Syndrome Metabolic Markers, Fitness and Body Fat Is Associated with Sleep Quality in Women with Severe/Morbid Obesity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Measurements
2.2.1. Sleep Quality Measurements
2.2.2. MetS Markers
2.2.3. Body Composition and Anthropometric Parameters
2.2.4. Six-Minutes Walking Test
2.2.5. Handgrip Strength
2.3. Data Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Beccuti, G.; Pannain, S. Sleep and obesity. Current opinion in clinical nutrition and metabolic care. PMC 2011, 14, 402–412. [Google Scholar]
- Saklayen, M.G. The global epidemic of the metabolic syndrome. Curr. Hypertens. Rep. 2018, 20, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Badran, M.; Yassin, B.A.; Fox, N.; Laher, I.; Ayas, N. Epidemiology of sleep disturbances and cardiovascular consequences. Can. J. Cardiol. 2015, 31, 873–879. [Google Scholar] [CrossRef] [PubMed]
- Muscogiuri, G.; Barrea, L.; Annunziata, G.; Di Somma, C.; Laudisio, D.; Colao, A.; Savastano, S. Obesity and sleep disturbance: The chicken or the egg? Crit. Rev. Food Sci. Nutr. 2019, 59, 2158–2165. [Google Scholar] [CrossRef]
- Knutson, K.L.; Van Cauter, E. Associations between sleep loss and increased risk of obesity and diabetes. Ann. N. Y. Acad. Sci. 2008, 1129, 287–304. [Google Scholar] [CrossRef] [Green Version]
- Grandner, M.A.; Hale, L.; Moore, M.; Patel, N.P. Mortality associated with short sleep duration: The evidence, the possible mechanisms, and the future. Sleep Med. Rev. 2010, 14, 191–203. [Google Scholar] [CrossRef] [Green Version]
- Raveendran, R.; Wong, J.; Chung, F. Morbid obesity, sleep apnea, obesity hypoventilation syndrome: Are we sleepwalking into disaster? Perioper. Care Oper. Room Manag. 2017, 9, 24–32. [Google Scholar] [CrossRef]
- Araghi, M.H.; Jagielski, A.; Neira, I.; Brown, A.; Higgs, S.; Thomas, G.N.; Taheri, S. The complex associations among sleep quality, anxiety-depression, and quality of life in patients with extreme obesity. Sleep 2013, 36, 1859–1865. [Google Scholar] [CrossRef] [Green Version]
- André, S.; Andreozzi, F.; Van Overstraeten, C.; Youssef, S.B.; Bold, I.; Carlier, S.; Gruwez, A.; Bruyneel, A.-V.; Bruyneel, M. Cardiometabolic comorbidities in obstructive sleep apnea patients are related to disease severity, nocturnal hypoxemia, and decreased sleep quality. Respir. Res. 2020, 21, 35. [Google Scholar] [CrossRef]
- Garfield, V. The association between body mass index (BMI) and sleep duration: Where are we after nearly two decades of epidemiological research? Int. J. Environ. Res. Public Health 2019, 16, 4327. [Google Scholar] [CrossRef] [Green Version]
- Vanhecke, T.E.; Franklin, B.A.; Zalesin, K.C.; Sangal, R.B.; deJong, A.T.; Agrawal, V.; McCullough, P.A. Cardiorespiratory fitness and obstructive sleep apnea syndrome in morbidly obese patients. Chest 2008, 134, 539–545. [Google Scholar] [CrossRef]
- Rangaraj, V.R.; Knutson, K.L. Association between sleep deficiency and cardiometabolic disease: Implications for health disparities. Sleep Med. 2016, 18, 19–35. [Google Scholar]
- McHill, A.W.; Wright, K.P., Jr. Role of sleep and circadian disruption on energy expenditure and in metabolic predisposition to human obesity and metabolic disease. Obes. Rev. 2017, 18 (Suppl. 1), 15–24. [Google Scholar] [CrossRef]
- Bin, Y.S. Is sleep quality more important than sleep duration for public health? Sleep 2016, 39, 1629–1630. [Google Scholar] [CrossRef] [Green Version]
- Buysse, D.J.; Reynolds, C.F., 3rd; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef]
- Rahe, C.; Czira, M.E.; Teismann, H.; Berger, K. Associations between poor sleep quality and different measures of obesity. Sleep Med. 2015, 16, 1225–1228. [Google Scholar] [CrossRef]
- Toor, P.; Kim, K.; Buffington, C.K. Sleep quality and duration before and after bariatric surgery. Obes. Surg. 2012, 22, 890–895. [Google Scholar]
- Alberti, K.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.-C.; James, W.P.T.; Loria, C.M.; Smith, S.C., Jr. Harmonizing the metabolic syndrome: A joint interim statement of the international diabetes federation task force on epidemiology and prevention; national heart, lung, and blood institute; American heart association; world heart federation; international atherosclerosis society; and international association for the study of obesity. Circulation 2009, 120, 1640–1645. [Google Scholar]
- Mancia, G.; Fagard, R.; Narkiewicz, K.; Redon, J.; Zanchetti, A.; Böhm, M.; Christiaens, T.; Cifkova, R.; De Backer, G.; Dominiczak, A. 2013 ESH/ESC practice guidelines for the management of arterial hypertension: ESH-ESC the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Blood Press. 2014, 23, 3–16. [Google Scholar] [CrossRef]
- Chobanian, A.V.; Bakris, G.L.; Black, H.R.; Cushman, W.C.; Green, L.A.; Izzo, J.L.; Jones, D.W.; Materson, B.J.; Oparil, S.; Wright, J.T.; et al. Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 2003, 42, 1206–1252. [Google Scholar] [CrossRef] [Green Version]
- National Institutes of Health; National Heart, Lung, and Blood Institute. The Practical Guide: Identification, Evaluation, and Treatment of Overweight and Obesity in Adults; North American Association for the Study of Obesity: Long Beach, CA, USA, 2000.
- Johnson Stoklossa, C.A.; Sharma, A.M.; Forhan, M.; Siervo, M.; Padwal, R.S.; Prado, C.M. Prevalence of sarcopenic obesity in adults with class II/III obesity using different diagnostic criteria. J. Nutr. Metab. 2017, 2017, 7307618. [Google Scholar] [CrossRef]
- Reutrakul, S.; Van Cauter, E. Sleep influences on obesity, insulin resistance, and risk of type 2 diabetes. Metabolism 2018, 84, 56–66. [Google Scholar] [CrossRef]
- Kahlhöfer, J.; Karschin, J.; Breusing, N.; Bosy-Westphal, A. Relationship between actigraphy-assessed sleep quality and fat mass in college students. Obesity 2016, 24, 335–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Yuan, Q.; Zeng, N.; McDonough, D.J.; Tao, K.; Peng, Q.; Gao, Z. Relationships between college students’ sedentary behavior, sleep quality, and body mass index. Int. J. Environ. Res. Public Health 2021, 18, 3946. [Google Scholar] [CrossRef] [PubMed]
- Sweatt, S.K.; Gower, B.A.; Chieh, A.Y.; Liu, Y.; Li, L. Sleep quality is differentially related to adiposity in adults. Psychoneuroendocrinology 2018, 98, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Jurado-Fasoli, L.; Amaro-Gahete, F.J.; De-la-O, A.; Dote-Montero, M.; Gutiérrez, Á.; Castillo, M.J. Association between sleep quality and body composition in sedentary middle-aged adults. Medicina 2018, 54, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.; Shin, D.; Jung, G.U.; Lee, D.; Park, S.M. Association between sleep duration, fat mass, lean mass and obesity in Korean adults: The fourth and fifth Korea National Health and Nutrition Examination Surveys. J. Sleep Res. 2017, 26, 453–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piovezan, R.D.; Hirotsu, C.; Moizinho, R.; de Sá Souza, H.; D’Almeida, V.; Tufik, S.; Poyares, D. Associations between sleep conditions and body composition states: Results of the EPISONO study. J. Cachexia Sarcopenia Muscle 2019, 10, 962–973. [Google Scholar] [CrossRef]
- Leon-Cabrera, S.; Arana-Lechuga, Y.; Esqueda-Leon, E.; Teran-Perez, G.; Gonzalez-Chavez, A.; Escobedo, G.; Velazquez Moctezuma, J. Reduced systemic levels of IL-10 are associated with the severity of obstructive sleep apnea and insulin resistance in morbidly obese humans. Mediat. Inflamm. 2015, 2015, 493409. [Google Scholar] [CrossRef]
- Mokhlesi, B.; Temple, K.A.; Tjaden, A.H.; Edelstein, S.L.; Utzschneider, K.M.; Nadeau, K.J.; Hannon, T.S.; Sam, S.; Barengolts, E.; Manchanda, S.; et al. Association of self-reported sleep and circadian measures with glycemia in adults with prediabetes or recently diagnosed untreated type 2 diabetes. Diabetes Care 2019, 42, 1326–1332. [Google Scholar] [CrossRef]
- Knutson, K.L.; Ryden, A.M.; Mander, B.A.; Van Cauter, E. Role of sleep duration and quality in the risk and severity of type 2 diabetes mellitus. Arch. Intern. Med. 2006, 166, 1768–1774. [Google Scholar] [CrossRef] [Green Version]
- Trento, M.; Broglio, F.; Riganti, F.; Basile, M.; Borgo, E.; Kucich, C.; Passera, P.; Tibaldi, P.; Tomelini, M.; Cavallo, F.; et al. Sleep abnormalities in type 2 diabetes may be associated with glycemic control. Acta Diabetol. 2008, 45, 225–229. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.W.; Kann, N.H.; Tung, T.H.; Chao, Y.J.; Lin, C.J.; Chang, K.C.; Chang, S.S.; Chen, J.Y. Impact of subjective sleep quality on glycemic control in type 2 diabetes mellitus. Fam. Pract. 2012, 29, 30–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kline, C.E.; Hall, M.H.; Buysse, D.J.; Earnest, C.P.; Church, T.S. Poor sleep quality is associated with insulin resistance in postmenopausal women with and without metabolic syndrome. Metab. Syndr. Relat. Disord. 2018, 16, 183–189. [Google Scholar] [CrossRef]
- Chirwa, S.; Nwabuisi, C.R.; Ladson, G.M.; Korley, L.; Whitty, J.E.; Atkinson, R.; Clark, J.T. Poor sleep quality is associated with higher hemoglobin A1c in pregnant women: A pilot observational study. Int. J. Environ. Res. Public Health 2018, 15, 2287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morselli, L.; Leproult, R.; Balbo, M.; Spiegel, K. Role of sleep duration in the regulation of glucose metabolism and appetite. Best Pract. Research. Clin. Endocrinol. Metab. 2010, 24, 687–702. [Google Scholar] [CrossRef] [Green Version]
- Jha, P.K.; Challet, E.; Kalsbeek, A. Circadian rhythms in glucose and lipid metabolism in nocturnal and diurnal mammals. Mol. Cell. Endocrinol. 2015, 418, 74–88. [Google Scholar]
- Moreno-Vecino, B.; Arija-Blazquez, A.; Pedrero-Chamizo, R.; Gomez-Cabello, A.; Alegre, L.M.; Perez-Lopez, F.R.; Gonzalez-Gross, M.; Casajus, J.A.; Ara, I.; on behalf of the EXERNET Group. Sleep disturbance, obesity, physical fitness and quality of life in older women: EXERNET study group. Climacteric 2017, 20, 72–79. [Google Scholar] [CrossRef]
- Mafort, T.T.; Rufino, R.; Costa, C.H.; Lopes, A.J. Obesity: Systemic and pulmonary complications, biochemical abnormalities, and impairment of lung function. Multidiscip. Respir. Med. 2016, 11, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, X.; Liu, N.; Zhang, X.; Bao, X.; Xie, Y.; Huang, J.; Wang, P.; Du, Q. Associations between objectively assessed physical fitness levels and sleep quality in community-dwelling elderly people in South China. Sleep Breath. 2019, 23, 679–685. [Google Scholar] [CrossRef]
- Štefan, L.; Krističević, T.; Sporiš, G. The associations of self-reported physical fitness and physical activity with sleep quality in young adults: A population-based study. Ment. Health Phys. Act. 2018, 14, 131–135. [Google Scholar] [CrossRef]
- Mota, J.; Vale, S. Associations between sleep quality with cardiorespiratory fitness and BMI among adolescent girls. Am. J. Hum. Biol. 2010, 22, 473–475. [Google Scholar] [CrossRef] [PubMed]
- Dishman, R.K.; Sui, X.; Church, T.S.; Kline, C.E.; Youngstedt, S.D.; Blair, S.N. Decline in cardiorespiratory fitness and odds of incident sleep complaints. Med. Sci. Sports Exerc. 2015, 47, 960–966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, A.; Lin, W. Association between sleep quality and physical fitness in female young adults. J. Sports Med. Phys. Fit. 2007, 47, 462. [Google Scholar]
Sleep Quality | ||||
---|---|---|---|---|
Parameters | Total (n = 26) | Good (GSQ, n = 14) | Poor (PSQ, n = 12) | p-Value |
Age (y) | 39.9 ± 11.94 | 38.42 ± 12.64 | 41.66 ± 11.38 | 0.50 |
Body mass (kg) | 105.1 ± 19.85 | 98.95 ± 17.93 | 112.24 ± 20.3 | 0.60 |
Height (m) | 1.56 ± 0.06 | 1.57 ± 0.06 | 1.56 ± 0.06 | 0.08 |
BMI (kg/m2) | 42.56 ± 7.3 | 39.62 ± 5.72 | 45.99 ± 7.61 | 0.023 |
Waist circumference (cm) | 117.2 ± 17.8 | 113.24 ± 12.35 | 121.73 ± 14.41 | 0.11 |
Body fat (%) | 48.2 ± 4.8 | 46.45 ± 4.28 | 50.21 ± 4.74 | 0.044 |
Clinical-Metabolic | ||||
SBP, mmHg | 137.57 ± 16.1 | 136.85 ± 17.61 | 138.41 ± 14.86 | 0.81 |
DBP, mmHg | 87.65 ± 12.03 | 89.85 ± 11.21 | 85.08 ± 12.92 | 0.31 |
Glucose, mg/dL | 99.53 ± 18.96 | 97.35 ± 21.79 | 102.08 ± 15.58 | 0.53 |
TG, mg/dL | 121.15 ± 62.2 | 103.21 ± 38.0 | 142.08 ± 78.88 | 0.11 |
HDL-c, mg/dL | 51.15 ± 10.6 | 51.92 ± 12.69 | 51.91 ± 8.07 | 0.99 |
Fitness | ||||
6MWt (m) | 513.07 ± 100.82 | 560 ± 71.14 | 458.33 ± 105.12 | 0.007 |
Handgrip strength (kg) | 27.86 ± 7.63 | 28.14 ± 7.55 | 27.54 ± 8.04 | 0.84 |
Relative hand grip strength (kg/BMI) | 0.66 ± 0.21 | 0.72 ± 0.20 | 0.60 ± 0.20 | 0.18 |
Total (n = 26) | |
---|---|
Variables | rho (p-Value) |
Age (y) | 0.17 (0.39) |
Body mass (kg) | 0.32 (0.11) |
Height (m) | −0.09 (0.65) |
Waist circumference (cm) | 0.14 (0.47) |
Body fat (%) | 0.28 (0.15) |
Clinical-Metabolic | |
SBP (mmHg) | −0.07 (0.69) |
DBP (mmHg) | 0.03 (0.85) |
Fasting glucose (mg/dL) | 0.11 (0.58) |
HDL-c (mg/dL) | −0.10 (0.62) |
Fitness | |
Handgrip strength (kg) | −0.01 (0.93) |
Relative handgrip strength (kg/BMI) | −0.23 (0.24) |
Sleep Quality | ||||
---|---|---|---|---|
Parameters | Total (n = 26) | Good (GSQ, n = 14) | Poor (PSQ, n = 12) | p-Value |
Obesity grade | 0.034 | |||
Obesity | 10 (38.5) | 8 (57.14) | 2 (16.67) | |
Morbid obesity | 16 (61.5) | 6 (42.86) | 10 (83.33) | |
Body fat ≥ 48.2% | 0.045 | |||
No | 12 (46.15) | 9 (64.29) | 3 (25.0) | |
Yes | 14 (53.85) | 5 (35.71) | 9 (75.0) | |
Clinical-Metabolic | ||||
Fasting glucose ≥ 100 mg/dL | 0.054 | |||
No | 16 (61.54) | 11 (78.57) | 5 (41.67) | |
Yes | 10 (38.46) | 3 (21.43) | 7 (58.33) | |
TG ≥ 150 mg/dL | 0.25 | |||
No | 20 (76.92) | 12 (85.71) | 8 (66.67) | |
Yes | 6 (23.08) | 2 (14.29) | 4 (33.33) | |
HDL-c < 50 mg/dL | 0.43 | |||
No | 13 (50.0) | 6 (42.86) | 7 (58.33) | |
Yes | 13 (50.0) | 8 (57.14) | 5 (41.67) | |
Hypertension DBP/SBP ≥ 90/140 mmHg | 0.89 | |||
No | 9 (34.62) | 5 (35.71) | 4 (33.33) | |
Yes | 17 (65.38) | 9 (64.29) | 8 (66.67) | |
Syndrome metabolic parameters | 0.36 | |||
1 | 6 (23.08) | 3 (21.43) | 3 (25.0) | |
2 | 4 (15.38) | 3 (21.43) | 1 (8.33) | |
3 | 7 (26.92) | 5 (35.71) | 2 (16.67) | |
≥4 | 9 (34.62) | 3 (21.43) | 6 (50.0) |
Comorbidities | OR (95%CI), p-Value | ORAdjusted (95%CI), p-Value |
---|---|---|
Model 0 | Model 1 | |
Morbid obesity | 6.66 (1.04–42.43), 0.045 | 8.44 (1.15–66.0), 0.036 |
Body fat (%) | 5.39 (0.98–29.66), 0.05 | 8.39 (1.13–62.14), 0.037 |
Glucose ≥ 100 mg/dL | 5.13 (0.92–28.57), 0.062 | 5.71 (0.95–34.05), 0.056 |
TG ≥ 150 mg/dL | 3.0 (0.44–20.43), 0.26 | 4.79 (0.55–41.61), 0.15 |
HDL-c < 50 mg/dL | 0.53 (0.11–2.55), 0.43 | 0.63 (0.10–3.98), 0.62 |
Hypertension | 1.11 (0.21–5.63), 0.89 | 1.14 (0.22–5.91), 0.87 |
Number of MetS parameters | ||
1 | 1.0 | 1.0 |
2 | 0.33 (0.02–5.32), 0.43 | 0.14 (0.006–2.87), 0.20 |
3 | 0.40 (0.04–3.95), 0.43 | 0.42 (0.03–5.48), 0.51 |
≥4 | 2.0 (0.24–16.6), 0.52 | 5.21 (0.38–70.3), 0.21 |
MetS | 2.42 (0.36–15.94), 0.35 | 1.5 (0.30–7.43), 0.62 |
Fitness | ||
6MWT ≤ 513.07 | 3.6 (0.70–18.25), 0.12 | 3.40 (0.65–17.56), 0.14 |
HGS ≤ 27.86 | 1.0 (0.21–4.67), 0.99 | 0.83 (0.16–4.27), 0.82 |
HGSRelative ≤ 0.66 | 12.5 (1.85–84.44), 0.010 | 12.2 (1.79–83.09),0.011 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vargas, C.A.; Guzmán-Guzmán, I.P.; Caamaño-Navarrete, F.; Jerez-Mayorga, D.; Chirosa-Ríos, L.J.; Delgado-Floody, P. Syndrome Metabolic Markers, Fitness and Body Fat Is Associated with Sleep Quality in Women with Severe/Morbid Obesity. Int. J. Environ. Res. Public Health 2021, 18, 9294. https://doi.org/10.3390/ijerph18179294
Vargas CA, Guzmán-Guzmán IP, Caamaño-Navarrete F, Jerez-Mayorga D, Chirosa-Ríos LJ, Delgado-Floody P. Syndrome Metabolic Markers, Fitness and Body Fat Is Associated with Sleep Quality in Women with Severe/Morbid Obesity. International Journal of Environmental Research and Public Health. 2021; 18(17):9294. https://doi.org/10.3390/ijerph18179294
Chicago/Turabian StyleVargas, Claudia Andrea, Iris Paola Guzmán-Guzmán, Felipe Caamaño-Navarrete, Daniel Jerez-Mayorga, Luis Javier Chirosa-Ríos, and Pedro Delgado-Floody. 2021. "Syndrome Metabolic Markers, Fitness and Body Fat Is Associated with Sleep Quality in Women with Severe/Morbid Obesity" International Journal of Environmental Research and Public Health 18, no. 17: 9294. https://doi.org/10.3390/ijerph18179294
APA StyleVargas, C. A., Guzmán-Guzmán, I. P., Caamaño-Navarrete, F., Jerez-Mayorga, D., Chirosa-Ríos, L. J., & Delgado-Floody, P. (2021). Syndrome Metabolic Markers, Fitness and Body Fat Is Associated with Sleep Quality in Women with Severe/Morbid Obesity. International Journal of Environmental Research and Public Health, 18(17), 9294. https://doi.org/10.3390/ijerph18179294