The Association between Use of Benzodiazepine Receptor Agonists and the Risk of Obstructive Sleep Apnea: A Nationwide Population-Based Nested Case-Control Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Study Design
2.3. Study Population
2.4. Exposure to BZRAs
2.5. Primary and Secondary Outcomes
2.6. Potential Confounding Factors
2.7. Statistical Analysis
3. Results
3.1. Clinical Characteristics of the Study Population
3.2. Primary Outcome: Exposure to and Use of BZRAs and Risk of OSA Development
3.3. Secondary Outcomes: Risk Association between Several BZRAs and Cumulative Dosage in OSA Development
3.4. Secondary Outcomes: Pharmacokinetic Property Risk Association of BZRAs in OSA Development
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carberry, J.; Amatoury, J.; Eckert, D.J. Personalized Management Approach for OSA. Chest 2018, 153, 744–755. [Google Scholar] [CrossRef] [PubMed]
- Senaratna, C.V.; Perret, J.L.; Lodge, C.J.; Lowe, A.J.; Campbell, B.E.; Matheson, M.C.; Hamilton, G.S.; Dharmage, S.C. Prevalence of obstructive sleep apnea in the general population: A systematic review. Sleep Med. Rev. 2017, 34, 70–81. [Google Scholar] [CrossRef]
- Dalewski, B.; Kamińska, A.; Syrico, A.; Kałdunska, A.; Pałka, Ł.; Sobolewska, E. The Usefulness of Modified Mallampati Score and CT Upper Airway Volume Measurements in Diagnosing OSA among Patients with Breathing-Related Sleep Disorders. Appl. Sci. 2021, 11, 3764. [Google Scholar] [CrossRef]
- Sata, N.; Inoshita, A.; Suda, S.; Shiota, S.; Shiroshita, N.; Kawana, F.; Suzuki, Y.; Matsumoto, F.; Ikeda, K.; Kasai, T. Clinical, polysomnographic, and cephalometric features of obstructive sleep apnea with AHI over 100. Sleep Breath. 2021, 25, 1379–1387. [Google Scholar] [CrossRef]
- Aurora, R.N.; Punjabi, N.M. Obstructive Sleep Apnea, Sleepiness, and Glycemic Control in Type 2 Diabetes. J. Clin. Sleep Med. 2019, 15, 749–755. [Google Scholar] [CrossRef] [PubMed]
- Lal, C.; Strange, C.; Bachman, D. Neurocognitive Impairment in Obstructive Sleep Apnea. Chest 2012, 141, 1601–1610. [Google Scholar] [CrossRef] [PubMed]
- Linselle, M.; Sommet, A.; Bondon-Guitton, E.; Moulis, F.; Durrieu, G.; Benevent, J.; Rousseau, V.; Chebane, L.; Bagheri, H.; Montastruc, F.; et al. Can drugs induce or aggravate sleep apneas? A case-noncase study in VigiBase®, the WHO pharmacovigilance database. Fundam. Clin. Pharmacol. 2017, 31, 359–366. [Google Scholar] [CrossRef]
- Luyster, F.S.; Buysse, D.J.; Strollo, P.J. Comorbid Insomnia and Obstructive Sleep Apnea: Challenges for Clinical Practice and Research. J. Clin. Sleep Med. 2010, 6, 196–204. [Google Scholar] [CrossRef] [Green Version]
- Krakow, B.; Ulibarri, V.A.; Romero, E.A.; McIver, N.D. A two-year prospective study on the frequency and co-occurrence of insomnia and sleep-disordered breathing symptoms in a primary care population. Sleep Med. 2013, 14, 814–823. [Google Scholar] [CrossRef]
- Carberry, J.C.; Grunstein, R.R.; Eckert, D.J. The effects of zolpidem in obstructive sleep apnea–An open-label pilot study. J. Sleep Res. 2019, 28, e12853. [Google Scholar] [CrossRef]
- Guilleminault, C. Benzodiazepines, breathing, and sleep. Am. J. Med. 1990, 88, S25–S28. [Google Scholar] [CrossRef]
- Carberry, J.C.; Fisher, L.P.; Grunstein, R.R.; Gandevia, S.C.; McKenzie, D.K.; Butler, J.E.; Eckert, D.J. Role of common hypnotics on the phenotypic causes of obstructive sleep apnoea: Paradoxical effects of zolpidem. Eur. Respir. J. 2017, 50, 1701344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carter, S.G.; Berger, M.S.; Carberry, J.; Bilston, L.E.; Butler, J.; Tong, B.; Martins, R.T.; Fisher, L.P.; McKenzie, D.K.; Grunstein, R.R.; et al. Zopiclone Increases the Arousal Threshold without Impairing Genioglossus Activity in Obstructive Sleep Apnea. Sleep 2016, 39, 757–766. [Google Scholar] [CrossRef] [Green Version]
- Eckert, D.J.; Owens, R.L.; Kehlmann, G.B.; Wellman, A.; Rahangdale, S.; Yim-Yeh, S.; White, D.P.; Malhotra, A. Eszopiclone increases the respiratory arousal threshold and lowers the apnoea/hypopnoea index in obstructive sleep apnoea patients with a low arousal threshold. Clin. Sci. 2011, 120, 505–514. [Google Scholar] [CrossRef] [Green Version]
- Nigam, G.; Camacho, M.; Riaz, M. The effect of nonbenzodiazepines sedative hypnotics on apnea–hypopnea index: A meta-analysis. Ann. Thorac. Med. 2019, 14, 49–55. [Google Scholar] [CrossRef]
- Chung, F.; Ankichetty, S.; Wong, J. A systematic review of the effects of sedatives and anesthetics in patients with obstructive sleep apnea. J. Anaesthesiol. Clin. Pharmacol. 2011, 27, 447–458. [Google Scholar] [CrossRef] [PubMed]
- Deflandre, E.; Bonhomme, V.; Courtois, A.-C.; Degey, S.; Poirrier, R.; Brichant, J.-F. Influence of premedication with alprazolam on the occurence of obstructive apneas. A prospective randomized double-blind study. J. Physiol. Pharmacol. Off. J. Pol. Physiol. Soc. 2016, 67, 617–624. [Google Scholar]
- Leiter, J.C.; Knuth, S.L.; Krol, R.C.; Bartlett, D. The effect of diazepam on genioglossal muscle activity in normal human subjects. Am. Rev. Respir. Dis. 1985, 132, 216–219. [Google Scholar] [CrossRef]
- Berry, R.B.; Kouchi, K.; Bower, J.; Prosise, G.; Light, R.W. Triazolam in patients with obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 1995, 151, 450–454. [Google Scholar] [CrossRef]
- Jordan, A.S.; McSharry, D.G.; Malhotra, A. Adult obstructive sleep apnoea. Lancet 2014, 383, 736–747. [Google Scholar] [CrossRef] [Green Version]
- Dergacheva, O.; Fleury-Curado, T.; Polotsky, V.Y.; Kay, M.; Jain, V.; Mendelowitz, D. GABA and glycine neurons from the ventral medullary region inhibit hypoglossal motoneurons. Sleep 2020, 43, 43. [Google Scholar] [CrossRef] [PubMed]
- Mason, M.; Cates, C.; Smith, I. Effects of opioid, hypnotic and sedating medications on sleep-disordered breathing in adults with obstructive sleep apnoea. Cochrane Database Syst. Rev. 2015, 14, CD011090. [Google Scholar] [CrossRef]
- Smith, P.R.; Sheikh, K.L.; Costan-Toth, C.; Forsthoefel, D.; Bridges, E.; Andrada, T.F.; Holley, A.B. Eszopiclone and Zolpidem Do Not Affect the Prevalence of the Low Arousal Threshold Phenotype. J. Clin. Sleep Med. 2017, 13, 115–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Airagnes, G.; Pelissolo, A.; Lavallée, M.; Flament, M.; Limosin, F. Benzodiazepine Misuse in the Elderly: Risk Factors, Consequences, and Management. Curr. Psychiatry Rep. 2016, 18, 89. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-H.; Chen, W.-S.; Tang, S.-E.; Lin, H.-C.; Peng, C.-K.; Chu, H.-T.; Kao, C.-H. Benzodiazepines Associated with Acute Respiratory Failure in Patients With Obstructive Sleep Apnea. Front. Pharmacol. 2019, 9, 1513. [Google Scholar] [CrossRef] [PubMed]
- Mir, S.; Wong, J.; Ryan, C.M.; Bellingham, G.; Singh, M.; Waseem, R.; Eckert, D.J.; Chung, F. Concomitant benzodiazepine and opioids decrease sleep apnoea risk in chronic pain patients. ERJ Open Res. 2020, 6, 6. [Google Scholar] [CrossRef]
- Buysse, D.J. Insomnia. JAMA 2013, 309, 706–716. [Google Scholar] [CrossRef] [Green Version]
- Häusler, N.; Heinzer, R.; Haba-Rubio, J.; Marques-Vidal, P. Does sleep affect weight gain? Assessing subjective sleep and polysomnography measures in a population-based cohort study (CoLaus/HypnoLaus). Sleep 2019, 42. [Google Scholar] [CrossRef]
- Chu, C.-S.; Chou, P.-H.; Chen, Y.-H.; Huang, M.-W.; Hsu, M.-Y.; Lan, T.-H.; Lin, C.-H. Association between antipsychotic drug use and cataracts in patients with bipolar disorder: A population-based, nested case-control study. J. Affect. Disord. 2017, 209, 86–92. [Google Scholar] [CrossRef]
- Chu, C.-S.; Li, W.-R.; Huang, K.-L.; Su, P.-Y.; Lin, C.-H.; Lan, T.-H. The use of antipsychotics is associated with lower mortality in patients with Alzheimer’s disease: A nationwide population-based nested case-control study in Taiwan. J. Psychopharmacol. 2018, 32, 1182–1190. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.-S.; Lin, C.-H.; Lan, T.-H.; Chou, P.-H. Associations between use of mood stabilizers and risk of cataract: A population-based nested case-control study. J. Affect. Disord. 2018, 227, 79–81. [Google Scholar] [CrossRef]
- Coussa-Koniski, M.-L.; Saliba, E.; Welty, F.K.; Deeb, M. Epidemiological characteristics of obstructive sleep apnea in a hospital-based historical cohort in Lebanon. PLoS ONE 2020, 15, e0231528. [Google Scholar] [CrossRef]
- Chen, T.-Y.; Winkelman, J.W.; Mao, W.-C.; Liu, C.-L.; Hsu, C.-Y.; Wu, C.-S. The Use of Benzodiazepine Receptor Agonists and the Risk of Hospitalization for Pneumonia. Chest 2018, 153, 161–171. [Google Scholar] [CrossRef]
- Cheng, H.; Lin, F.; Erickson, S.R.; Hong, J.; Wu, C. The Association Between the Use of Zolpidem and the Risk of Alzheimer’s Disease Among Older People. J. Am. Geriatr. Soc. 2017, 65, 2488–2495. [Google Scholar] [CrossRef] [PubMed]
- Shiao, T.-H.; Liu, C.-J.; Luo, J.-C.; Su, K.-C.; Chen, Y.-M.; Chen, T.-J.; Chou, K.-T.; Shiao, G.-M.; Lee, Y.-C. Sleep Apnea and Risk of Peptic Ulcer Bleeding: A Nationwide Population-based Study. Am. J. Med. 2013, 126, 249–255.e1. [Google Scholar] [CrossRef] [PubMed]
- Su, V.Y.-F.; Liu, C.-J.; Wang, H.-K.; Wu, L.-A.; Chang, S.-C.; Perng, D.-W.; Su, W.-J.; Chen, Y.-M.; Lin, E.Y.-H.; Chen, T.-J.; et al. Sleep apnea and risk of pneumonia: A nationwide population-based study. Can. Med. Assoc. J. 2014, 186, 415–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO Collaborating Centre for Drug Statistic Methodology. Guidelines for ATC Classification and DDD Assignment 2020; Norwegian Institute of Public Health: Oslo, Norway, 2019. [Google Scholar]
- WHO Collaborating Centre for Drug Statistics Methodology. ATC/DDDs Index 2021. Available online: http://www.whocc.no/atc_ddd_index/ (accessed on 4 August 2021).
- Greenblatt, D.J.; Shader, R.; Divoll, M.; Harmatz, J.S. Benzodiazepines: A summary of pharmacokinetic properties. Br. J. Clin. Pharmacol. 1981, 11, 11S–16S. [Google Scholar] [CrossRef] [Green Version]
- Wilson, S.; Anderson, K.; Baldwin, D.; Dijk, D.-J.; Espie, A.; Espie, C.; Gringras, P.; Krystal, A.; Nutt, D.; Selsick, H.; et al. British Association for Psychopharmacology consensus statement on evidence-based treatment of insomnia, parasomnias and circadian rhythm disorders: An update. J. Psychopharmacol. 2019, 33, 923–947. [Google Scholar] [CrossRef] [PubMed]
- Cardinali, D.P.; Golombek, D.A.; Rosenstein, R.E.; Brusco, L.I.; Vigo, D.E. Assessing the efficacy of melatonin to curtail benzodiazepine/Z drug abuse. Pharmacol. Res. 2016, 109, 12–23. [Google Scholar] [CrossRef] [Green Version]
- Jennum, P.; Baandrup, L.; Tønnesen, P.; Ibsen, R.; Kjellberg, J. Mortality and use of psychotropic medication in sleep apnoea patients: A population-wide register-based study. Sleep Med. 2018, 43, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.-F.; Chen, Y.-H.; Chen, H.-C.; Huang, W.-C. Interactions among Obstructive Sleep Apnea Syndrome Severity, Sex, and Obesity on Circulatory Inflammatory Biomarkers in Patients with Suspected Obstructive Sleep Apnea Syndrome: A Retrospective, Cross-Sectional Study. Int. J. Environ. Res. Public Health 2020, 17, 4701. [Google Scholar] [CrossRef] [PubMed]
- Vozoris, N.T.; Leung, R.S. Sedative Medication Use: Prevalence, Risk Factors, and Associations with Body Mass Index Using Population-Level Data. Sleep 2011, 34, 869–874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | OSA (n = 1848) | Non-OSA (n = 1848) | p Value |
---|---|---|---|
Demographics | |||
Age, years, mean ± SD | 42.5 ± 12.6 | 42.5 ± 12.7 | 0.948 |
Sex, male, % | 1336 (72.3) | 1336(72.3) | >0.999 |
Comorbidity | |||
Cerebrovascular disease, % | 32 (1.7) | 30 (1.6) | 0.898 |
Hypertension, % | 323 (17.5) | 215 (11.6) | <0.001 |
Diabetes, % | 101 (5.5) | 81 (4.4) | 0.148 |
Ischemia heart disease, % | 111 (6.0) | 55 (3.0) | <0.001 |
Hyperlipidemia, % | 167 (9.0) | 107 (5.8) | <0.001 |
Chronic obstructive pulmonary disease, % | 135 (7.3) | 82 (4.4) | <0.001 |
Congestive heart failure, % | 19 (1.0) | 12 (0.6) | 0.279 |
Chronic kidney disease, % | 19 (1.0) | 28 (1.5) | 0.240 |
Pneumonia, % | 31 (1.7) | 24 (1.3) | 0.415 |
Sedative medication, % | |||
Antipsychotics, % | 606 (32.8) | 560 (30.3) | 0.111 |
Antidepressant, % | 496 (26.8) | 327 (17.7) | <0.001 |
Anti-epilepsy, % | 374 (20.2) | 253 (13.7) | <0.001 |
Opioid, % | 168 (9.1) | 118 (6.4) | 0.003 |
Variables | OSA (n = 1848) | Non-OSA (n = 1848) | Crude OR | 95% CI for Crude OR | aOR * | 95% CI for aOR |
---|---|---|---|---|---|---|
Overall sample | ||||||
Distant past use (>365 days) | 922 (49.9) | 1376 (74.5) | 1.00 | Reference | 1.00 | Reference |
Current use (≤90 days) | 712 (38.5) | 251 (13.6) | 4.23 | (3.59–5.00) | 4.02 | (3.36–4.82) |
Recent past use (91–365 days) | 214 (11.6) | 221 (12.0) | 1.45 | (1.18–1.78) | 1.45 | (1.17–1.80) |
Class of BZRAs | ||||||
BZDs | 1118 (60.5) | 1347 (72.9) | 1.00 | Reference | 1.00 | Reference |
Z-drugs | 39 (2.1) | 71 (3.8) | 0.66 | (0.44–0.99) | 0.66 | (0.44–0.99) |
BZDs + Z-drugs | 691 (37.4) | 430 (23.3) | 1.94 | (1.68–2.24) | 1.63 | (1.39–1.90) |
Distant past use | ||||||
BZDs | 752 (81.6) | 1085 (78.9) | 1.00 | Reference | 1.00 | Reference |
Z-drugs | 33 (3.6) | 65 (4.7) | 0.73 | (0.48–1.13) | 0.73 | (0.47–1.13) |
BZDs + Z-drugs | 137 (14.9) | 226 (16.4) | 0.88 | (0.69–1.10) | 0.77 | (0.60–1.00) |
Current use | ||||||
BZDs | 226 (31.7) | 122 (48.6) | 1.00 | Reference | 1.00 | Reference |
Z-drugs | 5 (0.7) | 3 (1.2) | 0.90 | (0.21–3.83) | 1.02 | (0.21–4.90) |
BZDs + Z-drugs | 481 (67.6) | 126 (50.2) | 2.06 | (1.53–2.77) | 1.90 | (1.38–2.62) |
Recent past use | ||||||
BZDs | 140 (65.4) | 140 (63.3) | 1.00 | Reference | 1.00 | Reference |
Z-drugs | 1 (0.5) | 3 (1.4) | 0.33 | (0.03–3.24) | 0.36 | (0.04–3.69) |
BZDs + Z-drugs | 73 (34.1) | 78 (35.3) | 0.94 | (0.63–1.34) | 0.90 | (0.58–1.41) |
Variables | OSA (n = 1848) | Non-OSA (n = 1848) | Crude OR | 95% CI for Crude OR | aOR * | 95% CI for aOR |
---|---|---|---|---|---|---|
BZRAs number | ||||||
number = 1 | 533 (28.8) | 841 (45.5) | 1.00 | Reference | 1.00 | Reference |
number = 2 | 431 (23.3) | 451 (24.4) | 1.51 | (1.27–1.79) | 1.42 | (1.19–1.70) |
number = 3 | 312 (16.9) | 234 (12.7) | 2.10 | (1.72–2.57) | 2.04 | (1.65–2.52) |
number ≥ 4 | 572 (31.0) | 322 (17.4) | 2.80 | (2.34–3.34) | 2.52 | (2.06–3.08) |
BZRAs cDDDs | ||||||
≤28 | 980 (53.0) | 1240 (67.1) | 1.00 | Reference | 1.00 | Reference |
29–90 | 337 (18.2) | 270 (14.6) | 1.58 | (1.32–1.89) | 1.39 | (1.15–1.68) |
>90 | 531 (28.7) | 338 (18.3) | 1.99 | (1.69–2.33) | 1.60 | (1.33–1.93) |
Variables | OSA (n = 1316) | Non-OSA (n = 1553) | Crude OR | 95% CI for Crude OR | aOR * | 95% CI for aOR |
---|---|---|---|---|---|---|
Pharmacokinetic class # | ||||||
Z-drugs | 249 (18.9) | 240 (15.5) | 1.00 | Reference | 1.00 | Reference |
Ultrashort-acting | 47 (3.6) | 39 (2.5) | 1.16 | (0.73–1.84) | 1.12 | (0.70–1.81) |
Short-intermediate-acting | 333 (25.3) | 438 (28.2) | 0.73 | (0.58–0.92) | 0.81 | (0.64–1.03) |
Long-acting | 687 (52.2) | 836 (53.8) | 0.79 | (0.65–0.97) | 0.96 | (0.77–1.19) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, T.-W.; Chen, H.-M.; Chen, T.-Y.; Chu, C.-S.; Pan, C.-C. The Association between Use of Benzodiazepine Receptor Agonists and the Risk of Obstructive Sleep Apnea: A Nationwide Population-Based Nested Case-Control Study. Int. J. Environ. Res. Public Health 2021, 18, 9720. https://doi.org/10.3390/ijerph18189720
Hsu T-W, Chen H-M, Chen T-Y, Chu C-S, Pan C-C. The Association between Use of Benzodiazepine Receptor Agonists and the Risk of Obstructive Sleep Apnea: A Nationwide Population-Based Nested Case-Control Study. International Journal of Environmental Research and Public Health. 2021; 18(18):9720. https://doi.org/10.3390/ijerph18189720
Chicago/Turabian StyleHsu, Tien-Wei, Hsiu-Min Chen, Tien-Yu Chen, Che-Sheng Chu, and Chih-Chuan Pan. 2021. "The Association between Use of Benzodiazepine Receptor Agonists and the Risk of Obstructive Sleep Apnea: A Nationwide Population-Based Nested Case-Control Study" International Journal of Environmental Research and Public Health 18, no. 18: 9720. https://doi.org/10.3390/ijerph18189720
APA StyleHsu, T. -W., Chen, H. -M., Chen, T. -Y., Chu, C. -S., & Pan, C. -C. (2021). The Association between Use of Benzodiazepine Receptor Agonists and the Risk of Obstructive Sleep Apnea: A Nationwide Population-Based Nested Case-Control Study. International Journal of Environmental Research and Public Health, 18(18), 9720. https://doi.org/10.3390/ijerph18189720