; Trajano, G.S.; Vieira, T.M. Interpreting Signal Amplitudes in Surface Electromyography Studies in Sport and Rehabilitation Sciences. Front. Physiol. 2018, 8, 985. [Google Scholar] [CrossRef] [Green Version]
- Chumanov, E.S.; Heiderscheit, B.C.; Thelen, D.G. The effect of speed and influence of individual muscles on hamstring mechanics during the swing phase of sprinting. J. Biomech. 2007, 40, 3555–3562. [Google Scholar] [CrossRef]
- Novacheck, T.F. The biomechanics of running. Gait Posture 1998, 7, 77–95. [Google Scholar] [CrossRef]
- Mendiguchia, J.; Conceição, F.; Edouard, P.; Fonseca, M.; Pereira, R.; Lopes, H.; Morin, J.-B.; Jiménez-Reyes, P. Sprint versus isolated eccentric training: Comparative effects on hamstring architecture and performance in soccer players. PLoS ONE 2020, 15, e0228283. [Google Scholar] [CrossRef] [Green Version]
Exercise | Muscle Activity | Muscle |
---|---|---|
Strength | Mucle development | Biceps femoris |
Exercise | Myogenesis | Hamstring |
Weight bearing | Myofibrillogenesis | Semitendinosus |
Force | Hypertrophy | Semimembranosus |
Electromyography | Posterior thigh | |
Excitation | Knee flexor | |
Activation | Hip extensor | |
EMG | ||
Activity |
((((((hamstring[Title/Abstract] OR biceps femoris[Title/Abstract] OR semitendinosus[Title/Abstract] OR semimembranosus[Title/Abstract] OR “posterior tight”[Title/Abstract] OR “knee flexors”[Title/Abstract] OR “hip extensors”[Title/Abstract]))) AND ((“muscl* development”[Title/Abstract] OR myogenesis[Title/Abstract] OR myofibrillogenesis[Title/Abstract] OR hypertroph*[Title/Abstract] OR electromyogra*[Title/Abstract] OR excitation[Title/Abstract] OR emg[Title/Abstract] OR activity[Title/Abstract] OR activation[Title/Abstract]))) AND ((strengt*[Title/Abstract] OR exercis*[Title/Abstract] OR weight-bearing[Title/Abstract] OR force[Title/Abstract])))) |
Study | Quality Score | Sample Size (Age) | Exercises (Category) | Exercises (Detailed) | Normalization Method | Electrode Placement | Testing Load |
---|---|---|---|---|---|---|---|
Jeon 2016 [31] | 6 | 16 (23.4 ± 2.2) | Hip extensions | Prone hip extension Prone table hip extension Prone table hip extension with knee flexion | According to the guidelines of Kendall et al. [32] | 70% on the line extending between the ischial tuberosity and lateral epicondyle | No specified |
Del Monte 2020 [33] | 6 | 14 (30 ± 3.9) | Swing | Squat swing Hip hinge swing Double knee extension swing | Prone position with the knee flexed to 90° | According to SENIAM guidelines | Maximum mass the participant could swing for a cadence of 35–40 repetitions/min during the participant’s typical training sessions and ranged from 16 to 48 kg |
Lyons 2017 [34] | 6 | 14 (21.5 ± 2.03) | Swing | Swing Snatch swing Clean swing | Prone position with the knee flexed to 70° | Lateral aspect of the thigh 67% of the distance between the trochanter and popliteal fossa, starting at the trochanter | Load for each individual exercise that could be performed for 8–10 repetitions with a good technique. It ranged from 4.5 to 32 kg |
Monajati 2017 [35,36] | 5 | 10 (22 ± 4.7) | Nordic Hamstring Exercise Ball leg curl | Nordic hamstring exercise Leg ball curl | Prone position with the knee flexed to 45° | According to SENIAM guidelines | Bodyweight |
Lehecka 2017 [36] | 4 | 28 (23.43 ± 2.28) | Bridge | Single-leg bridges different positions | Prone position with the knee flexed to 45° | According to SENIAM guidelines | Bodyweight |
Marshall 2010 [37] | 5 | 14 (24.1 ± 1.7) | Others Hip extensions Bridges | Swiss ball rolls Swiss ball hip extension Swiss ball praying mantis Swiss ball single leg squat Prone hold Swiss Ball hold and crunch Swiss ball bridge | No specified | No specified | Bodyweight |
Khaiyat 2018 [38] | 4 | 12 (20.10 ± 1.10) | Lunges Others Bridge Squats | Double-leg raise Forward lunge Glute bridge Sit-up Squat | Prone position with the knee flexed to 45° | According to SENIAM guidelines | Bodyweight |
Arias-Poblete 2019 [39] | 6 | 30 (21.8 ± 1.46) | Deadlifts Swings Nordic Hamstring Exercises Bridges Others | Single-leg deadlift Swing Nordic hamstring exercise Bridge on chair Prone bridge Bridge in lateral position Strike Neutral back bridge Slip leg Heel strike against ball Four supports with extended arms and legs Scissors held in lateral position Single bridge | No specified | According to SENIAM guidelines | Bodyweight |
Collazo 2020 [40] | 5 | 7 (29.4 ± 4.6) | Hip thrusts | Hip thrust Pull hip thrust Rotation hip thrust Feet-away hip thrust | Prone position with the knee flexed to 45° | According to SENIAM guidelines | 40% 1 RM |
Contreras 2016 [41] | 4 | 13 (28.9 ± 5.1) | Hip thrusts | Barbell hip thrust Band hip thrust American hip thrust | Prone position with the knee flexed to 45° | According to SENIAM guidelines | 10 RM |
Severini 2018 [42] | 5 | 11 (22.2 ± 1.38) | Deadlifts Others Hip extension | Extender Diver Glider | Knee flexion | According to SENIAM guidelines | Bodyweight |
Mausehund 2018 [43] | 5 | 13 (24.9 ± 2.9) | Squats | Rear foot elevated split squat Single-leg squat Split squat | Prone position with the knee flexed to 45° | According to SENIAM guidelines | 6–8 RM |
Hegyi 2019 [19] | 6 | 19 (26.1 ± 3.2) | Deadlifts Hip extensions Good morning Leg curl Bridges | Straight-knee bridge Upright hip extension conic-pulley Slide leg curl Prone leg curl 45° hip extension Bent-knee bridge Cable pendulum Unilateral Romanian deadlift Good morning | Lay prone with the trunk and hip fixed to the dynamometer bench in neutral position | Midpoint along the ischial tuberosity—popliteal fossa distance | 12 RM |
Vigotsky 2015 [44] | 6 | 15 (24.6 ± 5.3) | Good morning | Good morning | Prone position with the knee flexed to 45° | On the muscle bellies, parallel with muscle fibers | Submaximal 1 RM |
Lawrence 2019 [45] | 7 | 20 (26.8 ± 7.8) | Back extension | Back extension Reverse hyperextension | While the subject was in the top position of hip extension | According to SENIAM guidelines | No specified |
Kim 2013 [46] | 7 | 22 (23.5 ± 4.92) | Hip extension | Floor hip extension Round foam roll hip extension | No specified | 2 cm from the lateral border of the thigh and two-thirds of the distance between the trochanter and the back of the knee | No specified |
Jeon 2017 [47] | 8 | 16 (25.4 ± 4.2) | Hip extension | Prone table hip extension Prone table hip extension with abdominal drawing-in Prone table hip extension with the abdominal drawing-in maneuver with the flexed contralateral knee joint on a chair | According to the guidelines of Kendall et al. [33] | Two-thirds of the distance along the line extending between the ischial tuberosity and lateral epicondyle | Bodyweight |
Kawama 2020 [48] | 6 | 14 (19.6 ± 1.0) | Deadlift | Adduction double-leg deadlift Neutral double-leg deadlift Abduction double-leg deadlift 20° internal rotation double-leg deadlift 20° External rotation double-leg deadlift 40° External rotation double-leg deadlift | Knee flexion | Over 40 and 60% of the thigh length (the distance between the greater trochanter (0%) and the popliteal crease (100%)) for BFlh | 60% of their body mass |
Ryu 2012 [49] | 6 | 14 (23.3 ± 3.74) | Bridge | Bridge on stable base Bridge on unstable base | No specified | According to SENIAM guidelines | Bodyweight |
Choi 2016 [50] | 6 | 27 (27.8 ± 5.8) | Bridge | Bridge Single bridge Single bridge with hip abduction Single bridge with sling Single bridge with sling and hip abduction | No specified | On the thigh between the knee and buttocks | Bodyweight |
Lee 2019 [51] | 5 | 26 (23.15 ± 2.68) | Hip extension | Prone hip extension Prone hip extension with hip abduction and knee flexion | According to the guidelines of Kendall et al. [33] | 2 cm from the lateral border of the thigh and two-thirds of the distance between the trochanter and the back of the knee | Bodyweight |
Comfort 2017 [52] | 6 | 15 (22.6 ± 2.1) | Nordic hamstring exercise | Nordic hamstring ankle dorsiflexed Nordic hamstring ankle plantar flexed | Prone position with the knee flexed to 45° | Placed at the midline of the muscle belly of both the BF | Bodyweight maximal effort |
Park 2019 [53] | 7 | 21 (NR) | Nordic hamstring exercise | 10° Nordic hamstring base slope angle 0° 10° Nordic hamstring base slope angle 10° 10° Nordic hamstring base slope angle 15° 15° Nordic hamstring base slope angle 0° 15° Nordic hamstring base slope angle 10° 15° Nordic hamstring base slope angle 15° | No specified | Two-thirds of the distance between the trochanter and the back of the knee | Bodyweight maximal effort |
Muyor 2020 [54] | 6 | 20 (24 ± 5.55) | Squat Lunge | Monopodal squat Forward lunge Lateral step-up | Prone position with the knee flexed to 45° | According to SENIAM guidelines | 60% of 5 RM |
Jónasson 2016 [55] | 7 | 40 (24.1 ± 2.6) | Isokinetic | Isometric knee flexion medial rotation Isometric knee flexion lateral rotation | Prone position with the knee flexed to 45° | According to SENIAM guidelines | 5 s isometric |
Park 2014 [56] | 6 | 20 (21.94 ± 2.24) | Back extension | Back extension, knee extended, hands on sternum Back extension, knee extended, hands behind head Back extension, knee flexed, hands on sternum Back extension, knee flexed, hands behind head | Prone position with the knee flexed to 45° | At the muscle in the center of the back of the thigh, approximately half the distance from the gluteal fold to the back of the leg | Bodyweight |
Contreras 2016 [57] | 6 | 13 (28.9 ± 5.1) | Squats | Front squat Full squat Parallell squat | Prone position with the knee flexed to 45° | According to SENIAM guidelines | 10 RM |
Narouei 2018 [58] | 6 | 10 (26.1 ± 5.46) | Nordic hamstring exercise | Nordic hamstring exercise | No specified | According to SENIAM guidelines | Maximal effort |
Andersen 2018 [59] | 5 | 13 (21.9 ± 1.6) | Hip thrusts Deadlift | Hip thrust Deadlift Hex bar deadlift | Prone position with the knee flexed to 45° | According to SENIAM guidelines | 1 RM |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Llurda-Almuzara, L.; Labata-Lezaun, N.; López-de-Celis, C.; Aiguadé-Aiguadé, R.; Romaní-Sánchez, S.; Rodríguez-Sanz, J.; Fernández-de-las-Peñas, C.; Pérez-Bellmunt, A. Biceps Femoris Activation during Hamstring Strength Exercises: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 8733. https://doi.org/10.3390/ijerph18168733
Llurda-Almuzara L, Labata-Lezaun N, López-de-Celis C, Aiguadé-Aiguadé R, Romaní-Sánchez S, Rodríguez-Sanz J, Fernández-de-las-Peñas C, Pérez-Bellmunt A. Biceps Femoris Activation during Hamstring Strength Exercises: A Systematic Review. International Journal of Environmental Research and Public Health. 2021; 18(16):8733. https://doi.org/10.3390/ijerph18168733
Chicago/Turabian StyleLlurda-Almuzara, Luis, Noé Labata-Lezaun, Carlos López-de-Celis, Ramón Aiguadé-Aiguadé, Sergi Romaní-Sánchez, Jacobo Rodríguez-Sanz, César Fernández-de-las-Peñas, and Albert Pérez-Bellmunt. 2021. "Biceps Femoris Activation during Hamstring Strength Exercises: A Systematic Review" International Journal of Environmental Research and Public Health 18, no. 16: 8733. https://doi.org/10.3390/ijerph18168733
APA StyleLlurda-Almuzara, L., Labata-Lezaun, N., López-de-Celis, C., Aiguadé-Aiguadé, R., Romaní-Sánchez, S., Rodríguez-Sanz, J., Fernández-de-las-Peñas, C., & Pérez-Bellmunt, A. (2021). Biceps Femoris Activation during Hamstring Strength Exercises: A Systematic Review. International Journal of Environmental Research and Public Health, 18(16), 8733. https://doi.org/10.3390/ijerph18168733