A Keyword Analysis Study on Postpartum Obesity Using Big Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Duration
2.2. Simple Frequency Analysis
2.3. N-Gram Analysis
2.4. Keyword Network Analysis
3. Results
3.1. The Result of Simple Frequency Analysis
3.2. N-Gram Analysis Result
3.3. Keyword Network Analysis Result
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jang, H.C.; Cho, Y.M.; Park, K.S.; Kim, S.Y.; Lee, H.K.; Kim, M.Y.; Yang, J.H.; Shin, S.M. Pregnancy outcome in Korean women with gestational diabetes mellitus diagnosed by the carpenter coustan criteria. J. Korean Diabetes Assoc. 2004, 28, 122–130. [Google Scholar]
- Einstein, A.; Podolsky, B.; Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 1935, 47, 777–780. [Google Scholar] [CrossRef] [Green Version]
- Ahn, H.L.; Shin, M.S.; Yang, M.S. A literature review-more effective approach for postpartum obesity. J. Soc. Korean Med. Obes. Res. 2008, 8, 13–22. [Google Scholar]
- Soltani, H.; Fraser, R.B. A longitudinal study of maternal anthropometric changes in normal weight and obese women during pregnancy and postpartum. Br. J. Nutr. 2000, 84, 95–101. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Lee, S.; Tae-Hong, K. A study on the relationship between breastfeeding and metabolic syndrome and metabolic syndrome factors in Korean women of childbearing age: 2010–2016 National Health and Nutrition Examination Survey. J. Korean Soc. Matern Child. Health 2020, 24, 154–161. [Google Scholar] [CrossRef]
- Koh, B.K.; Yoon, J.S. Current tendency of middle school students of get the food and nutrition information from the internet web site. J. Korean Soc. Food Sci. Nutr. 2003, 32, 102–108. [Google Scholar]
- Yassour, M.; Lim, M.Y.; Yun, H.S.; Tickle, T.L.; Sung, J.; Song, Y.M.; Lee, K.; Franzosa, E.A.; Morgan, X.C.; Gevers, D.; et al. Sub-clinical detection of gut microbial biomarkers of obesity and type 2 diabetes. Genome Med. 2016, 8, 17. [Google Scholar] [CrossRef] [Green Version]
- Lee, S. A convergence of association between menopause, breastfeeding and first birth age and metabolic syndrome in women. J. Korea Converg. Soc. 2019, 10, 43–50. [Google Scholar]
- Ryu, E.K.; Kim, K.S. Literatural study on the factors influencing on postpartum weight retention. J. Soc. Korean Med. Obes. Res. 2001, 1, 63–75. [Google Scholar]
- Lee, O.; Park, S.B.; Chung, D.; You, E.S. Movie Box-office analysis using social big data. J. Korean Contests Assoc. 2014, 14, 527–538. [Google Scholar]
- Go, S.J.; Jeoung, Y.H. Health risk prediction using big health data. Health Welf. Policy Forum 2012, 193, 43–52. [Google Scholar]
- Cho, H.J.; Choi, K.Y.; Lee, J.J.; Lee, I.S.; Park, M.I.; Na, J.Y.; Lee, K.Y.; Lee, J.M.; Kwon, J.H. A study of predicting postpartum depression and the recovery factor from prepartum depression. Korean J. Perinatol. 2004, 15, 245–254. [Google Scholar]
- Son, J.G.; Sin, S.A.; Han, T.H. Life care trend using big data. Inf. Commun. Mag. 2015, 32, 3–7. [Google Scholar]
- Choi, Y.J.; Kweon, S.H. A semantic network analysis of the newspaper articles on big data. J. Cybercommun. Acad. Soc. 2014, 31, 241–286. [Google Scholar]
- Choi, J.; Cho, R.M. Study on public recognition of moon care through social big data analysis. Korean Public Admin. Q. 2021, 33, 147–177. [Google Scholar] [CrossRef]
- Yoon, Y.Y.; Kim, S.G.; Shin, J.H. The study of relationship of obesity and abdominal obesity and pulse pressure using big data. J. Korea Inst. Electron. Commun. Sci. 2018, 13, 187–192. [Google Scholar]
- Chen, H.; Chiang, R.H.; Storey, V.C. Business intelligence and analytics: From big data to big impact. MIS Q. 2012, 1165–1188. [Google Scholar] [CrossRef]
- Hales, D. An Invitation to Health: Taking Charge of Your Health, 11th ed.; Cengage Learning: Boston, MA, USA, 2020. [Google Scholar]
- Kim, S.M.; Ye, S.Y. Analysis on the occurrence factors of high-risk diseases of pregnant women by the degree of obesity. J. Inst. Converg. Signal. Process. 2018, 19, 118–124. [Google Scholar]
- Seo, J.M.; Kim, E.R.; Lee, W.U.; Kim, J.S.; Hong, Y.H. A study of the association between prepregnancy BMI and childhood BMI. Korean J. Obes. 2013, 22, 161–166. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, D.H. Development of a smartphone controlled personal mobility system with semi-autonomous navigation. J. Inst. Control Robot. Syst. 2016, 22, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.B.; Kim, J.W.; Kim, M.H.; Cho, Y.S.; Kim, S.N.; Lim, H.S.; Kim, S.K. A study on consumer’s needs for development of diet guide application for pregnant women. Korean J. Commun. Nutr. 2013, 18, 588–598. [Google Scholar] [CrossRef] [Green Version]
Rank | Keyword | Frequency |
---|---|---|
1 | Depression | 1247 |
2 | Delivery | 1178 |
3 | Postpartum | 1068 |
4 | Health | 804 |
5 | Female | 752 |
6 | Child | 671 |
7 | Treatment | 629 |
8 | Pregnant | 589 |
9 | Pregnant Woman | 550 |
10 | Support | 521 |
11 | Management | 491 |
12 | Mom | 472 |
13 | Parenting | 424 |
14 | Need | 375 |
15 | Baby | 367 |
16 | Society | 348 |
17 | Mother | 346 |
18 | People | 343 |
19 | Time | 336 |
20 | Problem | 329 |
Rank | Keyword 1 | Keyword 2 | Frequency | Rank | Keyword 1 | Keyword 2 | Frequency |
---|---|---|---|---|---|---|---|
1 | Postpartum | Depression | 570 | 11 | Obesity | Management | 22 |
2 | Postpartum | Obesity | 81 | 12 | Obesity | Treatment | 21 |
3 | Depression | Prevention | 62 | 13 | Depression | Postpartum | 20 |
4 | Depression | Counseling | 44 | 14 | Depression | Cause | 20 |
5 | Depression | Treatment | 42 | 15 | Adolescent | Depression | 20 |
6 | Depression | Patient | 36 | 16 | Depression | Pregnant Women | 18 |
7 | Depression | Symptom | 31 | 17 | Depression | Overcome | 17 |
8 | Depression | Medicine | 29 | 18 | Depression | Danger | 16 |
9 | Depression | Examination | 24 | 19 | Depression | Perception | 16 |
10 | Depression | Experience | 23 | 20 | Depression | Female | 15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baik, H.-u.; Seo, B.-K.; Kim, G.-R.; Ku, J.-E. A Keyword Analysis Study on Postpartum Obesity Using Big Data. Int. J. Environ. Res. Public Health 2021, 18, 8807. https://doi.org/10.3390/ijerph18168807
Baik H-u, Seo B-K, Kim G-R, Ku J-E. A Keyword Analysis Study on Postpartum Obesity Using Big Data. International Journal of Environmental Research and Public Health. 2021; 18(16):8807. https://doi.org/10.3390/ijerph18168807
Chicago/Turabian StyleBaik, Hyung-ui, Bo-Kyung Seo, Gyu-Ri Kim, and Jung-Eun Ku. 2021. "A Keyword Analysis Study on Postpartum Obesity Using Big Data" International Journal of Environmental Research and Public Health 18, no. 16: 8807. https://doi.org/10.3390/ijerph18168807
APA StyleBaik, H.-u., Seo, B.-K., Kim, G.-R., & Ku, J.-E. (2021). A Keyword Analysis Study on Postpartum Obesity Using Big Data. International Journal of Environmental Research and Public Health, 18(16), 8807. https://doi.org/10.3390/ijerph18168807