Characteristics and Service Utilization by Complex Chronic and Advanced Chronic Patients in Catalonia: A Retrospective Seven-Year Cohort-Based Study of an Implemented Chronic Care Program
Abstract
:1. Introduction
1.1. Patient Definition, Identification, and Specific Model of Care of CCPs and ACPs in Catalonia
1.2. Justification and Aims of This Study
2. Materials and Methods
2.1. Study Design, Participants, and Database
2.2. Data Source
2.3. Variables
2.4. Statistical Methods
3. Results
3.1. Characteristics of the Overall Cohort (2013–2019)
3.2. Epidemiological Evolution of the Identification of CCPs and ACPs
3.3. Evaluation of Demographic and Clinical Characteristics of CCPs and ACPs (2019)
3.4. Evaluation of Health Service Utilization and Associated Expenditures of CCPs and ACPs (2019)
3.5. Geographical Variability of CCPs and ACPs Incidence in Catalonia
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Institut d’Estadística de Catalunya, Idescat. Taules de Vida (2015–2019). Available online: https://www.idescat.cat/pub/?id=iev (accessed on 12 March 2021).
- Institut d’Estadística de Catalunya, Idescat. Fecunditat. Available online: https://www.idescat.cat/pub/?id=inddt&n=917 (accessed on 12 March 2021).
- Institut d’Estadística de Catalunya, Idescat. Estructura per Edats, Envelliment i Dependència. Available online: https://www.idescat.cat/pub/?id=inddt&n=915 (accessed on 12 March 2021).
- OECD. Health at a Glance 2017; OECD: Geneva, Switzerland, 2017. [Google Scholar]
- Rechel, B.; Doyle, Y.; Grundy, E.; McKee, M. How Can Health Systems Respond to Population Ageing? World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Anderson, G. Chronic Care: Making the Case for Ongoing Care; Robert Wood Johnson Foundation: Princeton, NJ, USA; The Johns Hopkins Bloomberg School of Public Health: Baltimore, MD, USA, 2010. [Google Scholar]
- Alwan, A. Global Status Report on Noncommunicable Diseases; World Health Organization: Geneva, Switzerland, 2010; p. 176. [Google Scholar]
- Blumenthal, D.; Chernof, B.; Fulmer, T.; Lumpkin, J.; Selberg, J. Caring for High-Need, High-Cost Patients—An Urgent Priority. N. Engl. J. Med. 2016, 375, 909–911. [Google Scholar] [CrossRef] [PubMed]
- McPhail, S.M. Multimorbidity in chronic disease: Impact on health care resources and costs. Risk Manag. Healthc. Policy 2016, 9, 143–156. [Google Scholar] [CrossRef] [Green Version]
- Lehnert, T.; Heider, D.; Leicht, H.; Heinrich, S.; Corrieri, S.; Luppa, M.; Riedel-Heller, S.; König, H.-H. Review: Health care utilization and costs of elderly persons with multiple chronic conditions. Med. Care Res. Rev. 2011, 68, 387–420. [Google Scholar] [CrossRef] [PubMed]
- National Institute for Health and Care Excellence. Multimorbidity: Assessment, Prioritisation and Management of Care for People with Commonly Occurring Multimorbidity; NICE: London, UK, 2016. [Google Scholar]
- Ham, C. Integrated Care: What is it? Does it Work? What Does it Mean for the NHS? The King′s Fund: London, UK, 2010. [Google Scholar]
- Nolte, E.; Knai, C.; Saltman, R.B. Assessing Chronic Disease Management in European Health Systems; European Observatory on Health Systems and Policies: Brussels, Belgium, 2014; ISBN 9789289050302. [Google Scholar]
- Elwyn, G.; Vermunt, N.P.C.A. Goal-Based Shared Decision-Making: Developing an Integrated Model. J. Patient Exp. 2020, 7, 688–696. [Google Scholar] [CrossRef] [Green Version]
- Mateo-Abad, M.; Fullaondo, A.; Merino, M.; Gris, S.; Marchet, F.; Avolio, F.; Graps, E.; Ravic, M.; Kovac, M.; Benkovic, V.; et al. Impact Assessment of an Innovative Integrated Care Model for Older Complex Patients with Multimorbidity: The CareWell Project. Int. J. Integr. Care 2020, 20, 8. [Google Scholar] [CrossRef]
- Blay, C.; Limón, E.; Alburquerque, J.; Amblàs, J.; Ansa, X.; Ariño, S.; Benet, C. Bases per a un Model Català d’Atenció a les Persones amb Necessitats Complexes. Programa Prev. i Atenció a La Cronicitat 2017, 1–66. Available online: http://hdl.handle.net/11351/3305 (accessed on 22 March 2021).
- Tortajada, S.; Giménez-Campos, M.S.; Villar-López, J.; Faubel-Cava, R.; Donat-Castelló, L.; Valdivieso-Martínez, B.; Soriano-Melchor, E.; Bahamontes-Mulió, A.; García-Gómez, J.M. Case Management for Patients with Complex Multimorbidity: Development and Validation of a Coordinated Intervention between Primary and Hospital Care. Int. J. Integr. Care 2017, 17, 4. [Google Scholar] [CrossRef] [Green Version]
- Ahgren, B. Chain of care development in Sweden: Results of a national study. Int. J. Integr. Care 2003, 3, e01. [Google Scholar] [CrossRef] [Green Version]
- Contel, J.C.; Ledesma, A.; Blay, C.; Mestre, A.G.; Cabezas, C.; Puigdollers, M.; Zara, C.; Amil, P.; Sarquella, E.; Constante, C. Chronic and integrated care in Catalonia. Int. J. Integr. Care 2015, 15, e025. [Google Scholar] [CrossRef] [Green Version]
- Zullig, L.L.; Whitson, H.E.; Hastings, S.N.; Beadles, C.; Kravchenko, J.; Akushevich, I.; Maciejewski, M.L. A Systematic Review of Conceptual Frameworks of Medical Complexity and New Model Development. J. Gen. Intern. Med. 2016, 31, 329–337. [Google Scholar] [CrossRef]
- Kuipers, P.; Kendall, E.; Ehrlich, C.; McIntyre, M.; Barber, L.; Amsters, D.; Kendall, M.; Kuipers, K.; Muenchberger, H.; Brownie, S. Complexity and Health Care: Health Practicioner Workforce Services, Roles, Skills and Training, to Respond to Patients with Complex Needs; Queensland Health: Brisbane, Australia, 2011; pp. 1–25. [Google Scholar]
- Catalunya. Departament de La Presidència; Termcat, C.D.T. Terminologia de L’atenció Integrada [en línia]. Available online: http://www.termcat.cat/ca/Diccionaris_En_Linia/230/ (accessed on 17 May 2021).
- Amblàs-Novellas, J.; Amil, P.; Bocanegra, I.; Bullich, Í.; Contel, J.C.; Gil, E.; Giráldez, G.; González, A.; Melendo, E.M.; Mir, V.; et al. Bases Conceptuals i Model D’atenció per a Les Persones Fràgils, Amb Cronicitat Complexa (PCC) o Avançada (MACA); Generalitat de Catalunya (Government of Catalonia) Health Department: Barcelona, Spain, 2020. [Google Scholar]
- Murray, S.A.; Kendall, M.; Mitchell, G.; Moine, S.; Amblàs-Novellas, J.; Boyd, K. Palliative care from diagnosis to death. BMJ 2017, 356, j878. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Batiste, X.; Martínez-Muñoz, M.; Blay, C.; Amblàs, J.; Vila, L.; Costa, X.; Villanueva, A.; Espaulella, J.; Espinosa, J.; Figuerola, M.; et al. Identifying patients with chronic conditions in need of palliative care in the general population: Development of the NECPAL tool and preliminary prevalence rates in Catalonia. BMJ Support. Palliat. Care 2013, 3, 300–308. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Batiste, X.; Martínez-Muñoz, M.; Blay, C.; Amblàs, J.; Vila, L.; Costa, X.; Espaulella, J.; Espinosa, J.; Constante, C.; Mitchell, G.K. Prevalence and characteristics of patients with advanced chronic conditions in need of palliative care in the general population: A cross-sectional study. Palliat. Med. 2014, 28, 302–311. [Google Scholar] [CrossRef]
- Amblàs-Novellas, J.; Espaulella, J.; Rexach, L.; Fontecha, B.; Inzitari, M.; Blay, C.; Gómez-Batiste, X. Frailty, severity, progression and shared decision-making: A pragmatic framework for the challenge of clinical complexity at the end of life. Eur. Geriatr. Med. 2015, 6, 189–194. [Google Scholar] [CrossRef]
- Kumpunen, S.; Edwards, N.; Georghiou, T.; Hughes, G. Why do evaluations of integrated care not produce the results we expect? Int. J. Care Coord. 2020, 23, 9–13. [Google Scholar] [CrossRef]
- Cancio, J.M.; Vela, E.; Santaeugènia, S.; Clèries, M.; Inzitari, M.; Ruiz, D. Influence of demographic and clinical characteristics of elderly patients with a hip fracture on mortality: A retrospective, total cohort study in North-East Spain. Bone 2018, 117, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Cancio, J.M.; Vela, E.; Santaeugènia, S.; Clèries, M.; Inzitari, M.; Ruiz, D. Long-term Impact of Hip Fracture on the Use of Healthcare Resources: A Population-Based Study. J. Am. Med. Dir. Assoc. 2019, 20, 456–461. [Google Scholar] [CrossRef]
- Amblàs-Novellas, J.; Santaeugènia, S.J.; Vela, E.; Clèries, M.; Contel, J.C. What lies beneath: A retrospective, population-based cohort study investigating clinical and resource-use characteristics of institutionalized older people in Catalonia. BMC Geriatr. 2020, 20, 187. [Google Scholar] [CrossRef]
- Monterde, D.; Vela, E.; Clèries, M. Adjusted morbidity groups: A new multiple morbidity measurement of use in Primary Care. Aten. Primaria 2016, 48, 674–682. [Google Scholar] [CrossRef] [Green Version]
- Monterde, D.; Vela, E.; Clèries, M.; Garcia-Eroles, L.; Roca, J.; Pérez-Sust, P. Multimorbidity as a predictor of health service utilization in primary care: A registry-based study of the Catalan population. BMC Fam. Pract. 2020, 21, 39. [Google Scholar] [CrossRef] [PubMed]
- Dueñas-Espín, I.; Vela, E.; Pauws, S.; Bescos, C.; Cano, I.; Cleries, M.; Contel, J.C.; de Manuel Keenoy, E.; Garcia-Aymerich, J.; Gomez-Cabrero, D.; et al. Proposals for enhanced health risk assessment and stratification in an integrated care scenario. BMJ Open 2016, in press. [Google Scholar] [CrossRef] [Green Version]
- Vela, E.; Clèries, M.; Vella, V.A.; Adroher, C.; García-Altés, A. Population-based analysis of the Healthcare expenditure in Catalonia (Spain): What and who consumes more resources? Gac. Sanit. 2019, 33, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Batiste, X.; Blay, C.; Broggi, M.A.; Lasmarias, C.; Vila, L.; Amblàs, J.; Espaulella, J.; Costa, X.; Martínez-Muñoz, M.; Robles, B.; et al. Ethical Challenges of Early Identification of Advanced Chronic Patients in Need of Palliative Care. J. Palliat. Care 2018, 33, 247–251. [Google Scholar] [CrossRef]
- Nardi, R.; Scanelli, G.; Corrao, S.; Iori, I.; Mathieu, G.; Cataldi Amatrian, R. Co-morbidity does not reflect complexity in internal medicine patients. Eur. J. Intern. Med. 2007, 18, 359–368. [Google Scholar] [CrossRef] [Green Version]
- Loeb, D.F.; Binswanger, I.A.; Candrian, C.; Bayliss, E.A. Primary care physician insights into a typology of the complex patient in primary care. Ann. Fam. Med. 2015, 13, 451–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valderas, J.M.; Starfield, B.; Sibbald, B.; Salisbury, C.; Roland, M. Defining Comorbidity: Implications for Understanding Health and Health Services. Ann. Fam. Med. 2007, 5, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Batiste, X.; Turrillas, P.; Tebé, C.; Calsina-Berna, A.; Amblàs-Novellas, J. NECPAL tool prognostication in advanced chronic illness: A rapid review and expert consensus. BMJ Support. Palliat. Care 2020. [Google Scholar] [CrossRef]
- Central Catalonia Chronicity Research Group Utility of NECPAL. Available online: https://en.c3rg.com/necpal (accessed on 29 November 2020).
- Barnett, K.; Mercer, S.W.; Norbury, M.; Watt, G.; Wyke, S.; Guthrie, B. Epidemiology of multimorbidity and implications for health care, research, and medical education: A cross-sectional study. Lancet 2012, 380, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Hayes, S.L.; Salzberg, C.A.; McCarthy, D.; Radley, D.C.; Abrams, M.K.; Shah, T.; Anderson, G.F. High-Need, High-Cost Patients: Who Are They and How Do They Use Health Care? A Population-Based Comparison of Demographics, Health Care Use, and Expenditures. Issue Brief 2016, 26, 1–14. [Google Scholar]
- Agborsangaya, C.B.; Lau, D.; Lahtinen, M.; Cooke, T.; Johnson, J.A. Multimorbidity prevalence and patterns across socioeconomic determinants: A cross-sectional survey. BMC Public Health 2012, 12, 201. [Google Scholar] [CrossRef] [Green Version]
- McLean, G.; Gunn, J.; Wyke, S.; Guthrie, B.; Watt, G.C.M.; Blane, D.N.; Mercer, S.W. The influence of socioeconomic deprivation on multimorbidity at different ages: A cross-sectional study. Br. J. Gen. Pract. 2014, 64, e440–e447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schiøtz, M.L.; Stockmarr, A.; Høst, D.; Glümer, C.; Frølich, A. Social disparities in the prevalence of multimorbidity—A register-based population study. BMC Public Health 2017, 17, 422. [Google Scholar] [CrossRef] [Green Version]
- Mbuya-Bienge, C.; Simard, M.; Gaulin, M.; Candas, B.; Sirois, C. Does socio-economic status influence the effect of multimorbidity on the frequent use of ambulatory care services in a universal healthcare system? A population-based cohort study. BMC Health Serv. Res. 2021, 21, 202. [Google Scholar] [CrossRef] [PubMed]
- Wammes, J.J.G.; van der Wees, P.J.; Tanke, M.A.C.; Westert, G.P.; Jeurissen, P.P.T. Systematic review of high-cost patients’ characteristics and healthcare utilisation. BMC Open 2018, 8, e023113. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.; Manolova, G.; Daskalopoulou, C.; Vitoratou, S.; Prince, M.; Prina, A.M. Prevalence of multimorbidity in community settings: A systematic review and meta-analysis of observational studies. J. Comorb. 2019, 9. [Google Scholar] [CrossRef]
- Finucane, A.M.; Davydaitis, D.; Horseman, Z.; Carduff, E.; Baughan, P.; Tapsfield, J.; Spiller, J.A.; Meade, R.; Lydon, B.; Thompson, I.M.; et al. Electronic care coordination systems for people with advanced progressive illness: A mixed-methods evaluation in Scottish primary care. Br. J. Gen. Pract. 2020, 70, e20–e28. [Google Scholar] [CrossRef]
- Gold Standards Framework. Proactive Identification Guidance. 2017. Available online: https://goldstandardsframework.org.uk/pig (accessed on 22 March 2021).
- Tools to Aid Clinical Identification of End of Life: An Evidence Check Rapid Review Brokered by the Sax Institute for the Agency for Clinical Innovation. 2017. Available online: https://www.saxinstitute.org.au/wp-content/uploads/Tools-to-aid-clinical-identification-of-end-of-life.pdf (accessed on 22 March 2021).
CCP | ACP | p-Value a | |
---|---|---|---|
N = 303,357 | N = 98,587 | ||
Sociodemographic characteristics | |||
Sex | |||
Male | 133,454 (44.0) | 46,007 (46.7) | <0.001 |
Female | 169,903 (56.0) | 52,580 (53.3) | |
Age, years | |||
<15 | 1020 (0.34) | 134 (0.14) | <0.001 |
15–44 | 5060 (1.67) | 1074 (1.09) | |
45–64 | 25,466 (8.39) | 8921 (9.05) | |
65–74 | 45,554 (15.0) | 12,871 (13.1) | |
75–84 | 113,495 (37.4) | 28,701 (29.1) | |
>84 | 112,762 (37.2) | 46,886 (47.6) | |
Income level | |||
High | 701 (0.23) | 350 (0.36) | <0.001 |
Medium | 46,586 (15.4) | 16,439 (16.7) | |
Low | 244,127 (80.5) | 78,429 (79.6) | |
Very Low | 11,930 (3.93) | 3358 (3.41) | |
Clinical Characteristics | |||
GMA stratification | |||
Baseline risk | 1704 (0.56) | 304 (0.31) | <0.001 |
Low risk | 19,826 (6.54) | 3508 (3.56) | |
Moderate risk | 119,234 (39.3) | 26,512 (26.9) | |
High risk | 162,593 (53.6) | 68,263 (69.2) | |
Comorbidities | |||
Arterial hypertension | 247,001 (81.4) | 76,284 (77.4) | <0.001 |
Arthrosis | 157,006 (51.8) | 47,320 (48.0) | <0.001 |
Diabetes mellitus | 124,762 (41.1) | 35,848 (36.4) | <0.001 |
Heart failure | 100,330 (33.1) | 35,084 (35.6) | <0.001 |
Chronic kidney disease | 98,985 (32.6) | 34,539 (35.0) | <0.001 |
Chronic obstructive pulmonary disease | 87,748 (28.9) | 29,954 (30.4) | <0.001 |
Depression | 91,961 (30.3) | 28,305 (28.7) | <0.001 |
Ictus | 71,847 (23.7) | 25,735 (26.1) | <0.001 |
Ischemic heart disease | 70,247 (23.2) | 21,187 (21.5) | <0.001 |
Dementia | 43,957 (14.5) | 20,492 (20.8) | <0.001 |
Osteoporosis | 53,707 (17.7) | 16,572 (16.8) | <0.001 |
Arthritis | 28,422 (9.37) | 9031 (9.16) | 0.051 |
Cirrhosis | 6853 (2.26) | 3173 (3.22) | <0.001 |
HIV infection | 1617 (0.53) | 360 (0.37) | <0.001 |
2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | p-Value a | |
---|---|---|---|---|---|---|---|---|
N = 68,382 | N = 70,996 | N = 39,770 | N = 29,098 | N = 37,907 | N = 33,916 | N = 23,288 | ||
Sociodemographic characteristics | ||||||||
Sex | ||||||||
Male | 30,738 (45.0) | 31,081 (43.8) | 17,252 (43.4) | 12,902 (44.3) | 16,664 (44.0) | 14,710 (43.4) | 10,107 (43.4) | <0.001 |
Female | 37,644 (55.0) | 39,915 (56.2) | 22,518 (56.6) | 16,196 (55.7) | 21,243 (56.0) | 19,206 (56.6) | 13,181 (56.6) | |
Age, years | ||||||||
<15 | 250 (0.37) | 263 (0.37) | 126 (0.32) | 80 (0.27) | 60 (0.16) | 104 (0.31) | 137 (0.59) | <0.001 |
15–44 | 1222 (1.79) | 1596 (2.25) | 593 (1.49) | 453 (1.56) | 534 (1.41) | 364 (1.07) | 298 (1.28) | |
45–64 | 6319 (9.24) | 6243 (8.79) | 3109 (7.82) | 2342 (8.05) | 2992 (7.89) | 2536 (7.48) | 1925 (8.27) | |
65–74 | 10,738 (15.7) | 10,766 (15.2) | 5787 (14.6) | 4231 (14.5) | 5714 (15.1) | 4950 (14.6) | 3368 (14.5) | |
75–84 | 27,234 (39.8) | 27,078 (38.1) | 14,867 (37.4) | 10,634 (36.5) | 13,906 (36.7) | 11,835 (34.9) | 7941 (34.1) | |
>84 | 22,619 (33.1) | 25,050 (35.3) | 15,288 (38.4) | 11,358 (39.0) | 14,701 (38.8) | 14,127 (41.7) | 9619 (41.3) | |
Income level | ||||||||
High | 118 (0.17) | 129 (0.18) | 83 (0.21) | 71 (0.24) | 110 (0.29) | 97 (0.29) | 93 (0.40) | 0.0000 |
Medium | 9409 (13.8) | 9663 (13.6) | 5812 (14.6) | 4826 (16.6) | 6406 (16.9) | 5886 (17.4) | 4584 (19.7) | |
Low | 54,858 (80.2) | 60,332 (85.0) | 31,908 (80.2) | 22,858 (78.6) | 29,919 (78.9) | 26,604 (78.4) | 17,648 (75.8) | |
Very Low | 3991 (5.84) | 869 (1.22) | 1963 (4.94) | 1343 (4.62) | 1472 (3.88) | 1329 (3.92) | 963 (4.14) | |
Clinical characteristics | ||||||||
GMA stratification | ||||||||
Baseline risk | 558 (0.82) | 461 (0.65) | 248 (0.62) | 177 (0.61) | 120 (0.32) | 71 (0.21) | 69 (0.30) | 0.0000 |
Low risk | 6296 (9.21) | 5285 (7.44) | 2584 (6.50) | 1628 (5.59) | 1841 (4.86) | 1285 (3.79) | 907 (3.89) | |
Moderate risk | 29,499 (43.1) | 29,241 (41.2) | 16,310 (41.0) | 11,004 (37.8) | 13,834 (36.5) | 11,634 (34.3) | 7712 (33.1) | |
High risk | 32,029 (46.8) | 36,009 (50.7) | 20,628 (51.9) | 16,289 (56.0) | 22,112 (58.3) | 20,926 (61.7) | 14,600 (62.7) | |
Comorbidities | ||||||||
Diabetes mellitus | 30,682 (44.9) | 30,241 (42.6) | 15,705 (39.5) | 11,326 (38.9) | 15,044 (39.7) | 12,976 (38.3) | 8788 (37.7) | <0.001 |
Heart failure | 24,134 (35.3) | 23,634 (33.3) | 13,075 (32.9) | 9554 (32.8) | 11,937 (31.5) | 10,672 (31.5) | 7324 (31.4) | <0.001 |
COPD | 21,552 (31.5) | 21,044 (29.6) | 11,076 (27.9) | 8083 (27.8) | 10,557 (27.8) | 9164 (27.0) | 6272 (26.9) | <0.001 |
Arterial hypertension | 55,972 (81.9) | 57,452 (80.9) | 32,304 (81.2) | 23,620 (81.2) | 31,069 (82.0) | 27,682 (81.6) | 18,902 (81.2) | <0.001 |
Depression | 18,709 (27.4) | 20,893 (29.4) | 11,895 (29.9) | 9188 (31.6) | 12,181 (32.1) | 11,217 (33.1) | 7878 (33.8) | <0.001 |
HIV infection | 428 (0.63) | 526 (0.74) | 197 (0.50) | 111 (0.38) | 140 (0.37) | 130 (0.38) | 85 (0.36) | <0.001 |
Ischemic heart disease | 17,327 (25.3) | 17,116 (24.1) | 8937 (22.5) | 6499 (22.3) | 8322 (22.0) | 7189 (21.2) | 4857 (20.9) | <0.001 |
Ictus | 15,671 (22.9) | 16,442 (23.2) | 9478 (23.8) | 7004 (24.1) | 9107 (24.0) | 8383 (24.7) | 5762 (24.7) | <0.001 |
Chronic kidney disease | 20,601 (30.1) | 21,667 (30.5) | 12,603 (31.7) | 9745 (33.5) | 13,558 (35.8) | 12,469 (36.8) | 8342 (35.8) | <0.001 |
Cirrhosis | 1559 (2.28) | 1640 (2.31) | 956 (2.40) | 653 (2.24) | 845 (2.23) | 677 (2.00) | 523 (2.25) | 0.016 |
Osteoporosis | 10,591 (15.5) | 12,082 (17.0) | 6900 (17.3) | 5260 (18.1) | 7491 (19.8) | 6752 (19.9) | 4631 (19.9) | <0.001 |
Arthrosis | 32,201 (47.1) | 35,116 (49.5) | 20,336 (51.1) | 15,501 (53.3) | 21,187 (55.9) | 19,258 (56.8) | 13,407 (57.6) | 0.000 |
Arthritis | 4927 (7.21) | 6089 (8.58) | 3374 (8.48) | 2859 (9.83) | 4221 (11.1) | 3955 (11.7) | 2997 (12.9) | <0.001 |
Dementia | 7846 (11.5) | 9288 (13.1) | 5841 (14.7) | 4424 (15.2) | 6051 (16.0) | 6174 (18.2) | 4333 (18.6) | <0.001 |
2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | p-Value a | |
---|---|---|---|---|---|---|---|---|
N = 13,206 | N = 18,137 | N = 14,755 | N = 12,918 | N = 14,587 | N = 14,040 | N = 10,944 | ||
Sociodemographic characteristics | ||||||||
Sex | ||||||||
Male | 6122 (46.4) | 8440 (46.5) | 6950 (47.1) | 6134 (47.5) | 6828 (46.8) | 6495 (46.3) | 5038 (46.0) | 0.236 |
Female | 7084 (53.6) | 9697 (53.5) | 7805 (52.9) | 6784 (52.5) | 7759 (53.2) | 7545 (53.7) | 5906 (54.0) | |
Age, years | ||||||||
<15 | 31 (0.23) | 18 (0.10) | 15 (0.10) | 13 (0.10) | 11 (0.08) | 27 (0.19) | 137 (0.59) | <0.001 |
15–44 | 208 (1.58) | 213 (1.17) | 158 (1.07) | 126 (0.98) | 152 (1.04) | 123 (0.88) | 298 (1.28) | |
45–64 | 1310 (9.92) | 1623 (8.95) | 1292 (8.76) | 1167 (9.03) | 1333 (9.14) | 1286 (9.16) | 1925 (8.27) | |
65–74 | 1694 (12.8) | 2380 (13.1) | 1944 (13.2) | 1720 (13.3) | 1894 (13.0) | 1840 (13.1) | 3368 (14.5) | |
75–84 | 4306 (32.6) | 5557 (30.6) | 4439 (30.1) | 3606 (27.9) | 4107 (28.2) | 3796 (27.0) | 7941 (34.1) | |
>84 | 5657 (42.8) | 8346 (46.0) | 6907 (46.8) | 6286 (48.7) | 7090 (48.6) | 6968 (49.6) | 9619 (41.3) | |
Income level | ||||||||
High | 40 (0.30) | 45 (0.25) | 42 (0.28) | 45 (0.35) | 52 (0.36) | 66 (0.47) | 19 (0.17) | <0.001 |
Medium | 1829 (13.9) | 2563 (14.1) | 2310 (15.7) | 2294 (17.8) | 2717 (18.6) | 2600 (18.5) | 94 (0.86) | |
Low | 10,622 (80.5) | 15,284 (84.3) | 11,791 (79.9) | 10,110 (78.3) | 1130 (77.5) | 10,893 (77.6) | 910 (8.32) | |
Very Low | 708 (5.36) | 244 (1.35) | 609 (4.13) | 469 (3.63) | 517 (3.54) | 481 (3.43) | 1399 (12.8) | |
Clinical characteristics | ||||||||
GMA stratification | ||||||||
Baseline risk | 88 (0.67) | 65 (0.36) | 60 (0.41) | 33 (0.26) | 26 (0.18) | 19 (0.14) | 13 (0.12) | 0.0000 |
Low risk | 840 (6.36) | 888 (4.90) | 615 (4.17) | 378 (2.93) | 331 (2.27) | 276 (1.97) | 180 (1.64) | |
Moderate risk | 4562 (34.5) | 5627 (31.0) | 4258 (28.9) | 3393 (26.3) | 3485 (23.9) | 3015 (21.5) | 2172 (19.8) | |
High risk | 7716 (58.4) | 11,557 (63.7) | 9822 (66.6) | 9114 (70.6) | 10,745 (73.7) | 10,730 (76.4) | 8579 (78.4) | |
Comorbidities | ||||||||
Diabetes mellitus | 4963 (37.6) | 6627 (36.5) | 5262 (35.7) | 4646 (36.0) | 5350 (36.7) | 4983 (35.5) | 4017 (36.7) | 0.005 |
Heart failure | 4768 (36.1) | 6390 (35.2) | 5204 (35.3) | 4539 (35.1) | 5221 (35.8) | 4891 (34.8) | 4071 (37.2) | 0.002 |
COPD | 3992 (30.2) | 5590 (30.8) | 4522 (30.6) | 3861 (29.9) | 4428 (30.4) | 4144 (29.5) | 3417 (31.2) | 0.053 |
Arterial hypertension | 10,060 (76.2) | 13,823 (76.2) | 11,290 (76.5) | 10,048 (77.8) | 11,471 (78.6) | 10,923 (77.8) | 8669 (79.2) | <0.001 |
Depression | 3304 (25.0) | 4835 (26.7) | 4098 (27.8) | 3684 (28.5) | 4460 (30.6) | 340 (30.9) | 3584 (32.7) | <0.001 |
HIV infection | 63 (0.48) | 68 (0.37) | 55 (0.37) | 41 (0.32) | 48 (0.33) | 45 (0.32) | 40 (0.37) | 0.348 |
Ischemic heart disease | 3090 (23.4) | 4031 (22.2) | 3086 (20.9) | 2678 (20.7) | 3089 (21.2) | 2917 (20.8) | 2296 (21.0) | <0.001 |
Ictus | 3122 (23.6) | 4574 (25.2) | 3771 (25.6) | 3301 (25.6) | 3963 (27.2) | 3887 (27.7) | 3117 (28.5) | <0.001 |
Chronic kidney disease | 4121 (31.2) | 5778 (31.9) | 4855 (32.9) | 4535 (35.1) | 5485 (37.6) | 5381 (38.3) | 4384 (40.1) | <0.001 |
Cirrhosis | 425 (3.22) | 616 (3.40) | 495 (3.35) | 420 (3.25) | 506 (3.47) | 398 (2.83) | 313 (2.86) | 0.010 |
Osteoporosis | 1839 (13.9) | 2823 (15.6) | 2317 (15.7) | 2163 (16.7) | 2658 (18.2) | 2604 (18.5) | 2168 (19.8) | <0.001 |
Arthrosis | 5556 (42.1) | 7966 (43.9) | 6863 (46.5) | 6275 (48.6) | 7452 (51.1) | 7286 (51.9) | 5922 (54.1) | <0.001 |
Arthritis | 914 (6.92) | 1352 (7.45) | 1212 (8.21) | 1219 (9.44) | 1506 (10.3) | 1474 (10.5) | 1354 (12.4) | <0.001 |
Dementia | 2050 (15.5) | 3257 (18.0) | 2761 (18.7) | 2581 (20.0) | 3172 (21.7) | 3766 (26.8) | 2905 (26.5) | <0.001 |
CCP | ACP | |||
---|---|---|---|---|
Women | Men | Women | Men | |
Income level, €/year | ||||
High (>100,000) | 8.0 | 6.0 | 1.6 | 1.4 |
Intermediate (18,000–100,000) | 12.0 | 13.1 | 2.1 | 2.3 |
Low (<18,000) | 36.4 | 27.0 | 6.2 | 4.6 |
Very low (unemployed/receiving welfare support) | 36.8 | 25.7 | 5.1 | 3.9 |
CCP | Adjusted Non-CCP Population | p-Value a | ACP | Adjusted Non-ACP Population | p-Value a | |
---|---|---|---|---|---|---|
Diabetes | 43.8 | 24.4 | <0.001 | 38.3 | 26.6 | <0.001 |
Chronic kidney disease | 41.5 | 24.2 | <0.001 | 42.0 | 29.2 | <0.001 |
Heart failure | 39.0 | 13.8 | <0.001 | 40.7 | 20.0 | <0.001 |
Cancer | 34.2 | 25.0 | <0.001 | 48.5 | 26.4 | <0.001 |
COPD | 32.3 | 15.3 | <0.001 | 32.5 | 18.0 | <0.001 |
Dementia | 30.4 | 13.9 | <0.001 | 38.8 | 18.2 | <0.001 |
Stroke | 29.3 | 13.9 | <0.001 | 31.2 | 17.0 | <0.001 |
Ischemic heart disease | 26.1 | 12.7 | <0.001 | 24.1 | 15.3 | <0.001 |
Arthritis | 14.7 | 9.4 | <0.001 | 13.0 | 10.1 | <0.001 |
Asthma | 12.8 | 7.2 | <0.001 | 11.3 | 7.9 | <0.001 |
Alcoholism | 5.9 | 2.0 | <0.001 | 5.9 | 2.2 | <0.001 |
Atypical psychosis | 4.6 | 1.6 | <0.001 | 5.1 | 2.2 | <0.001 |
Major depressive disorder | 4.2 | 2.0 | <0.001 | 3.4 | 2.1 | <0.001 |
Cirrhosis | 2.8 | 0.9 | <0.001 | 3.4 | 1.0 | <0.001 |
Schizophrenia | 1.8 | 0.6 | <0.001 | 1.3 | 0.7 | <0.001 |
Bipolar disorder | 1.4 | 0.6 | <0.001 | - | - | <0.001 |
CCP | Adjusted Non-CCP Population | p-Value a | ACP | Adjusted Non-ACP Population | p-Value a | |
---|---|---|---|---|---|---|
Healthcare services utilization | ||||||
Ambulatory healthcare services (visits or admissions per patient and year), mean | ||||||
Primary care | 21.1 | 11.3 | <0.001 | 22.2 | 12.8 | <0.001 |
Outpatient care | 4.3 | 2.6 | <0.001 | 4.7 | 2.5 | <0.001 |
Emergency department | 1.3 | 0.6 | <0.001 | 1.6 | 0.7 | <0.001 |
Day hospital | 0.7 | 0.2 | <0.001 | 1.5 | 0.3 | <0.001 |
Mental health | 0.2 | 0.1 | <0.001 | 0.1 | 0.1 | <0.001 |
Prescribed drugs (number per patient and year) | 12.6 | 8.0 | <0.001 | 12.7 | 8.7 | <0.001 |
Rate of admissions (institutionalizations), admissions per 100 patients and year | ||||||
Acute care hospital | 64.4 | 27.1 | <0.001 | 88.4 | 31.9 | <0.001 |
Intermediate care hospital | 17.0 | 5.7 | <0.001 | 35.5 | 8.1 | <0.001 |
Psychiatric center | 0.5 | 0.1 | <0.001 | 0.2 | 0.1 | <0.001 |
Healthcare services expenditure (€ per person and year) (%) b | p-value c | p-value c | ||||
Primary care | 653.5 (10.75) | 367.8 (14.98) | <0.001 | 667.3 (8.35) | 413.5 (14.59) | <0.001 |
Outpatient care | 441.2 (7.26) | 225.1 (9.17) | <0.001 | 618.1 (7.73) | 221.9 (7.83) | <0.001 |
Hospital admissions | 1713.6 (28.19) | 698.8 (28.46) | <0.001 | 2385.9 (29.84) | 821.1 (28.98) | <0.001 |
Emergency department | 551.4 (9.07) | 223.9 (9.12) | <0.001 | 696.3 (8.71) | 286.0 (10.09) | <0.001 |
Mental health | 30.8 (0.51) | 10.4 (0.42) | <0.001 | 11.5 (0.14) | 9.5 (0.34) | 0.167 |
Intermediate care center | 475.9 (7.83) | 163.5 (6.66) | <0.001 | 774.4 (9.69) | 224.4 (7.92) | <0.001 |
Prescribed drugs | 1709.2 (28.12) | 684.9 (27.90) | <0.001 | 2211.6 (27.66) | 742.4 (26.20) | <0.001 |
Other healthcare services | 502.8 (8.27) | 80.9 (3.30) | <0.001 | 630.1 (7.88) | 114.4 (4.04) | <0.001 |
Total healthcare costs | 6078.3 | 2455.2 | <0.001 | 7995.2 | 2833.3 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santaeugènia, S.J.; Contel, J.C.; Vela, E.; Cleries, M.; Amil, P.; Melendo-Azuela, E.M.; Gil-Sánchez, E.; Mir, V.; Amblàs-Novellas, J. Characteristics and Service Utilization by Complex Chronic and Advanced Chronic Patients in Catalonia: A Retrospective Seven-Year Cohort-Based Study of an Implemented Chronic Care Program. Int. J. Environ. Res. Public Health 2021, 18, 9473. https://doi.org/10.3390/ijerph18189473
Santaeugènia SJ, Contel JC, Vela E, Cleries M, Amil P, Melendo-Azuela EM, Gil-Sánchez E, Mir V, Amblàs-Novellas J. Characteristics and Service Utilization by Complex Chronic and Advanced Chronic Patients in Catalonia: A Retrospective Seven-Year Cohort-Based Study of an Implemented Chronic Care Program. International Journal of Environmental Research and Public Health. 2021; 18(18):9473. https://doi.org/10.3390/ijerph18189473
Chicago/Turabian StyleSantaeugènia, Sebastià J., Joan C. Contel, Emili Vela, Montserrat Cleries, Paloma Amil, Eva M. Melendo-Azuela, Esther Gil-Sánchez, Victoria Mir, and Jordi Amblàs-Novellas. 2021. "Characteristics and Service Utilization by Complex Chronic and Advanced Chronic Patients in Catalonia: A Retrospective Seven-Year Cohort-Based Study of an Implemented Chronic Care Program" International Journal of Environmental Research and Public Health 18, no. 18: 9473. https://doi.org/10.3390/ijerph18189473
APA StyleSantaeugènia, S. J., Contel, J. C., Vela, E., Cleries, M., Amil, P., Melendo-Azuela, E. M., Gil-Sánchez, E., Mir, V., & Amblàs-Novellas, J. (2021). Characteristics and Service Utilization by Complex Chronic and Advanced Chronic Patients in Catalonia: A Retrospective Seven-Year Cohort-Based Study of an Implemented Chronic Care Program. International Journal of Environmental Research and Public Health, 18(18), 9473. https://doi.org/10.3390/ijerph18189473