Microbiological, Health and Comfort Aspects of Indoor Air Quality in a Romanian Historical Wooden Church
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fürhapper, C.; Habla, E.; Stratev, D.; Weigl, M.; Dobianer, K. Living Conditions in Timber Houses: Emission Trends and Indoor Air Quality. Front. Built. Environ. 2020, 5, 151. [Google Scholar] [CrossRef] [Green Version]
- Pop, O.L.; Judea Pusta, C.T.; Buhas, C.L.; Judea, A.S.; Huniadi, A.; Jurca, C.; Sandor, M.; Negrutiu, B.M.; Buhas, B.A.; Nikin, Z.; et al. Anaplastic Lymphoma Kinase (ALK) Overexpression in Lung Cancer Biopsies-An 18 month study in north western Romania. Rev. Chim. 2019, 70, 2690–2693. [Google Scholar] [CrossRef]
- Stenson, J.; Ishaq, S.L.; Laguerre, A.; Loia, A.; MacCrone, G.; Mugabo, I.; Northcutt, D.; Riggio, M.; Barbosa, A.; Gall, E.T.; et al. Monitored Indoor Environmental Quality of a Mass Timber Office Building: A Case Study. Buildings 2019, 9, 142. [Google Scholar] [CrossRef] [Green Version]
- Huniadi, A.; Sorian, A.; Maghiar, A.; Mocuta, D.; Antal, L.; Pop, O.L.; Pusta, C.T.J.; Buhas, C.L.; Pascalau, A.; Sandor, M. 6-(2,3-Dichlorodiphenyl)-1,2,4-Triazine-3,5-Diamine Use in Pregnancy and Body Stalk Anomaly-A Possible Association? Rev. Chim. 2019, 70, 2656–2659. [Google Scholar] [CrossRef]
- Patkó, C.; Patkó, I.; Pásztory, Z. Indoor air quality testing in low-energy wooden houses: Measurement of formaldehyde and VOC-s. Acta Polytech. Hung. 2013, 10, 105–116. [Google Scholar]
- Sharmin, F.; Sultan, M.T.; Badulescu, D.; Badulescu, A.; Borma, A.; Li, B. Sustainable Destination Marketing Ecosystem through Smartphone-Based Social Media: The Consumers’ Acceptance Perspective. Sustainability 2021, 13, 2308. [Google Scholar] [CrossRef]
- Wendt, J.A.; Grama, V.; Ilies, G.; Mikhaylov, A.S.; Borza, S.G.; Herman, G.V.; Bógdał-Brzezinska, A. Transport Infrastructure and Political Factors as Determinants of Tourism Development in the Cross-Border Region of Bihor and Maramures. A Comparative Analysis. Sustainability 2021, 13, 5385. [Google Scholar] [CrossRef]
- Morar, C.; Grama, V.; Stupariu, I.M.; Nagy, G.; Boros, L.; Tiba, A.; Gozner, M.; Szabo-Alexi, S. Local perspectives over cultural tourism to heritage sites. the case study of Oradea Fortress (Romania). GeoJournal Tour. Geosites 2020, 33, 1470–1479. [Google Scholar] [CrossRef]
- Ilieș, D.C.; Caciora, T.; Herman, G.V.; Ilieș, A.; Ropa, M.; Baias, Ș. Geohazards affecting cultural heritage monuments. A complex case study from Romania. GeoJournal Tour. Geosites 2020, 31, 1103–1112. [Google Scholar] [CrossRef]
- Ilies, M.; Ilieş, D.C.; Ilieş, A.; Josan, I.; Ilieş, G. The gateway of Maramureş Land: Geostrategical implications in space and time. Annales 2010, 20, 469–480. [Google Scholar]
- Godea, I.; Panait, I.C.; Chiriac, A.; Mălinaş, I.M.; Coman, V.; Drăguţ, V.; Scorobeţ, M.; Jivi, A.; Zaha, N. Monumente Istorice bisericeşti din Eparhia Oradiei: Judeţele Bihor, Sălaj şi Satu Mare: Bisericile de lemn. In Historical Church Monuments from the Diocese of Oradea: Bihor, Sălaj and Satu Mare Counties: Wooden Churches; Editura Episcopiei Ortodoxe Române a Oradiei: Oradea, Romania, 1978. [Google Scholar]
- Ilieș, A.; Wendt, J.A.; Ilieș, D.C.; Herman, G.V.; Ilieș, M.; Deac, A.L. The patrimony of wooden churches, built between 1531 and 2015, in the Land of Maramureș, Romania. J. Maps 2016, 12 (Suppl. S1), 597–602. [Google Scholar] [CrossRef] [Green Version]
- Ilieș, A.; Hurley, P.D.; Ilieș, D.C.; Baias, Ș. Tourist animation-A chance for adding value to traditional heritage: Case studies in the land of Maramures (Romania). J. Ethnogr. Folk. 2017, 1–2, 131–151. [Google Scholar]
- Pepe, O.; Sannino, L.; Palomba, S.; Anastasio, M.; Blaiotta, G.; Villani, F.; Moschetti, G. Heterotrophic microorganisms in deteriorated medieval wall paintings in southern Italian churches. Microbiol. Res. 2010, 165, 21–32. [Google Scholar] [CrossRef]
- Sterflinger, K.; Piñar, G. Microbial deterioration of cultural heritage and works of art—Tilting at windmills? Appl. Microbiol. Biotechnol. 2013, 97, 9637–9646. [Google Scholar] [CrossRef] [Green Version]
- Ortiz, R.; Párraga, M.; Navarrete, J.; Carrasco, I.; de la Vega, E.; Ortiz, M.; Herrera, P.; Jurgens, J.A.; Held, B.W.; Blanchette, R.A. Investigations of biodeterioration by fungi in historic wooden churches of Chiloé, Chile. Microb. Ecol. 2014, 67, 568–575. [Google Scholar] [CrossRef]
- Frankl, J. Wood-Damaging Fungi in Truss Structures of Baroque Churches. J. Perform. Constr. Facil. 2015, 29, 04014138. [Google Scholar] [CrossRef]
- Kavkler, K.; Gunde-Cimerman, N.; Zalar, P.; Demšar, A. Fungal contamination of textile objects preserved in Slovene museums and religious institutions. Int. Biodeterior. Biodegradation. 2015, 97, 51–59. [Google Scholar] [CrossRef]
- Kalamees, T.; Väli, A.; Kurik, L.; Napp, M.; Arümagi, E.; Kallavus, U. The Influence of Indoor Climate Control on Risk for Damages in Naturally Ventilated Historic Churches in Cold Climate. Int. J. Archit. Heritage 2016, 10, 486–498. [Google Scholar] [CrossRef]
- Di Carlo, E.; Chisesi, R.; Barresi, G.; Barbaro, S.; Lombardo, G.; Rotolo, V.; Sebastianelli, M.; Travagliato, G.; Palla, F. Fungi and bacteria in indoor Cultural Heritage environments: Microbial-related risks for artworks and human health. Appl. Ecol. Environ. Res. 2016, 4, 257–264. [Google Scholar] [CrossRef]
- Chmiel, M.; Kral, I.; Lenart-Boroń, A. Concentration and size distribution of microbial aerosol in the historical objects in Kraków as a potential health risk and biodeterioration factor. Aerobiologia 2019, 35, 743–758. [Google Scholar] [CrossRef] [Green Version]
- Nawalany, G.; Sokołowski, P.; Michalik, M. Experimental Study of Thermal and Humidity Conditions in a Historic Wooden Building in Southern Poland. Buildings 2020, 10, 118. [Google Scholar] [CrossRef]
- Stanaszek-Tomal, E. Environmental Factors Causing the Development of Microorganisms on the Surfaces of National Cultural Monuments Made of Mineral Building Materials. Coat. World. 2020, 10, 1203. [Google Scholar] [CrossRef]
- Mang, S.M.; Scrano, L.; Camele, I. Preliminary Studies on Fungal Contamination of Two Rupestrian Churches from Matera (Southern Italy). Sustain. Sci. Pract. Policy 2020, 12, 6988. [Google Scholar] [CrossRef]
- Sterflinger, K. Fungi: Their role in deterioration of cultural heritage. Fungal Biol. Rev. 2010, 24, 47–55. [Google Scholar] [CrossRef]
- Mansour, M.; Hassan, R.; Salem, M. Characterization of historical bookbinding leather by FTIR, SEM-EDX and investigation of fungal species isolated from the leather. Egypt. J. Archaeol. Restor. Stud. 2017, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Favier, G.L.; Escudero, M.E.; de Guzman, A.M. Effect of chlorine, sodium chloride, trisodium phosphate, and ultraviolet radiation on the reduction of Yersinia enterocolitica and mesophilic aerobic bacteria from eggshell surface. J. Food. Prot. 2001, 64, 1621–1623. [Google Scholar] [CrossRef]
- Ozcelik, B. Fungi/Bactericidal and Static Effects of Ultraviolet Light in 254 and 354 nm Wavelengths. Res. J. Microbiol. 2007, 2, 42–49. [Google Scholar] [CrossRef]
- Lupan, I.; Ianc, M.B.; Kelemen, B.S.; Carpa, R.; Rosca-Casian, O.; Chiriac, M.T.; Popescu, O. New and old microbial communities colonizing a seventeenth-century wooden church. Folia Microbiol. 2014, 59, 45–51. [Google Scholar] [CrossRef]
- Gomoiu, I.; Enache, I.; Cojoc, R.; Mohanu, I.; Mohanu, D. Biodeterioration of wooden churches from Romania. Case studies: The church from Amărăşti, Vâlcea County. In Microbes in the Spotlight: Recent Progress in the Understanding of Beneficial and Harmful Microorganisms; Mendez-Vilas, A., Ed.; Brown Walker Press: Boca Raton, FL, USA, 2016; Volume 51, pp. 51–55. [Google Scholar]
- Oneț, A.; Ilieș, D.C.; Ilieș, A.; Herman, G.V.; Burta, L.; Marcu, F.; Buhas, R.; Caciora, T.; Baias, Ș.; Oneț, C.; et al. Indoor air quality assessment and its perception. Case study historic wooden church, Romania. Rom. Biotechnol. Lett. 2020, 25, 1547–1553. [Google Scholar] [CrossRef]
- Ilies, D.C.; Onet, A.; Marcu, F.M.; Gaceu, O.R.; Timar, A.; Baias, S.; Ilies, A.; Herman, G.V.; Costea, M.; Tepelea, M.; et al. Investigations on air quality in the historic wooden church in Oradea City, Romania. Environ. Eng. Manag. J. 2018, 17, 2731–2739. [Google Scholar] [CrossRef]
- IIies, D.C.; Onet, A.; Wendt, J.A.; Ilieş, M.; Timar, A.; Ilies, A.; Baias, Ş.; Herman, G.V. Study on microbial and fungal contamination of air and wooden surfaces inside of a historical Church from Romania. J. Environ. Biol. 2018, 39, 980–984. [Google Scholar] [CrossRef]
- Radu, N.; Babeanu, N.; Cornea, P.; Calin, M.; Jecu, L.; Raut, I.; Gurban, A.M.; Doni, M. Painting Degradation from Inside Wooden Churches Achieved in the Period 1750–1850. Proceedings 2020, 57, 7019. [Google Scholar] [CrossRef]
- Mohanu, I.; Mohanu, D.; Gomoiu, I.; Barbu, O.-H.; Fechet, R.-M.; Vlad, N.; Voicu, G.; Truşcă, R. Study of the frescoes in Ioneştii Govorii wooden church (Romania) using multi-technique investigations. Microchem. J. 2016, 126, 332–340. [Google Scholar] [CrossRef]
- Bucsa, C.; Bucsa, L. Romanian Wooden Churches Wall Painting Biodeterioration, Wood science for conservation of cultural heritage, Braga. In Proceedings of the International Conference Held by Cost Action IE0601, Braga, Portugal, 5–7 November 2008; Available online: file:///C:/Users/asus/Downloads/GrilJoseph_WoodScienceForConservation_20210502130900.pdf (accessed on 2 May 2021).
- Ilieș, D.C.; Hodor, N.; Indrie, L.; Dejeu, P.; Ilieș, A.; Albu, A.; Caciora, T.; Ilieș, M.; Barbu-Tudoran, L.; Grama, V. Investigations of the Surface of Heritage Objects and Green Bioremediation: Case Study of Artefacts from Maramureş, Romania. Appl. Sci. 2021, 11, 6643. [Google Scholar] [CrossRef]
- Indrie, L.; Oana, D.; Ilieş, M.; Ilieş, D.C.; Lincu, A.; Ilieş, A.; Baias, Ş.; Herman, G.; Onet, A.; Costea, M.; et al. Indoor air quality of museums and conservation of textiles art works. Case study: Salacea Museum House, Romania. Ind. Text. J. 2019, 70, 88–93. [Google Scholar] [CrossRef]
- Ilieş, A.; Grama, V. The external Western Balkan border of the European Union and its borderland: Premises for building functional transborder territorial systems. Annals 2010, 20, 457–469. [Google Scholar]
- Ilieș, D.C.; Marcu, F.; Caciora, T.; Indrie, L.; Ilieș, A.; Albu, A.; Costea, M.; Burtă, L.; Baias, Ș.; Ilieș, M.; et al. Investigations of Museum Indoor Microclimate and Air Quality. Case Study from Romania. Atmosphere 2021, 12, 286. [Google Scholar] [CrossRef]
- Budrugeac, P.; Carşote, C.; Miu, L. Application of thermal analysis methods for damage assessment of leather in an old military coat belonging to the History Museum of Braşov—Romania. J. Therm. Anal. Calorim. 2017, 127, 765–772. [Google Scholar] [CrossRef]
- Oneț, A.; Ilies, D.C.; Buhas, R.; Ilies, A.; Gaceu, O.; Buhas, S.; Rahota, D.; Dragos, P.; Baias, S.; Marcu, F.; et al. Indoor air quality issues. Case study: The multipurpose sports hall of the University of Oradea. Environ. Eng. Manag. J. 2018, 17, 2999–3005. [Google Scholar] [CrossRef]
- Adam, M.; Tokar, A.; Popa-Albu, S. Analysis the influence of indoor air parameters on sporting performance. Zb. Međunarodnog Kongr. O KGH 2018, 49, 225–228. [Google Scholar]
- Ulea, E.; Lipşa, F.D.; Irimia Nicoleta, B.A.M. Survey of indoor airborne fungi in different educational institutions from Iasi, Romania. USAMV Iaşi Lucr. Ştiinţifice. Ser. Agron. 2009, 52, 518–523. [Google Scholar]
- Lipşa, F.D.; Ulea, E.; Chiriac, I.P. Monitoring of fungal aerosols in some educational buildings from Iaşi, Romania. Environ. Eng. Manag. J. 2016, 15, 801–807. [Google Scholar] [CrossRef]
- Mihincău, D.; Ilieș, D.C.; Wendt, J.; Ilieș, A.; Atasoy, E.; Szabo-Alexi, P.; Marcu, F.; Albu, A.V.; Herman, G.V. Investigations on air quality in a school. Folia Geogr. 2019, 61, 190–204. [Google Scholar]
- Nelson, R.J. Seasonal immune function and sickness responses. Trends Immunol. 2004, 25, 187–192. [Google Scholar] [CrossRef]
- Sakamoto-Momiyama, M. Seasonality in Human Mortality; University of Tokyo Press: Tokyo, Japan, 1977. [Google Scholar]
- Puchianu, G.; Necula, V.; Enache, D.V. Research on active and passive monitoring aeromicroflora in the milk units processing. Ann. Acad. Rom. Sci. 2016, 5, 91–103. [Google Scholar]
- Ciferri, O. Microbial Degradation of Paintings. Appl. Environ. Microbiol. 1999, 65, 879–885. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, P. Applied microbiology and biotechnology in the conservation of cultural heritage materials. Appl. Environ. Microbiol. 2006, 73, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Borrego, S.; Lavin, P.; Perdomo, I.; Gómez de Saravia, S.; Guiamet, P. Determination of indoor air quality in archives and biodeterioration of the documentary heritage. ISRN Microbiol. 2012, 2012, 680598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gary, W.; Procop, M.D.; Elmer, W. Koneman’s Color Atlas and Textbook of Diagnostic Microbiology, 7th ed.; Lippincott Williams Wilkins: Philadelphia, PA, USA, 2016. [Google Scholar]
- Buiuc, D.; Negut, M. Tratat de Microbiologie Clinica (Treatise on Clinical Microbiology), 3rd ed.; Editura Medicala: București, Romania, 2009. [Google Scholar]
- Puchianu, G.; Necula, V.; Enache, D.V.; Danes, M.; Lupu, M. Researches regarding the active and passive monitoring of aeromicroflora in milling and bread manufacturing. Rom. Biotechnol. Lett. 2018, 25, 1465–1472. [Google Scholar] [CrossRef]
- Cernei, E.R.; Maxim, D.C.; Mavru, R.; Indrei, L.L. Bacteriological analysis of air (aeromicroflora) from the level of dental offices in IAŞI County. Rom. J. Oral Rehabil. 2013, 5, 53. [Google Scholar]
- Chapter 23: Museums, Galleries, Archives and Libraries. In ASHRAE Handbook–HVAC Applications; ASHRAE Research: Atalanta, GA, USA, 2011; pp. 1–23.
- Dannemiller, K.C.; Weschler, C.J.; Peccia, J. Fungal and bacterial growth in floor dust at elevated relative humidity levels. Indoor Air 2017, 27, 354–363. [Google Scholar] [CrossRef] [PubMed]
- Commission of European Communities. Biological Particles in Indoor Environments, European Collaborative Action–Indoor Air Quality and Its Impact on Man; Report No 12; CEC: Luxembourg, 1993. [Google Scholar]
- Bott, J.; Blumenthal, S.; Buxton, M.; Ellum, S.; Falconer, C.; Garrod, R.; Harvey, A.; Hughes, T.; Lincoln, M.; Mikelsons, C.; et al. Guidelines for the physiotherapy management of the adult, medical, spontaneously breathing patient. Thorax 2009, 64 (Suppl. S1), i1–i51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arangnak, C.; Singhasiri, C. Biodeterioration of cultural property. In Proceedings of the 3rd International Conference on Biodeterioration of Cultural Property, Bangkok, Thailand, 4–7 July 1995. [Google Scholar]
- Strzelczyk, A.B. Observations on aesthetic and structural changes induced in Polish historic objects by microorganisms. Int. Biodeterior. Biodegrad. 2004, 53, 151–156. [Google Scholar] [CrossRef]
- Caneva, G.; Nugari, M.P.; Salvadori, O. Biology in the Conservation of Works of Art; ICCROM: Rome, Italy, 1991. [Google Scholar]
- Slater, K. 7-The progressive deterioration of textile materials. Part I: Characteristics of degradation. J. Text. Inst. 1986, 77, 76–87. [Google Scholar] [CrossRef]
- Ionescu, V. Biodeteriorarea Obiectelor in Muzee (The Biodeterioration of the Objects in Museums). Aspecte ale Biodeteriorării Obiectelor din Muzee (Aspects of Biodegradation of Objects in Museums); Muzeul Național: Bucharest, Romania, 1974; pp. 183–188. Available online: http://muzeulnationaljournal.ro/?volum=926-muzeul-national-muzeul-national-de-istorie-al-romaniei-i-1974 (accessed on 17 September 2021).
- Elamin, A.; Takatori, K.; Matsuda, Y.; Tsukada, M.; Kirino, F. Fungal biodeterioration of artificial aged linen textile: Evaluation by microscopic, spectroscopic and viscometric methods. Mediterr. Archaeol. Archaeom. 2018, 18, 103–120. [Google Scholar]
- López-Miras, M.D.M.; Martín-Sánchez, I.; Yebra-Rodríguez, A.; Romero-Noguera, J.; Bolívar-Galiano, F.; Ettenauer, J.; Sterflinger, K.; Piñar, G. Contribution of the microbial communities detected on an oil painting on canvas to its biodeterioration. PLoS ONE 2013, 8, e80198. [Google Scholar]
- Pastor, F.J.; Guarro, J. Alternaria infections: Laboratory diagnosis and relevant clinical features. Clin. Microbiol. Infect. 2008, 14, 734–746. [Google Scholar] [CrossRef] [Green Version]
- Woudenberg, J.H.C.; Seidl, M.F.; Groenewald, J.Z.; de Vries, M.; Stielow, J.B.; Thomma, B.P.H.; Crous, P.W. Alternaria section Alternaria: Species, formae speciales or pathotypes? Stud. Mycol. 2015, 82, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Szostak-Kotowa, J. Biodeterioration of textiles. Int. Biodeterior. Biodegrad. 2004, 53, 165–170. [Google Scholar] [CrossRef]
- Kavkler, K.; Gunde-Cimerman, N.; Zalar, P.; Demšar, A. Fungal deterioration of aged textiles. In History, Properties and Performance and Applications; Mondal, I.H., Ed.; Nova Science Publishers: New York, NY, USA, 2014; pp. 315–342. [Google Scholar]
- Rădulescu, H.C.; Gheorghe, I.; Gradisteanu, G.; Ispas, A.; Popescu, C.; Roşu, G.; Chifiriuc, M.C.; Lazăr, V. Molecular characterization based on Internal Transcribed Spacer (ITS) marker sequence of fungal strains isolated from heritage ethnographic textiles. Rom. Biotechnol. Lett. 2019, 24, 906–912. [Google Scholar] [CrossRef]
- Marcu, F.; Ilieș, D.C.; Wendt, I.A.; Indrie, L.; Ilieș, A.; Burta, L.; Caciora, T.; Herman, G.V.; Baias, S.; Albu, A.; et al. Investigations regarding the biodegradation of the cultural heritage. Case study of traditional embroidered peasant shirt (Maramures, Romania). Rom. Biotechnol. Lett. 2020, 25, 1362–1368. [Google Scholar] [CrossRef]
- Crawford, B.; Pakpour, S.; Kazemian, N.; Klironomos, J.; Stoeffler, K.; Rho, D.; Denault, J.; Milani, A.S. Effect of Fungal Deterioration on Physical and Mechanical Properties of Hemp and Flax Natural Fiber Composites. Materials 2017, 10, 1252. [Google Scholar] [CrossRef] [Green Version]
- Egbuta, M.; Mwanza, M.; Babalola, O. Health Risks Associated with Exposure to Filamentous Fungi. Int. J. Environ. Res. Public Health 2017, 14, 719. [Google Scholar] [CrossRef] [Green Version]
- Visagie, C.M.; Houbraken, J.; Frisvad, J.C.; Hong, S.-B.; Klaassen, C.H.W.; Perrone, G.; Seifert, K.A.; Varga, J.; Yaguchi, T.; Samson, R.A. Identification and nomenclature of the genus Penicillium. Stud. Mycol. 2014, 78, 343–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paulussen, C.; Hallsworth, J.E.; Álvarez-Pérez, S.; Nierman, W.C.; Hamill, P.G.; Blain, D.; Rediers, H.; Lievens, B. Ecology of aspergillosis: Insights into the pathogenic potency of Aspergillus fumigatus and some other Aspergillus species. Microb. Biotechnol. 2017, 10, 296–322. [Google Scholar] [CrossRef] [Green Version]
- Rudramurthy, S.M.; Paul, R.A.; Chakrabarti, A.; Mouton, J.W.; Meis, J.F. Invasive Aspergillosis by Aspergillus flavus: Epidemiology, Diagnosis, Antifungal Resistance, and Management. J. Fungi 2019, 5, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandoval-Denis, M.; Gené, J.; Sutton, D.A.; Wiederhold, N.P.; Cano-Lira, J.F.; Guarro, J. New species of Cladosporium associated with human and animal infections. Pers. Mol. Phylogeny Evol. Fungi 2016, 31, 281–298. [Google Scholar] [CrossRef] [Green Version]
- Sandoval-Denis, M.; Sutton, D.A.; Martin-Vicente, A.; Cano-Lira, J.F.; Wiederhold, N.; Guarro, J.; Gené, J. Cladosporium Species Recovered from Clinical Samples in the United States. J. Clin. Microbiol. 2015, 53, 2990–3000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miladinovic-Tasic, N.; Otasevic, S.T. Cladosporium spp.-cause of opportunistic mycoses. Acta Fac. Med. Naiss. 2007, 24, 15–19. [Google Scholar]
- Gutarowska, B.; Pietrzak, K.; Machnowski, W.; Milczarek, J.M. Historical textiles—A review of microbial deterioration analysis and disinfection methods. Text. Res. J. 2017, 87, 2388–2406. [Google Scholar] [CrossRef]
- Jurgensen, C.W.; Madsen, A. Exposure to the airborne mould Botrytis and its health effects. Ann. Agric. Environ. Med. 2009, 16, 183–196. [Google Scholar]
- Hashimoto, S.; Tanaka, E.; Ueyama, M.; Terada, S.; Inao, T.; Kaji, Y.; Yasuda, T.; Hajiro, T.; Nakagawa, T.; Noma, S.; et al. A case report of pulmonary Botrytis sp. infection in an apparently healthy individual. BMC Infect. Dis. 2019, 19, 684. [Google Scholar] [CrossRef]
- Hassan, M.I.A.; Abdelwahab Hassan, M.I.; Voigt, K. Pathogenicity patterns of mucormycosis: Epidemiology, interaction with immune cells and virulence factors. Med. Mycol. 2019, 57 (Suppl. S2), S245–S256. [Google Scholar] [CrossRef] [Green Version]
- Ribes, J.A.; Vanover-Sams, C.L.; Baker, D.J. Zygomycetes in Human Disease. Clin. Microbiol. Rev. 2000, 13, 236–301. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, V.K.; Sharma, P.C. Epidemiological studies on Dermatophytosis in human patients in Himachal Pradesh, India. SpringerPlus 2014, 3, 134. [Google Scholar] [CrossRef] [Green Version]
- Gnat, S.; Nowakiewicz, A.; Łagowski, D.; Zięba, P. Host- and pathogen-dependent susceptibility and predisposition to dermatophytosis. J. Med. Microbiol. 2019, 68, 823–836. [Google Scholar] [CrossRef]
- Pawlińska-Chmara, R.; Wronka, I. Assessment of the effect of socioeconomic factors on the prevalence of respiratory disorders in children. J. Physiol. Pharmacol. 2007, 58 (Suppl. S5), 523–529. [Google Scholar] [PubMed]
- Brakema, E.A.; Tabyshova, A.; van der Kleij, R.M.J.J.; Sooronbaev, T.; Lionis, C.; Anastasaki, M.; An, P.L.; Nguyen, L.T.; Kirenga, B.; Walusimbi, S.; et al. The socioeconomic burden of chronic lung disease in low-resource settings across the globe—An observational FRESH AIR study. Respir. Res. 2019, 20, 291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahni, S.; Talwar, A.; Khanijo, S.; Talwar, A. Socioeconomic status and its relationship to chronic respiratory disease. Adv. Respir. Med. 2017, 85, 97–108. [Google Scholar] [CrossRef] [Green Version]
- Corhay, J.L.; Nguyen, D.; Van Cauwenberge, H.; Louis, R. Pulmonary rehabilitation and COPD: Providing patients a good environment for optimizing therapy. Int. J. Chronic Obstr. Pulm. Dis. 2013, 9, 27–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNamara, R.J.; Dale, M.; McKeough, Z.J. Innovative strategies to improve the reach and engagement in pulmonary rehabilitation. J. Thorac. Dis. 2019, 11 (Suppl. S17), S2192–S2199. [Google Scholar] [CrossRef] [PubMed]
- Sharma, B.; Singh, V. Pulmonary rehabilitation: An overview. Lung India 2011, 28, 276. [Google Scholar] [CrossRef] [PubMed]
- Palla, F.; Bruno, M.; Mercurio, F.; Tantillo, A.; Rotolo, V. Essential Oils as Natural Biocides in Conservation of Cultural Heritage. Molecules 2020, 25, 730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Díaz-Alonso, J.; Bernardos, A.; Regidor-Ros, J.L.; Martínez-Máñez, R.; Bosch-Roig, P. Innovative use of essential oil cold diffusion system for improving air quality on indoor cultural heritage spaces. Int. Biodeterior. Biodegrad. 2021, 162, 105251. [Google Scholar] [CrossRef]
- Ventilation for Acceptable Indoor Air Quality; ANSI/ASHRAE Standard 62.1-2010; American Society of Heating, Refrigerating and Air-Conditioning Engineers: Atlanta, GA, USA, 2010; Available online: https://www.ashrae.org/file%20library/doclib/public/200418145036_347.pdf (accessed on 30 August 2021).
Degree of Air Contamination | Koch Sedimentation Method (CFU/m3 Air) |
---|---|
A—very low | <25 |
B—low | 25–100 |
C—average | 100–500 |
D—high | 500–2000 |
E—very high | >2000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marcu, F.; Hodor, N.; Indrie, L.; Dejeu, P.; Ilieș, M.; Albu, A.; Sandor, M.; Sicora, C.; Costea, M.; Ilieș, D.C.; et al. Microbiological, Health and Comfort Aspects of Indoor Air Quality in a Romanian Historical Wooden Church. Int. J. Environ. Res. Public Health 2021, 18, 9908. https://doi.org/10.3390/ijerph18189908
Marcu F, Hodor N, Indrie L, Dejeu P, Ilieș M, Albu A, Sandor M, Sicora C, Costea M, Ilieș DC, et al. Microbiological, Health and Comfort Aspects of Indoor Air Quality in a Romanian Historical Wooden Church. International Journal of Environmental Research and Public Health. 2021; 18(18):9908. https://doi.org/10.3390/ijerph18189908
Chicago/Turabian StyleMarcu, Florin, Nicolaie Hodor, Liliana Indrie, Paula Dejeu, Marin Ilieș, Adina Albu, Mircea Sandor, Cosmin Sicora, Monica Costea, Dorina Camelia Ilieș, and et al. 2021. "Microbiological, Health and Comfort Aspects of Indoor Air Quality in a Romanian Historical Wooden Church" International Journal of Environmental Research and Public Health 18, no. 18: 9908. https://doi.org/10.3390/ijerph18189908
APA StyleMarcu, F., Hodor, N., Indrie, L., Dejeu, P., Ilieș, M., Albu, A., Sandor, M., Sicora, C., Costea, M., Ilieș, D. C., Caciora, T., Huniadi, A., Chiș, I., Barbu-Tudoran, L., Szabo-Alexi, P., Grama, V., & Safarov, B. (2021). Microbiological, Health and Comfort Aspects of Indoor Air Quality in a Romanian Historical Wooden Church. International Journal of Environmental Research and Public Health, 18(18), 9908. https://doi.org/10.3390/ijerph18189908