A Small Area Estimation Method for Investigating the Relationship between Public Perception of Drug Problems with Neighborhood Prognostics: Trends in London between 2012 and 2019
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Flatley, J. Public Perceptions of Crime in England and Wales: Year Ending March 2016; Office for National Statistics: London, UK, 2017. [Google Scholar]
- Wheeler, A.P.; Silver, J.R.; Worden, R.E.; Mclean, S.J. Mapping attitudes towards the police at micro places. J. Quant. Criminol. 2020, 36, 877–906. [Google Scholar] [CrossRef]
- Williams, D.; Haworth, J.; Blangiardo, M.; Cheng, T. A spatiotemporal Bayesian hierarchical approach to investigating patterns of confidence in the police at the neighborhood level. Geogr. Anal. 2019, 51, 90–110. [Google Scholar] [CrossRef] [Green Version]
- Egan, M.; Bond, L.; Kearns, A.; Tannahill, C. Is concern about young people’s anti-social behavior associated with poor health? Cross-sectional evidence from residents of deprived urban neighborhoods. BMC Public Health 2012, 12, 217. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Yuan, Y.; Liu, Y.; Zhang, J.; Liu, P.; Lu, Y.; Yao, Y. Using street view data and machine learning to assess how perception of neighborhood safety influences urban residents’ mental health. Health Place 2019, 59, 102186. [Google Scholar] [CrossRef]
- Toma, A.; Hamer, M.; Shankar, A. Associations between neighborhood perceptions and mental well-being among older adults. Health Place 2015, 34, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Ivert, A.K.; Levander, M.T. Adolescents’ Perceptions of Neighbourhood Social Characteristics—Is There a Correlation with Mental Health? Child. Indic. Res. 2014, 7, 177–192. [Google Scholar] [CrossRef]
- Evans-Polce, R.; Hulbert, A.; Latkin, C. The association of multiple neighborhood perceptions with depression among a highly impoverished urban sample. J. Community Psychol. 2013, 41, 52–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. European Report on Preventing Violence and Knife Crime among Young People; World Health Organization, Regional Office for Europe: Geneva, Switzerland, 2010. [Google Scholar]
- Contreras, C.; Hipp, J.R. Drugs, crime, space, and time: A spatiotemporal examination of drug activity and crime rates. Justice Q. 2020, 37, 187–209. [Google Scholar] [CrossRef]
- Moreland, A.D.; Walsh, K.; Hartley, C.; Hanson, R.; Danielson, C.K.; Saunders, B.; Kilpatrick, D.G. Investigating longitudinal associations between sexual assault, substance use, and delinquency among female adolescents: Results from a nationally representative sample. J. Adolesc. Health 2018, 63, 320–326. [Google Scholar] [CrossRef]
- Coomber, K.; Mayshak, R.; Liknaitzky, P.; Curtis, A.; Walker, A.; Hyder, S.; Miller, P. The role of illicit drug use in family and domestic violence in Australia. J. Interpers. Violence 2019, 36, NP8247–NP8267. [Google Scholar] [CrossRef] [PubMed]
- McLean, R.; Densley, J.A.; Deuchar, R. Situating gangs within Scotland’s illegal drugs market(s). Trends Organ. Crime 2017, 21, 147–171. [Google Scholar] [CrossRef] [Green Version]
- Pierce, M.; Hayhurst, K.; Bird, S.M.; Hickman, M.; Seddon, T.; Dunn, G.; Millar, T. Insights into the link between drug use and criminality: Lifetime offending of criminally-active opiate users. Drug Alcohol Depend. 2017, 179, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Morgan, N. The Heroin Epidemic of the 1980s and 1990s and Its Effect on Crime Trends—Then and Now: Technical Report; Home Office: London, UK, 2014.
- Shaw, C.; McKay, H.D. Social Disorganization Theory: Social Structure, Communities, and Crime; University of Chicago: Chicago, IL, USA, 1942. [Google Scholar]
- Farrall, S.D.; Jackson, J.; Gray, E. Social Order and the Fear of Crime in Contemporary Times; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Gray, E.; Jackson, J.; Farrall, S. Reassessing the fear of crime. Eur. J. Criminol. 2008, 5, 363–380. [Google Scholar] [CrossRef] [Green Version]
- Innes, M. Signal crimes and signal disorders: Notes on deviance as communicative action1. Br. J. Sociol. 2004, 55, 335–355. [Google Scholar] [CrossRef] [PubMed]
- Ambrey, C.L.; Fleming, C.M.; Manning, M. Perception or reality, what matters most when it comes to crime in your neighbourhood? Soc. Indic. Res. 2014, 119, 877–896. [Google Scholar] [CrossRef]
- Duffy, B.; Wake, R.; Burrows, T.; Bremner, P. Closing the gaps–crime and public perceptions. Int. Rev. Law Comput. Technol. 2008, 22, 17–44. [Google Scholar] [CrossRef]
- Taniguchi, T.A.; Ratcliffe, J.H.; Taylor, R.B. Gang set space, drug markets, and crime around drug corners in Camden. J. Res. Crime Delinq. 2011, 48, 327–363. [Google Scholar] [CrossRef] [Green Version]
- Lum, C. Violence, drug markets and racial composition: Challenging stereotypes through spatial analysis. Urban Stud. 2011, 48, 2715–2732. [Google Scholar] [CrossRef]
- Lum, C. The Geography of Drug Activity and Violence: Analyzing Spatial Relationships of Non-Homogenous Crime Event Types. Subst. Use Misuse 2008, 43, 179–201. [Google Scholar] [CrossRef]
- Parkin, S.; Coomber, R. Public injecting drug use and the social production of harmful practice in high-rise tower blocks (London, UK): A Lefebvrian analysis. Health Place 2011, 17, 717–726. [Google Scholar] [CrossRef]
- DeBeck, K.; Small, W.; Wood, E.; Li, K.; Montaner, J.; Kerr, T. Public injecting among a cohort of injecting drug users in Vancouver, Canada. J. Epidemiol. Community Health 2009, 63, 81–86. [Google Scholar] [CrossRef] [PubMed]
- May, T.; Hough, M. Drug markets and distribution systems. Addict. Res. Theory 2004, 12, 549–563. [Google Scholar] [CrossRef]
- Robinson, J.B.; Rengert, G.F. Illegal drug markets: The geographic perspective and crime propensity. West. Criminol. Rev. 2006, 7, 20–32. [Google Scholar]
- Freisthler, B.; Lascala, E.A.; Gruenewald, P.J.; Treno, A.J. An examination of drug activity: Effects of neighborhood social organization on the development of drug distribution systems. Subst. Use Misuse 2005, 40, 671–686. [Google Scholar] [CrossRef] [PubMed]
- Moyle, L.; Coomber, R. Earning a Score: An Exploration of the Nature and Roles of Heroin and Crack Cocaine ‘User-dealers’. Br. J. Criminol. 2015, 55, 534–555. [Google Scholar] [CrossRef]
- Whittaker, A.; Densley, J.; Cheston, L.; Tyrell, T.; Higgins, M.; Felix-Baptiste, C.; Havard, T. Reluctant gangsters revisited: The evolution of gangs from postcodes to profits. Eur. J. Crim. Policy Res. 2020, 26, 1–22. [Google Scholar] [CrossRef]
- Harding, S.; Deuchar, R.; Densley, J.; McLean, R. A Typology of Street Robbery and Gang Organization: Insights from Qualitative Research in Scotland. Br. J. Criminol. 2018, 59, 879–897. [Google Scholar] [CrossRef]
- Pearson, A.L.; Breetzke, G.; Ivory, V. The effect of neighborhood recorded crime on fear: Does neighborhood social context matter? Am. J. Community Psychol. 2015, 56, 170–179. [Google Scholar] [CrossRef]
- Hale, C.; Pack, P.; Salked, J. The structural determinants of fear of crime: An analysis using census and crime survey data from England and Wales. Int. Rev. Vict. 1994, 3, 211–233. [Google Scholar] [CrossRef]
- Kershaw, C.; Tseloni, A. Predicting crime rates, fear and disorder based on area information: Evidence from the 2000 British Crime Survey. Int. Rev. Vict. 2005, 12, 293–311. [Google Scholar] [CrossRef]
- Brunton-Smith, I.; Sturgis, P. Do neighborhoods generate fear of crime? An empirical test using the British Crime Survey. Criminology 2011, 49, 331–369. [Google Scholar] [CrossRef] [Green Version]
- Stroup, W.W. Generalized Linear Mixed Models: Modern Concepts, Methods and Applications; CRC press: Boca Raton, FL, USA, 2012. [Google Scholar]
- ESSnet SAE. Report on Work Package 6 Guidelines. 2012. Available online: https://ec.europa.eu/eurostat/cros/system/files/WP6-Report.pdf (accessed on 29 July 2020).
- Brown, H.; Prescott, R. Applied Mixed Models in Medicine; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Fitzmaurice, G.; Laird, N.; Ware, J. Smoothing longitudinal data: Semiparametric regression models. In Applied Longitudinal Analysis, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2011; pp. 553–579. [Google Scholar]
- Hedeker, D.; du Toit, S.H.; Demirtas, H.; Gibbons, R.D. A note on marginalization of regression parameters from mixed models of binary outcomes. Biometrics 2018, 74, 354–361. [Google Scholar] [CrossRef]
- Tiratelli, M.; Quinton, P.; Bradford, B. Does stop and search deter crime? Evidence from ten years of London-wide data. Br. J. Criminol. 2018, 58, 1212–1231. [Google Scholar] [CrossRef]
- Mohan, J.; Twigg, L.; Taylor, J. Mind the double gap: Using multivariate multilevel modelling to investigate public perceptions of crime trends. Br. J. Criminol. 2011, 51, 1035–1053. [Google Scholar] [CrossRef]
- Taylor, J.; Twigg, L.; Mohan, J. Exploring the links between population heterogeneity and perceptions of social cohesion in England. In Ethnicity and Integration; Springer: Dordrecht, The Netherlands, 2010; pp. 269–287. [Google Scholar]
- Schaefer, L.; Mazerolle, L. Predicting perceptions of crime: Community residents’ recognition and classification of local crime problems. Aust. N. Z. J. Criminol. 2018, 51, 183–203. [Google Scholar] [CrossRef] [Green Version]
- Sutherland, A.; Brunton-Smith, I.; Hutt, O.; Bradford, B. Violent Crime in London: Trends, Trajectories and Neighbourhoods; College of Policing: London, UK, 2020. [Google Scholar]
- Quick, M.; Li, G.; Brunton-Smith, I. Crime-general and crime-specific spatial patterns: A multivariate spatial analysis of four crime types at the small-area scale. J. Crim. Justice 2018, 58, 22–32. [Google Scholar] [CrossRef]
- Quinton, P.; NcNeill, A.; Buckland, A. Searching for Cannabis are Grounds for Search Associated with Outcomes? College of Policing: London, UK, 2017. [Google Scholar]
- Franklin, T.W.; Franklin, C.A.; Fearn, N.E. A Multilevel Analysis of the Vulnerability, Disorder, and Social Integration Models of Fear of Crime. Soc. Justice Res. 2008, 21, 204–227. [Google Scholar] [CrossRef]
- D’Angelo, K.A.; Her, W. “The drug issue really isn’t the main problem”—A photovoice study on community perceptions of place, health, and substance abuse. Health Place 2019, 57, 257–264. [Google Scholar] [CrossRef]
- Cusick, L.; Kimber, J. Public perceptions of public drug use in four UK urban sites. Int. J. Drug Policy 2007, 18, 10–17. [Google Scholar] [CrossRef]
- Crank, J.P.; Irlbeck, D.M.; Giacomazzi, A.L. A risk-based model of public perceptions of crime and disorder. Crim. Justice Stud. 2012, 25, 131–144. [Google Scholar] [CrossRef]
- Bennett, T.; Holloway, K. The causal connection between drug misuse and crime. Br. J. Criminol. 2009, 49, 513–531. [Google Scholar] [CrossRef]
- Bennett, T.; Holloway, K. Understanding Drugs, Alcohol and Crime; McGraw-Hill Education: New York, NY, USA, 2005. [Google Scholar]
- Tseloni, A.; Farrell, G.; Thompson, R.; Evans, E.; Tilley, N. Domestic burglary drop and the security hypothesis. Crime Sci. 2017, 6, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Addis, N.; Evans, A.; Malleson, N. Exploring the practices of steal-to-order burglars: A different brand of offender? Secur. J. 2019, 32, 457–475. [Google Scholar] [CrossRef]
- Hodgkinson, T.; Andresen, M.A. Changing spatial patterns of residential burglary and the crime drop: The need for spatial data signatures. J. Crim. Justice 2019, 61, 90–100. [Google Scholar] [CrossRef]
- Piel, F.B.; Fecht, D.; Hodgson, S.; Blangiardo, M.; Toledano, M.; Hansell, A.L.; Elliott, P. Small-area methods for investigation of environment and health. Int. J. Epidemiol. 2020, 49, 686–699. [Google Scholar] [CrossRef] [PubMed]
- Meyer, B.D.; Mok, W.K.; Sullivan, J.X. Household surveys in crisis. J. Econ. Perspect. 2015, 29, 199–226. [Google Scholar] [CrossRef] [Green Version]
- Farrall, S.; Bannister, J.; Ditton, J.; Gilchrist, E. Questioning the measurement of the ‘fear of crime’: Findings from a major methodological study. Br. J. Criminol. 1997, 37, 658–679. [Google Scholar] [CrossRef]
- Hipp, J.R. Resident perceptions of crime and disorder: How much is “bias”, and how much is social environment differences? Criminology 2010, 48, 475–508. [Google Scholar] [CrossRef]
- Openshaw, S. The modifiable areal unit problem. In Quantitative Geography: A British View; Routledge and Kegan Paul: London, UK, 1981; pp. 60–69. [Google Scholar]
- Payne, B.K.; Gainey, R.R. Attitudes about the police and neighborhood safety in disadvantaged neighborhoods: The influence of criminal victimization and perceptions of a drug problem. Crim. Justice Rev. 2007, 32, 142–155. [Google Scholar] [CrossRef]
Borough | Odds Ratio | OR Lower | OR Upper | T Value | DF | p-Value |
---|---|---|---|---|---|---|
Harrow | 1.3323 | 1.2279 | 1.4455 | 7.18 | 30 | <0.0001 |
Brent | 1.2243 | 1.1192 | 1.3392 | 4.6 | 30 | <0.0001 |
Waltham Forest | 1.2062 | 1.1042 | 1.3177 | 4.33 | 30 | 0.0002 |
Barnet | 1.1924 | 1.096 | 1.2974 | 4.26 | 30 | 0.0002 |
Tower Hamlets | 1.1814 | 1.0738 | 1.2999 | 3.56 | 30 | 0.0012 |
Bexley | 1.1549 | 1.0647 | 1.2527 | 3.62 | 30 | 0.0011 |
Camden | 1.1469 | 1.0525 | 1.2497 | 3.26 | 30 | 0.0028 |
Haringey | 1.1399 | 1.0373 | 1.2526 | 2.84 | 30 | 0.0081 |
Newham | 1.1386 | 1.0448 | 1.241 | 3.08 | 30 | 0.0044 |
Hillingdon | 1.135 | 1.0452 | 1.2326 | 3.14 | 30 | 0.0038 |
Enfield | 1.1345 | 1.04 | 1.2376 | 2.96 | 30 | 0.0059 |
Wandsworth | 1.1281 | 1.0412 | 1.2223 | 3.07 | 30 | 0.0045 |
Islington | 1.1145 | 1.028 | 1.2082 | 2.74 | 30 | 0.0102 |
Lambeth | 1.1121 | 1.0157 | 1.2176 | 2.39 | 30 | 0.0232 |
Westminster | 1.1101 | 0.9941 | 1.2397 | 1.93 | 30 | 0.0627 |
Redbridge | 1.1023 | 1.0201 | 1.1912 | 2.57 | 30 | 0.0155 |
Hackney | 1.0923 | 1.0056 | 1.1865 | 2.18 | 30 | 0.0373 |
Havering | 1.0919 | 1.006 | 1.1851 | 2.19 | 30 | 0.0364 |
Hammersmith and Fulham | 1.0914 | 0.9984 | 1.193 | 2.01 | 30 | 0.054 |
Southwark | 1.0885 | 0.9998 | 1.1851 | 2.04 | 30 | 0.0504 |
Lewisham | 1.0797 | 0.9941 | 1.1727 | 1.9 | 30 | 0.0676 |
Hounslow | 1.0741 | 0.9855 | 1.1706 | 1.7 | 30 | 0.1001 |
Croydon | 1.0723 | 0.9774 | 1.1764 | 1.54 | 30 | 0.1344 |
Kensington and Chelsea | 1.0625 | 0.9682 | 1.166 | 1.33 | 30 | 0.1926 |
Greenwich | 1.0547 | 0.9597 | 1.1591 | 1.15 | 30 | 0.2587 |
Ealing | 1.0482 | 0.9648 | 1.1387 | 1.16 | 30 | 0.2552 |
Richmond Upon Thames | 1.0465 | 0.9603 | 1.1405 | 1.08 | 30 | 0.2888 |
Kingston Upon Thames | 1.0428 | 0.9606 | 1.132 | 1.04 | 30 | 0.3058 |
Sutton | 1.0352 | 0.9549 | 1.1223 | 0.87 | 30 | 0.3885 |
Barking and Dagenham | 1.0102 | 0.9262 | 1.1017 | 0.24 | 30 | 0.8135 |
Merton | 0.9849 | 0.9054 | 1.0714 | −0.37 | 30 | 0.7149 |
Bromley | 0.9826 | 0.9032 | 1.069 | −0.43 | 30 | 0.6738 |
Time Trend | Odds Ratio | OR Lower | OR Upper | T Value | DF | p-Value |
---|---|---|---|---|---|---|
in outer London | 1.099 | 1.026 | 1.177 | 2.70 | 156.70 | 0.0077 |
in inner London | 1.104 | 1.020 | 1.195 | 2.49 | 94.34 | 0.0144 |
Obs | Prognostic | Estimate | Standard Error | DF | T Value | p-Value | Odds Ratio | OR Lower | OR Upper |
---|---|---|---|---|---|---|---|---|---|
1 | Percentage Non-White | 0.0124 | 0.0045 | 236 | 2.75 | 0.0064 | 1.0124 | 1.0035 | 1.0214 |
2 | Percentage 15–29 years | 0.0001 | 0.0037 | 236 | 0.03 | 0.9784 | 1.0001 | 0.9928 | 1.0075 |
3 | Percentage Non-UK-Born | −0.0055 | 0.0048 | 236 | −1.15 | 0.2520 | 0.9945 | 0.9851 | 1.0040 |
4 | EIMD | 0.0189 | 0.0082 | 78.4 | 2.31 | 0.0238 | 1.0191 | 1.0026 | 1.0359 |
5 | Burglary Rate | −0.0392 | 0.0158 | 236 | −2.48 | 0.0137 | 0.9616 | 0.9321 | 0.9919 |
6 | Arson/Criminal Damage Rate | 0.0129 | 0.0439 | 236 | 0.29 | 0.7694 | 1.0130 | 0.9291 | 1.1043 |
7 | Drug Offences Rate | −0.0171 | 0.0157 | 117 | −1.09 | 0.2788 | 0.9830 | 0.9528 | 1.0142 |
8 | Robbery Rate | 0.0127 | 0.0275 | 76.9 | 0.46 | 0.6457 | 1.0128 | 0.9589 | 1.0697 |
9 | Sexual Offences Rate | 0.0599 | 0.0988 | 236 | 0.61 | 0.5446 | 1.0618 | 0.8740 | 1.2898 |
10 | Theft Rate | 0.0486 | 0.0340 | 78.3 | 1.43 | 0.1570 | 1.0498 | 0.9811 | 1.1233 |
11 | Vehicle Crime Rate | 0.0177 | 0.0086 | 236 | 2.07 | 0.0400 | 1.0179 | 1.0008 | 1.0353 |
12 | Violence Rate | −0.0069 | 0.0121 | 236 | −0.57 | 0.5716 | 0.9932 | 0.9698 | 1.0171 |
13 | Weapon Possession Rate | 0.0217 | 0.0180 | 236 | 1.21 | 0.2289 | 1.0219 | 0.9864 | 1.0587 |
14 | Rate in Drug Treatment | 0.0610 | 0.0320 | 116.8 | 1.90 | 0.0594 | 1.0629 | 0.9976 | 1.1324 |
15 | Drug Poisioning Rate | −0.0012 | 0.0092 | 236 | −0.13 | 0.8973 | 0.9988 | 0.9808 | 1.0172 |
16 | IP Hospital Admissions Rate | 0.0012 | 0.0028 | 236 | 0.44 | 0.6582 | 1.0012 | 0.9957 | 1.0068 |
Predictors | Prognostic | Num DF | Den DF | F Value | Pr > F |
---|---|---|---|---|---|
1 | Year | 1 | 156.7 | 7.28 | 0.0077 |
2 | Area; inner/outer London | 1 | 41.57 | 0.01 | 0.9213 |
3 | Year by area | 1 | 35.29 | 0.14 | 0.7114 |
4 | Percentage non-white | 1 | 236 | 7.58 | 0.0064 |
5 | Percentage 15–29 year olds | 1 | 236 | 0.00 | 0.9784 |
6 | Percentage not born in UK | 1 | 236 | 1.32 | 0.2520 |
7 | EIMD | 1 | 78.41 | 5.32 | 0.0238 |
8 | Burglary rate | 1 | 236 | 6.16 | 0.0137 |
9 | Arson/criminal damage rate | 1 | 236 | 0.09 | 0.7694 |
10 | Drug offences rate | 1 | 117 | 1.18 | 0.2788 |
11 | Robbery rate | 1 | 76.92 | 0.21 | 0.6457 |
12 | Sexual offences rate | 1 | 236 | 0.37 | 0.5446 |
13 | Theft rate | 1 | 78.31 | 2.04 | 0.1570 |
14 | Vehicle crime rate | 1 | 236 | 4.27 | 0.0400 |
15 | Violence rate | 1 | 236 | 0.32 | 0.5716 |
16 | Weapon possession rate | 1 | 236 | 1.45 | 0.2289 |
17 | Drug treatment rate | 1 | 116.8 | 3.63 | 0.0594 |
18 | Drug poisoning rate | 1 | 236 | 0.02 | 0.8973 |
19 | Hospital in-patient admissions for drugs rate | 1 | 236 | 0.20 | 0.6582 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sondhi, A.; Leidi, A.; Gilbert, E. A Small Area Estimation Method for Investigating the Relationship between Public Perception of Drug Problems with Neighborhood Prognostics: Trends in London between 2012 and 2019. Int. J. Environ. Res. Public Health 2021, 18, 9016. https://doi.org/10.3390/ijerph18179016
Sondhi A, Leidi A, Gilbert E. A Small Area Estimation Method for Investigating the Relationship between Public Perception of Drug Problems with Neighborhood Prognostics: Trends in London between 2012 and 2019. International Journal of Environmental Research and Public Health. 2021; 18(17):9016. https://doi.org/10.3390/ijerph18179016
Chicago/Turabian StyleSondhi, Arun, Alessandro Leidi, and Emily Gilbert. 2021. "A Small Area Estimation Method for Investigating the Relationship between Public Perception of Drug Problems with Neighborhood Prognostics: Trends in London between 2012 and 2019" International Journal of Environmental Research and Public Health 18, no. 17: 9016. https://doi.org/10.3390/ijerph18179016
APA StyleSondhi, A., Leidi, A., & Gilbert, E. (2021). A Small Area Estimation Method for Investigating the Relationship between Public Perception of Drug Problems with Neighborhood Prognostics: Trends in London between 2012 and 2019. International Journal of Environmental Research and Public Health, 18(17), 9016. https://doi.org/10.3390/ijerph18179016