Listeria monocytogenes Survival on Peaches and Nectarines under Conditions Simulating Commercial Stone-Fruit Packinghouse Operations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Peaches and Nectarines
2.2. Bacterial Cultures and Inoculum Preparation
2.3. Fruit Inoculation
2.4. Survival of Listeria on Peaches and Nectarines under Simulated Fruit Handling, Waxing and Storage Conditions
2.4.1. Stone-Fruit Unloading and Staging Conditions at the Packinghouse (Temperature—18–20 or 28–30 °C (Ambient Cool and Warm Season Temperature), RH—40–50% (Ambient Humidity) and Holding Time—1 to 18 h)
2.4.2. Fruit Waxing (Mineral-Oil- and Vegetable-Oil-Based Fruit Finish) and Fungicide Application (Fludioxonil and Propiconazole) at the Stone Fruits Packing Facility (Temperature—18–20 or 28–30 °C (Ambient Cool and Warm Season Temperature), RH—40–50% (Ambient Humidity) and Holding Time—1 to 6 h)
2.4.3. Refrigerated Storage of Waxed Fruit at the Packinghouse (Temperature—1–2 °C, RH 85–95% and Storage Time—3 to 4 weeks)
2.5. Microbiological Analyses
2.6. Statistical Analysis
3. Results
3.1. Survival of Listeria on Peaches under Simulated Packinghouse Conditions
3.2. Effect of Fruit Unloading and Staging Conditions on Listeria Survival on Stone Fruits
3.3. Effect of Fruit Waxing and Fungicide Application on Listeria Survival on Stone Fruits
3.4. Effect of Refrigerated Storage Conditions on Listeria Survival on Waxed Stone Fruits
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Balali, G.I.; Yar, D.D.; Afua Dela, V.G.; Adjei-Kusi, P. Microbial Contamination, an Increasing Threat to the Consumption of Fresh Fruits and Vegetables in Today’s World. Int. J. Microbiol. 2020, 2020, 3029295. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Nou, X.; Millner, P.; Zhou, B.; Shen, C.; Yang, Y.; Wu, Y.; Wang, Q.; Feng, H.; Shelton, D. A Pilot Plant Scale Evaluation of a New Process Aid for Enhancing Chlorine Efficacy Against Pathogen Survival and Cross-Contamination during Produce Wash. Int. J. Food Microbiol. 2012, 158, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Carstens, C.K.; Salazar, J.K.; Darkoh, C. Multistate Outbreaks of Foodborne Illness in the United States Associated with Fresh Produce from 2010 to 2017. Front. Microbiol. 2019, 10, 2667. [Google Scholar] [CrossRef] [Green Version]
- Callejon, R.M.; Rodriguez-Naranjo, M.I.; Ubeda, C.; Hornedo-Ortega, R.; Garcia-Parrilla, M.C.; Troncoso, A.M. Reported Foodborne Outbreaks due to Fresh Produce in the United States and European Union: Trends and Causes. Foodborne Pathog. Dis. 2015, 12, 32–38. [Google Scholar] [CrossRef]
- McDaniel, C.; Jadeja, R. A Review of Fresh Produce Outbreaks, Current Interventions, Food Safety Concerns and Potential Benefits of Novel Antimicrobial Sodium Acid Sulfate. MOJ Food Process. Technol. 2019, 7, 59–67. [Google Scholar]
- Johnson, R. Foodborne Illnesses and Outbreaks from Fresh Produce; Congressional Research Service: Washington, DC, USA, 2019. Available online: https://fas.org/sgp/crs/misc/IF11092.pdf (accessed on 3 August 2021).
- Buchanan, R.L.; Gorris, L.G.; Hayman, M.M.; Jackson, T.C.; Whiting, R.C. A Review of Listeria monocytogenes: An Update on Outbreaks, Virulence, Dose-Response, Ecology, and Risk Assessments. Food Control 2017, 75, 1–13. [Google Scholar] [CrossRef]
- Collignon, S.; Korsten, L. Attachment and Colonization by Escherichia coli O157:H7, Listeria monocytogenes, Salmonella enterica Subsp. enterica Serovar Typhimurium, and Staphylococcus aureus on Stone Fruit Surfaces and Survival through a Simulated Commercial Export Chain. J. Food Prot. 2010, 73, 1247–1256. [Google Scholar]
- US Food and Drug Administration. Jac. Vandenberg, Inc. Recalls Fresh Peaches, Fresh Nectarines and Fresh Plums because They May Be Contaminated with Listeria monocytogenes. 2019. Available online: https://www.fda.gov/safety/recalls-market-withdrawals-safety-alerts/jac-vandenberg-inc-recalls-fresh-peaches-fresh-nectarines-and-fresh-plums-because-they-may-be (accessed on 3 August 2021).
- Jackson, B.R.; Salter, M.; Tarr, C.; Conrad, A.; Harvey, E.; Steinbock, L.; Saupe, A.; Sorenson, A.; Katz, L.; Stroika, S.; et al. Notes from the Field: Listeriosis Associated with Stone Fruit--United States, 2014. MMWR Morb. Mortal. Wkly. Rep. 2015, 64, 282–283. [Google Scholar]
- McCollum, J.T.; Cronquist, A.B.; Silk, B.J.; Jackson, K.A.; O’Connor, K.A.; Cosgrove, S.; Cosgrove, S.; Gossack, J.P.; Parachini, S.S.; Jain, N.S.; et al. Multistate Outbreak of Listeriosis Associated with Cantaloupe. N. Engl. J. Med. 2013, 369, 944–953. [Google Scholar] [CrossRef] [Green Version]
- Self, J.L.; Conrad, A.; Stroika, S.; Jackson, A.; Burnworth, L.; Beal, J.; Wellman, A.; Jackson, K.A.; Bidol, S.; Gerhardt, T.; et al. Outbreak of Listeriosis Associated with Consumption of Packaged Salad—United States and Canada, 2015–2016. MMWR Morb. Mortal. Wkly. Rep. 2016, 65, 879–881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duvenage, S.; Korsten, L. Assessment of Foodborne Pathogen Presence in the Peach Supply Chain and its Potential Risk to the End Consumer. Food Control 2017, 78, 374–382. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Burall, L.S.; Luo, Y.; Timme, R.; Melka, D.; Muruvanda, T.; Payne, J.; Wang, C.; Kastanis, G.; Maounounen-Laasri, A.; et al. Listeria monocytogenes in Stone Fruits Linked to a Multistate Outbreak: Enumeration of Cells and Whole-Genome Sequencing. Appl. Environ. Microbiol. 2016, 82, 7030–7040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Jesus, A.J.; Sheth, I.; Kwon, H.J.; Gao, Z.; Palmer, J.; Hur, M.; Hammack, T.S.; Macarisin, D.; Chen, Y. Survival of a Serotype 4b Strain and a Serotype 1/2a Strain of Listeria monocytogenes, Isolated from a Stone Fruit Outbreak Investigation, on Whole Stone Fruit at 4 °C. Int. J. Food Microbiol. 2020, 334, 108801. [Google Scholar] [CrossRef]
- Fatica, M.K.; Schneider, K.R. Salmonella and Produce: Survival in the Plant Environment and Implications in Food Safety. Virulence 2011, 2, 573–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huff, K.; Boyer, R.; Denbow, C.; O’Keefe, S.; Williams, R. Effect of Storage Temperature on Survival and Growth of Foodborne Pathogens on Whole, Damaged, and Internally Inoculated Jalapenos (Capsicum annuum Var. Annuum). J. Food Prot. 2012, 75, 382–388. [Google Scholar] [CrossRef]
- Welshimer, H.J. Isolation of Listeria monocytogenes from Vegetation. J. Bacteriol. 1968, 95, 300–303. [Google Scholar] [CrossRef] [Green Version]
- Locatelli, A.; Spor, A.; Jolivet, C.; Piveteau, P.; Hartmann, A. Biotic and Abiotic Soil Properties Influence Survival of Listeria monocytogenes in Soil. PLoS ONE 2013, 8, e75969. [Google Scholar]
- Ukuku, D.O.; Olanya, M.; Geveke, D.J.; Sommers, C.H. Effect of Native Microflora, Waiting Period, and Storage Temperature on Listeria monocytogenes Serovars Transferred from Cantaloupe Rind to Fresh-Cut Pieces during Preparation. J. Food Prot. 2012, 75, 1912–1919. [Google Scholar] [CrossRef]
- Farber, J.M.; Peterkin, P.I. Listeria monocytogenes, a Food-Borne Pathogen. Microbiol. Rev. 1991, 55, 476–511. [Google Scholar] [CrossRef]
- Brackett, R. Presence and Persistence of Listeria monocytogenes in Food and Water. Food Technol. 1988, 42, 162–164. [Google Scholar]
- Hellström, S.; Kiviniemi, K.; Autio, T.; Korkeala, H. Listeria monocytogenes is Common in Wild Birds in Helsinki Region and Genotypes are Frequently Similar with those Found Along the Food Chain. J. Appl. Microbiol. 2008, 104, 883–888. [Google Scholar] [CrossRef] [PubMed]
- Hellström, S. Contamination Routes and Control of Listeria monocytogenes in Food Production. Ph.D. Thesis, University of Helsinki, Faculty of Veterinary Medicine, Helsinki, Finland, 2011. [Google Scholar]
- Kilonzo, C.; Li, X.; Vivas, E.J.; Jay-Russell, M.T.; Fernandez, K.L.; Atwill, E.R. Fecal Shedding of Zoonotic Food-Borne Pathogens by Wild Rodents in a Major Agricultural Region of the Central California Coast. Appl. Environ. Microbiol. 2013, 79, 6337–6344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beuchat, L.R. Ecological Factors Influencing Survival and Growth of Human Pathogens on Raw Fruits and Vegetables. Microbes Infect. 2002, 4, 413–423. [Google Scholar] [CrossRef]
- Tauxe, R.; Kruse, H.; Hedberg, C.; Potter, M.; Madden, J.; Wachsmuth, K. Microbial Hazards and Emerging Issues Associated with Produce (Dagger) A Preliminary Report to the National Advisory Committee on Microbiologic Criteria for Foods. J. Food Prot. 1997, 60, 1400–1408. [Google Scholar] [CrossRef] [PubMed]
- Leong, D.; Alvarez-Ordonez, A.; Jordan, K. Monitoring Occurrence and Persistence of Listeria monocytogenes in Foods and Food Processing Environments in the Republic of Ireland. Front. Microbiol. 2014, 5, 436. [Google Scholar] [CrossRef]
- Warriner, K.; Huber, A.; Namvar, A.; Fan, W.; Dunfield, K. Recent Advances in the Microbial Safety of Fresh Fruits and Vegetables. In Advances in Food and Nutrition Research; Taylor, S.L., Ed.; Elsevier: Amsterdam, The Netherlands, 2009; Volume 57, pp. 155–208. [Google Scholar]
- Strawn, L.K.; Schneider, K.R.; Danyluk, M.D. Microbial Safety of Tropical Fruits. Crit. Rev. Food Sci. Nutr. 2011, 51, 132–145. [Google Scholar] [CrossRef]
- Goodburn, C.; Wallace, C.A. The Microbiological Efficacy of Decontamination Methodologies for Fresh Produce: A Review. Food Control 2013, 32, 418–427. [Google Scholar] [CrossRef]
- Marik, C.M.; Zuchel, J.; Schaffner, D.W.; Strawn, L.K. Growth and Survival of Listeria monocytogenes on Intact Fruit and Vegetable Surfaces during Postharvest Handling: A Systematic Literature Review. J. Food Prot. 2020, 83, 108–128. [Google Scholar] [CrossRef]
- Amalaradjou, M.A. Listeria monocytogenes Growth and Survival on Peaches and Nectarines as Influenced by Stone Fruit Packing House Operations, Storage and Transportation Conditions. Center for Produce Safety. 2018. Available online: https://www.centerforproducesafety.org/amass/documents/researchproject/403/CPS%20Final%20Report_Amalaradjou%2C%20January%202018.pdf (accessed on 3 August 2021).
- Flessa, S.; Lusk, D.M.; Harris, L.J. Survival of Listeria monocytogenes on Fresh and Frozen Strawberries. Int. J. Food Microbiol. 2005, 101, 255–262. [Google Scholar] [CrossRef]
- Likotrafiti, E.; Smirniotis, P.; Nastou, A.; Rhoades, J. Effect of Relative Humidity and Storage Temperature on the Behavior of Listeria monocytogenes on Fresh Vegetables. J. Food Saf. 2013, 33, 545–551. [Google Scholar] [CrossRef]
- Salazar, J.K.; Carstens, C.K.; Bathija, V.M.; Narula, S.S.; Parish, M.; Tortorello, M.L. Fate of Listeria monocytogenes in Fresh Apples and Caramel Apples. J. Food Prot. 2016, 79, 696–702. [Google Scholar] [CrossRef]
- California Fresh Fruit Association (CFFA). Food Safety Guidelines for Fresh, Whole Stone Fruit Produced in California’s San Joaquin Valley; CFFA: Fresno, CA, USA, 2015; pp. 1–49. [Google Scholar]
- Francis, G.; Gallone, A.; Nychas, G.; Sofos, J.; Colelli, G.; Amodio, M.; Spano, G. Factors Affecting Quality and Safety of Fresh-Cut Produce. Crit. Rev. Food Sci. Nutr. 2012, 52, 595–610. [Google Scholar] [CrossRef]
- Cifuentes, R.A.; Hernandez, A.M.; Harris, L.J.; Suslow, T.V. Assessment of Production and Retail Handling Practices of Peaches, Plums and Nectarines on Microbial Food Safety Risk Reduction. Hortscience 2001, 36, 544–545. [Google Scholar]
- Adaskaveg, J.; Förster, H. Management of Gray Mold of Pomegranates Caused by Botrytis cinerea using Two Reduced-Risk Fungicides, Fludioxonil and Fenhexamid. Phytopathology 2003, 93, S127. [Google Scholar]
- Sethi, S.; Pophle, S.; Varte, N.; Salve, C.; Waghela, S. Microbial Population Response Exposed to Different Pesticides. Int. J. Sci. Eng. Appl. Sci. 2015, 1, 250–255. [Google Scholar]
- Yen, J.; Chang, J.; Huang, P.; Wang, Y. Effects of Fungicides Triadimefon and Propiconazole on Soil Bacterial Communities. J. Environ. Sci. Health B 2009, 44, 681–689. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Hamel, C.; Vujanovic, V.; Gan, Y. Fungicide: Modes of Action and Possible Impact on Non-Target Microorganisms. ISRN Ecol. 2011, 2011, 130289. [Google Scholar]
- Hoelzer, K.; Pouillot, R.; Dennis, S. Listeria monocytogenes Growth Dynamics on Produce: A Review of the Available Data for Predictive Modeling. Foodborne Pathog. Dis. 2012, 9, 661–673. [Google Scholar] [CrossRef]
- Penteado, A.L.; Eblen, B.S.; Miller, A.J. Evidence of Salmonella Internalization into Fresh Mangos during Simulated Postharvest Insect Disinfestation Procedures. J. Food Prot. 2004, 67, 181–184. [Google Scholar] [CrossRef]
- Mathew, E.N.; Muyyarikkandy, M.S.; Kuttappan, D.; Amalaradjou, M.A. Attachment of Salmonella enterica on Mangoes and Survival Under Conditions Simulating Commercial Mango Packing House and Importer Facility. Front. Microbiol. 2018, 9, 1519. [Google Scholar] [CrossRef]
- Parnell, T.L.; Harris, L.J.; Suslow, T.V. Reducing Salmonella on Cantaloupes and Honeydew Melons using Wash Practices Applicable to Postharvest Handling, Foodservice, and Consumer Preparation. Int. J. Food Microbiol. 2005, 99, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Danyluk, M.D.; Friedrich, L.M.; Schaffner, D.W. Modeling the Growth of Listeria monocytogenes on Cut Cantaloupe, Honeydew and Watermelon. Food Microbiol. 2014, 38, 52–55. [Google Scholar] [CrossRef] [PubMed]
- Beuchat, L.R.; Farber, J.M.; Garrett, E.H.; Harris, L.J.; Parish, M.E.; Suslow, T.V.; Busta, F.F. Standardization of a Method to Determine the Efficacy of Sanitizers in Inactivating Human Pathogenic Microorganisms on Raw Fruits and Vegetables. J. Food Prot. 2001, 64, 1079–1084. [Google Scholar] [CrossRef] [PubMed]
- Behrsing, J.; Jaeger, J.; Horlock, F.; Kita, N.; Franz, P.; Premier, R. Survival of Listeria innocua, Salmonella Salford and Escherichia coli on the Surface of Fruit with Inedible Skins. Postharvest Biol. Technol. 2003, 29, 249–256. [Google Scholar] [CrossRef]
- Baskaran, S.A.; Upadhyay, A.; Kollanoor-Johny, A.; Upadhyaya, I.; Mooyottu, S.; Roshni Amalaradjou, M.A.; Schreiber, D.; Venkitanarayanan, K. Efficacy of Plant-Derived Antimicrobials as Antimicrobial Wash Treatments for Reducing Enterohemorrhagic Escherichia coli O157:H7 on Apples. J. Food Sci. 2013, 78, M1399–M1404. [Google Scholar] [CrossRef]
- Parnell, T.L.; Harris, L.J. Reducing Salmonella on Apples with Wash Practices Commonly used by Consumers. J. Food Prot. 2003, 66, 741–747. [Google Scholar] [CrossRef]
- Sheng, L.; Edwards, K.; Tsai, H.C.; Hanrahan, I.; Zhu, M.J. Fate of Listeria monocytogenes on Fresh Apples Under Different Storage Temperatures. Front. Microbiol. 2017, 8, 1396. [Google Scholar] [CrossRef] [Green Version]
- Lovett, J.; Hitchins, A.D. Listeria isolation. In Bacteriological Analytical Manual, 6th ed.; U.S. Food and Drug Administration: Silver Spring, MD, USA, 1988; Volume 53, pp. 44148–44153. [Google Scholar]
- Lang, M.M.; Harris, L.J.; Beuchat, L.R. Evaluation of Inoculation Method and Inoculum Drying Time for their Effects on Survival and Efficiency of Recovery of Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes Inoculated on the Surface of Tomatoes. J. Food Prot. 2004, 67, 732–741. [Google Scholar] [CrossRef]
- Cano-Salazar, J.; López, L.; Crisosto, C.H.; Echeverría, G. Cold Storage of Six Nectarine Cultivars: Consequences for Volatile Compounds Emissions, Physicochemical Parameters, and Consumer Acceptance. Eur. Food Res. Technol. 2013, 237, 571–589. [Google Scholar] [CrossRef]
- Dagar, A.; Weksler, A.; Friedman, H.; Ogundiwin, E.A.; Crisosto, C.H.; Ahmad, R.; Lurie, S. Comparing Ripening and Storage Characteristics of ‘Oded’peach and its Nectarine Mutant ‘Yuval’. Postharvest Biol. Technol. 2011, 60, 1–6. [Google Scholar] [CrossRef]
- Luber, P. The Codex Alimentarius Guidelines on the Application of General Principles of Food Hygiene to the Control of Listeria monocytogenes in Ready-To-Eat Foods. Food Control 2011, 22, 1482–1483. [Google Scholar] [CrossRef]
- US Food and Drug Administration; US Department of Agriculture, Food Safety and Inspection Service. Quantitative Assessment of Relative Risk to Public Health from Foodborne Listeria monocytogenes among Selected Categories of Ready-to-Eat Foods; Center of Food Safety and Applied Nutrition, Food and Drug Administration, U.S. Department of Health and Human Services and the Food Safety and Inspection Services, U.S. Department of Agriculture: Washington, DC, USA, 2003. Available online: https://www.fda.gov/media/124721/download (accessed on 4 August 2021).
- Layne, D.R.; Bassi, D. The Peach: Botany, Production and Uses; CABI: Cambridge, MA, USA, 2008; pp. 1–36. [Google Scholar]
- Crisosto, C.H.; Mitchell, F.G.; Ju, Z. Susceptibility to Chilling Injury of Peach, Nectarine, and Plum Cultivars Grown in California. Hortic. Sci. 1999, 34, 1116–1118. [Google Scholar] [CrossRef] [Green Version]
- Wen, I.; Koch, K.; Sherman, W. Comparing Fruit and Tree Characteristics of Two Peaches and Their Nectarine Mutants. J. Am. Soc. Hortic. Sci. 1995, 120, 101–106. [Google Scholar] [CrossRef]
- De Oliveira, M.A.; Ribeiro, E.G.A.; Bergamini, A.M.M.; De Martinis, E.C.P. Quantification of Listeria monocytogenes in Minimally Processed Leafy Vegetables Using a Combined Method Based on Enrichment and 16S rRNA Real-Time PCR. Food Microbiol. 2010, 27, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Sant’Ana, A.S.; Barbosa, M.S.; Destro, M.T.; Landgraf, M.; Franco, B.D. Growth Potential of Salmonella Spp. and Listeria monocytogenes in Nine Types of Ready-to-Eat Vegetables Stored at Variable Temperature Conditions during Shelf-Life. Int. J. Food Microbiol. 2012, 157, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Wu, Q.; Zhang, J.; Chen, M.; Yan, Z.A.; Hu, H. Listeria monocytogenes Prevalence and Characteristics in Retail Raw Foods in China. PLoS ONE 2015, 10, e0136682. [Google Scholar]
- Zhu, Q.; Gooneratne, R.; Hussain, M.A. Listeria monocytogenes in Fresh Produce: Outbreaks, Prevalence and Contamination Levels. Foods 2017, 6, 21. [Google Scholar] [CrossRef] [Green Version]
- Alegre, I.; Abadias, M.; Anguera, M.; Usall, J.; Vinas, I. Fate of Escherichia coli O157:H7, Salmonella and Listeria innocua on Minimally-Processed Peaches Under Different Storage Conditions. Food Microbiol. 2010, 27, 862–868. [Google Scholar] [CrossRef] [PubMed]
- Beuchat, L.R.; Brackett, R.E. Behavior of Listeria monocytogenes Inoculated into Raw Tomatoes and Processed Tomato Products. Appl. Environ. Microbiol. 1991, 57, 1367–1371. [Google Scholar] [CrossRef] [Green Version]
- Rodrıíguez, A.C.; Alcalá, E.B.; Gimeno, R.G.; Cosano, G.Z. Growth Modelling of Listeria monocytogenes in Packaged Fresh Green Asparagus. Food Microbiol. 2000, 17, 421–427. [Google Scholar] [CrossRef]
- Conway, W.S.; Leverentz, B.; Saftner, R.A.; Janisiewicz, W.J.; Sams, C.E.; Leblanc, E. Survival and Growth of Listeria monocytogenes on Fresh-Cut Apple Slices and its Interaction with Glomerella cingulata and Penicillium expansum. Plant Dis. 2000, 84, 177–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palumbo, S.A.; Williams, A.C. Effect of Temperature, Relative Humidity, and Suspending Menstrua on the Resistance of Listeria monocytogenes to Drying. J. Food Prot. 1990, 53, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Crisosto, C.H.; Garner, D.; Wiley, N.; Crisosto, G. Evaluation of the Effect of the Brushing and Waxing Operations on Peach and Nectarine Postharvest Performance. In 1992 Research Reports for California Peaches and Nectarines, California Tree Fruit Agreement; University of California: Sacramento, CA, USA, 1992. [Google Scholar]
- Kenney, S.J.; Beuchat, L.R. Survival of Escherichia coli O157: H7 and Salmonella Muenchen on Apples as Affected by Application of Commercial Fruit Waxes. Int. J. Food Microbiol. 2002, 77, 223–231. [Google Scholar] [CrossRef]
Stage | Holding Temperature (°C) | Relative Humidity (%) | Holding/Storage Time |
---|---|---|---|
Unloading and staging | |||
Warm season | 28–30 | 40–50 | 1–18 h |
Cool season | 18–20 | 40–50 | 1–18 h |
Fruit finish and fungicide application ǂ | |||
Warm season | 28–30 | 40–50 | 1–6 h |
Cool season | 18–20 | 40–50 | 1–6 h |
Refrigerated storage | 1–2 | 85–95 | 2–28 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuttappan, D.; Muyyarikkandy, M.S.; Mathew, E.; Amalaradjou, M.A. Listeria monocytogenes Survival on Peaches and Nectarines under Conditions Simulating Commercial Stone-Fruit Packinghouse Operations. Int. J. Environ. Res. Public Health 2021, 18, 9174. https://doi.org/10.3390/ijerph18179174
Kuttappan D, Muyyarikkandy MS, Mathew E, Amalaradjou MA. Listeria monocytogenes Survival on Peaches and Nectarines under Conditions Simulating Commercial Stone-Fruit Packinghouse Operations. International Journal of Environmental Research and Public Health. 2021; 18(17):9174. https://doi.org/10.3390/ijerph18179174
Chicago/Turabian StyleKuttappan, Deepa, Muhammed S. Muyyarikkandy, Elza Mathew, and Mary Anne Amalaradjou. 2021. "Listeria monocytogenes Survival on Peaches and Nectarines under Conditions Simulating Commercial Stone-Fruit Packinghouse Operations" International Journal of Environmental Research and Public Health 18, no. 17: 9174. https://doi.org/10.3390/ijerph18179174
APA StyleKuttappan, D., Muyyarikkandy, M. S., Mathew, E., & Amalaradjou, M. A. (2021). Listeria monocytogenes Survival on Peaches and Nectarines under Conditions Simulating Commercial Stone-Fruit Packinghouse Operations. International Journal of Environmental Research and Public Health, 18(17), 9174. https://doi.org/10.3390/ijerph18179174