Method for Determining Regional Reference Values of Metal Content in Biological Substrates and Their Intake into the Body via Drinking Water
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Agadzhanyan, N.A.; Skalny, A.V.; Berezkina, E.S.; Demidov, V.A.; Grabeklis, A.R.; Skalnaya, M.G. Reference Values for Chemical Elements Concentration in Hair of Adults in the Republic of Tatarstan. Hum. Ecol. 2016, 4, 38–44. [Google Scholar] [CrossRef] [Green Version]
- Grabeklis, A.R.; Skalny, A.V.; Nechiporenko, S.P.; Lakarova, E.V. Indicator ability of biosubstrances in moderate occupational exposure to toxic metals. J. Trace Elem. Med. Biol. 2011, 25, 41–44. [Google Scholar] [CrossRef]
- Bridges, C.C.; Zalups, R.K. Molecular and ionic mimicry and the transport of toxic metals. Toxicol. Appl. Pharmacol. 2005, 204, 274–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coelho, P.; Costa, S.; Silva, S.; Walter, A. Metal (loid) levels in biological matrices from human populations exposed to mining contamination-Panasqueira Mine (Portugal). J. Toxicol. Environ. Health. A 2012, 75, 893–908. [Google Scholar] [CrossRef] [PubMed]
- Dongarra, G.; Lombardo, M.; Tamburo, E.; Varrica, D.; Cibella, F.; Cuttitta, G. Concentration and reference interval oftrace elements in human hair from students living in Palermo, Sicily (Italy). Environ. Toxicol. 2011, 32, 27–34. [Google Scholar]
- Ford, M.D.; Delaney, K.A.; Ling, L.J.; Erickson, T. Clinical Toxicology; WB Saunders Company: Philadelphia, PA, USA, 2001. [Google Scholar]
- Hanif, S.; Ilyas, A.; Shah, M.H. Statistical Evaluation of Trace Metals, TSH and T4 in Blood Serum of Thyroid Disease Patients in Comparison with Controls. Biol. Trace Elem. Res. 2018, 183, 58–70. [Google Scholar] [CrossRef]
- Mahugija, J.A.M.; Kasenya, Z.S.; Kilulya, K.F. Levels of heavy metals in urine samples of school children from selected industrial and non-industrial areas in Dar es Salaam, Tanzania. Afr. Health Sci. 2018, 18, 1226–1235. [Google Scholar] [CrossRef] [PubMed]
- Klassen, C.D.; Watkins, J.B. Casarett and Doull’s Essentials of Toxicology; MC Graw-Hill: New York, NY, USA, 2004. [Google Scholar]
- Kryl, E.; Bogdacski, P.; Suliburska, J.; Krejpcio, Z. The Relationship between Dietary, Serum and Hair Levels of Minerals (Fe, Zn, Cu) and Glucose Metabolism Indices in Obese Type 2 Diabetic Patients. Biol. Trace Elem. Res. 2019, 189, 34–44. [Google Scholar] [CrossRef] [Green Version]
- Lobachevskaya, T.V.; Talova, D.M.; Sogoyan, M.V.; Ovechkina, A.V. Assessment of the trace element blood condition in children with congenital deformities of the thoracic and lumbar spine (Preliminary report). Pediatric Traumatol. Orthop. Reconstr. Surg. 2019, 7, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Mandlate, J.S.; Soares, B.M.; Andrade, C.F.F.; Colling, L.A.; Primel, E.G.; Mesko, M.F.; Duarte, F.A. Determination of trace elements in Sergio mirim: An evaluation of sample preparation methods and detection techniques. Environ. Sci. Pollut. Res. Int. 2020, 27, 21914–21923. [Google Scholar] [CrossRef]
- Mikulewicza, M.; Chojnackab, K.; Gedrangec, T.; Gyreckib, H. Reference values of elements in human hair: A systematic review. Environ. Toxicol. Pharmacol. 2013, 36, 1077–1086. [Google Scholar] [CrossRef]
- Martinez-Hernanz, A.; Gonzalez-Estecha, M.; Blanco, M.; Fuentes, M.; Ordycez-Iriarte, J.M.; Palazyn-Bru, I.; Calvo-Manuel, E.; Bodas-Pinedo, A. Blood lead in children and associations with trace elements and sociodemographic factors. J. Trace Elem. Med. Biol. 2020, 58, 126424. [Google Scholar] [CrossRef]
- Mokni, R.; Chakar, A.; Bleiberg-Daniel, F.; Mahu, J.L.; Walravens, P.A.; Chappuis, P.; Navarro, J.; Lemonnier, D. Decreased serum levels of nutritional biochemical indices in healthy children with marginally delayed physical growth. Ada Paediatr. 1993, 82, 539–543. [Google Scholar] [CrossRef] [PubMed]
- Momcilovic, B.; Prejac, J.; Skalny, A.V.; Mimica, N. In search of decoding the syntax of the bioelements in human hair—A critical overview. J. Trace Elem. Med. Biol. 2018, 50, 543–553. [Google Scholar] [CrossRef] [PubMed]
- Selinus, O.; Finkelman, R.B.; Centeno, J.A. Medical Geology: A Regional Synthesis; Springer Science & Business Media: Berlin, Germany, 2010. [Google Scholar]
- Orisakwe, O.E.; Igweze, Z.N.; Udowelle, N.A. Candy consumption may add to the body burden of lead and cadmium of children in Nigeria. Environ. Sci. Pollut. Res. Int. 2019, 26, 1921–1931. [Google Scholar] [CrossRef] [PubMed]
- Ozarda, Y. Reference intervals: Current status, recent developments and future considerations. Biochem. Med. 2016, 26, 5–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhai, R.; Zhang, M.; Liu, J.; Guang, H.; Li, B.; Chen, D.; Zhang, S. Reference Intervals of and Relationships among Essential Trace Elements in Whole Blood of Children Aged 0–14 years. J. Clin. Lab. Anal. 2017, 25, 31. [Google Scholar] [CrossRef]
- Zhao, T.T.; Chen, B.; Wang, H.P.; Wang, R.; Zhang, H. Evaluation of toxic and essential elements in whole blood from 0- to 6-year-old children from Jinan, China. Clin. Biochem. 2013, 46, 612–616. [Google Scholar] [CrossRef]
- Isaeva, A.; Zemlyankina, A.; Zakharova, A.; Grinstein, I. Complex assessment of the elemental composition of hair and nails by XRf and ICP-AES methods. Analytics 2015, 21, 94–99. [Google Scholar]
- Makarova, T.P.; Maltsev, S.V.; Agafonova, E.V.; Valiev, V.S. Zinc metabolism disorders in various types of nephropathies. Pediatrics 2005, 4, 34–38. [Google Scholar]
- Maltsev, S.V.; Zigangareeva, G.G.; Valiev, V.S. Regional Differences in the Content of Trace Elements in the Biological Environments of Adolescents. In Proceedings of the First International Symposium Modern Problems of Geochemical Ecology of Diseases, Cheboksary, Russia, 17–20 September 2001; Publishing house of ChGPI: Cheboksary, Russia, 2001; p. 71. [Google Scholar]
- Tunakova, Y.; Novikova, S.; Ragimov, A.; Faizullin, R.; Valiev, V. A method for assessing the retention of trace elements in human body using neural network technology. J. Healthc. Eng. 2017, 2017, 3471616. [Google Scholar] [CrossRef] [PubMed]
- Tunakova, Y.A.; Novikova, S.V.; Faizullin, R.I.; Valiev, V.S. Approximation of the Dependency of Trace Elements Concentrations in Internal Media upon their Contents in Environment Objects. BioNanoScience 2018, 8, 288–295. [Google Scholar]
- Hoehne, L.; Bartz, F.R.; Bizzi, C.A.; Paniz, J.N.; Dressler, V.L.; Flores, É.M. Determination of Cd in Blood by Microwave-Induced Combustion Coupled to Flame Furnace Atomic Absorption Spectrometry. J. Braz. Chem. Soc. 2010, 6, 978–984. [Google Scholar] [CrossRef]
- Buffle, J.; Tercier-Waeber, M.-L. Voltammetric environmental trace-metal analysis and speciation: From laboratory to in situ measurements. Trends Anal. Chem. 2005, 24, 172–191. [Google Scholar] [CrossRef]
- Aramend, M.; Rello, L.; Bérail, S.; Donnard, A.; Pécheyran, C.; Resano, M. Direct analysis of dried blood spots by femtosecond-laser ablation-inductively coupled plasma-mass spectrometry. Feasibility of split-flow laser ablation for simultaneous trace element and isotopic analysis. J. Anal. At. Spectrom. 2015, 296, 296–309. [Google Scholar] [CrossRef] [Green Version]
- Flame Atomic Absorption Spectrometry. Available online: https://www.agilent.com/cs/library/usermanuals/Public/0009.pdf (accessed on 14 September 2021).
- Ye, J.; Du, C.; Wang, L.; Li, Z.; Huang, S.; Wang, H.; He, L.; Bi, Y.; Wang, C. Relationship of blood levels of Pb with Cu, Zn, Ca, Mg, Fe, and Hb in children aged 0 approximately 6 years from Wuhan, China. Biol. Trace Elem. Res. 2015, 164, 18–24. [Google Scholar] [CrossRef]
- Seidel, S.; Kreutzer, R.; Smith, D.; McNeel, S.; Gilliss, D. Assessment of commercial laboratories performing hairmineral analysis. JAMA 2001, 285, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Khavezov, I.; Tsalev, D. Atomic Absorption Analysis; Chemistry: Leningrad, Russia, 1983. [Google Scholar]
- Atomic Absorption Spectrophotometer AAS 3. Available online: https://all-pribors.ru/opisanie/52988-13-aas-3-56386#ot (accessed on 14 September 2021).
- Atomic Absorption Spectrometer SA-10MP. Available online: http://www.laborant.net/catalog/analiticheskoe_oborudovanie_3/spektrometry_stacionarnye_992/atomno-absorbcionnye_spektrometry_993/spektrometr_atomno-absorbcionnyjj_sa-10mp_p7648 (accessed on 14 September 2021).
- Atomic Absorption (AA). Available online: https://www.perkinelmer.com/category/atomic-absorption-aa-instruments (accessed on 14 September 2021).
Metal | Median | Lower Quartile (Lower Threshold) | Upper Quartile (Upper Threshold) |
---|---|---|---|
Zn | 135.0 | 120.5 | 155.2 |
Cd | 0.163 | 0.092 | 0.258 |
Cu | 11.3 | 9.0 | 15.0 |
Mn | 0.356 | 0.240 | 0.510 |
Ni | 0.128 | 0.100 | 0.210 |
Pb | 2.995 | 1.680 | 4.130 |
Cr | 0.510 | 0.385 | 0.805 |
Sr | 8.65 | 3.66 | 14.0 |
Mg | 55.2 | 22.7 | 80.8 |
Fe | 30.0 | 16.6 | 55.5 |
Metal | Median | Lower Quartile (Lower Threshold) | Upper Quartile (Upper Threshold) |
---|---|---|---|
Mg | 20.7 | 18.4 | 24.5 |
Zn | 0.908 | 0.759 | 1.255 |
Cr | 0.031 | 0.026 | 0.039 |
Fe | 1.604 | 1.210 | 2.220 |
Sr | 0.076 | 0.066 | 0.120 |
Cu | 0.955 | 0.766 | 1.522 |
Pb | 0.030 | 0.025 | 0.034 |
Metal | Median | Lower Quartile (Lower Threshold) | Upper Quartile (Upper Threshold) |
---|---|---|---|
Zn | 0.330 | 0.100 | 0.450 |
Cr | 0.015 | 0.005 | 0.030 |
Pb | 0.035 | 0.008 | 0.110 |
Sr | 0.100 | 0.046 | 0.250 |
Fe | 0.200 | 0.053 | 0.350 |
Mg | 60.3 | 38.6 | 100.4 |
Metal | Hair | Urine | Blood |
---|---|---|---|
Cd | 43.5 | - | - |
Cr | 24.5 | 66.6 | 16.1 |
Cu | 20.3 | - | 19.7 |
Fe | 44.6 | 73.5 | 24.5 |
Mg | 58.8 | 35.9 | 11.1 |
Mn | 32.5 | - | - |
Ni | 21.8 | - | - |
Pb | 43.9 | 77.1 | 16.6 |
Sr | 57.6 | 54.0 | 13.1 |
Zn | 10.7 | 69.6 | 16.4 |
Metal | Concentration of Metals in Drinking Water |
---|---|
Zn | 0.019–0.033 |
Cr | 0.00078–0.002 |
Fe | 0.074–0.1 |
Sr | 0.05–0.11 |
Cu | 0.0013–0.0021 |
Pb | 0.001–0.007 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tunakova, Y.; Shagidullin, A.; Valiev, V.; Novikova, S.; Faizullin, R. Method for Determining Regional Reference Values of Metal Content in Biological Substrates and Their Intake into the Body via Drinking Water. Int. J. Environ. Res. Public Health 2021, 18, 9903. https://doi.org/10.3390/ijerph18189903
Tunakova Y, Shagidullin A, Valiev V, Novikova S, Faizullin R. Method for Determining Regional Reference Values of Metal Content in Biological Substrates and Their Intake into the Body via Drinking Water. International Journal of Environmental Research and Public Health. 2021; 18(18):9903. https://doi.org/10.3390/ijerph18189903
Chicago/Turabian StyleTunakova, Yulia, Artur Shagidullin, Vsevolod Valiev, Svetlana Novikova, and Rashat Faizullin. 2021. "Method for Determining Regional Reference Values of Metal Content in Biological Substrates and Their Intake into the Body via Drinking Water" International Journal of Environmental Research and Public Health 18, no. 18: 9903. https://doi.org/10.3390/ijerph18189903
APA StyleTunakova, Y., Shagidullin, A., Valiev, V., Novikova, S., & Faizullin, R. (2021). Method for Determining Regional Reference Values of Metal Content in Biological Substrates and Their Intake into the Body via Drinking Water. International Journal of Environmental Research and Public Health, 18(18), 9903. https://doi.org/10.3390/ijerph18189903