Eco-Evolutionary Dynamics in Microbial Communities from Spontaneous Fermented Foods
Abstract
:1. Introduction and Scope
2. Microbial Model Systems
2.1. Single Strains
2.2. Synthetic Communities
2.3. Self-Assembled Communities
2.4. Traditional Fermented Foods with Complex Microbial Communities
3. The Experimental Study of Eco-Evolutionary Dynamics
3.1. Patterns of Diversity
3.2. Diversity-Stability Hypothesis
3.3. Niche Space
3.4. Fluctuating Environmental Factors
3.5. Community Coalescence
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. A Short History of Evolution Experiments
Appendix B. Setup of Evolution Experiments
Appendix C. Industrial Applications
References
- Ellegren, H.; Sheldon, B.C. Genetic basis of fitness differences in natural populations. Nature 2008, 452, 169–175. [Google Scholar] [CrossRef]
- Long, A.D.; Burke, M.K.; Liti, G. Standing Genetic Variation Drives Repeatable Experimental Evolution in Outcrossing Populations of Saccharomyces cerevisiae. Mol. Biol. Evol. 2014, 31, 3228–3239. [Google Scholar] [CrossRef]
- Przeworski, M.; Coop, G.; Wall, J.D. The Signature of Positive Selection on Standing Genetic Variation. Evolution 2006, 59, 2312–2323. [Google Scholar] [CrossRef]
- Hendry, A. Eco-Evolutionary Dynamics; Princeton University Press: Princeton, NJ, USA, 2016. [Google Scholar] [CrossRef]
- Gravel, D.; Bell, T.; Barbera, C.; Bouvier, T.; Pommier, T.; Venail, P.; Mouquet, N. Experimental niche evolution alters the strength of the diversity–productivity relationship. Nature 2011, 469, 89–92. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, D.; Fiegna, F.; Behrends, V.; Bundy, J.G.; Phillimore, A.B.; Bell, T.; Barraclough, T. Species Interactions Alter Evolutionary Responses to a Novel Environment. PLoS Biol. 2012, 10, e1001330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivett, D.W.; Bell, T. Abundance determines the functional role of bacterial phylotypes in complex communities. Nat. Microbiol. 2018, 3, 767–772. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, C.F.; Sanabria, J.; Raaijmakers, J.M.; Oyserman, B.O. Restoring degraded microbiome function with self-assembled communities. FEMS Microbiol. Ecol. 2020, 96, fiaa225. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, B.E.; Dutton, R.J. Fermented Foods as Experimentally Tractable Microbial Ecosystems. Cell 2015, 161, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Pereira, G.V.D.M.; Neto, D.P.D.C.; Maske, B.L.; Lindner, J.D.D.; Vale, A.S.; Favero, G.R.; Viesser, J.; De Carvalho, J.C.; Góes-Neto, A.; Soccol, C.R. An updated review on bacterial community composition of traditional fermented milk products: What next-generation sequencing has revealed so far? Crit. Rev. Food Sci. Nutr. 2020, 1–20. [Google Scholar] [CrossRef]
- Atwood, K.C.; Schneider, L.K.; Ryan, F.J. Periodic Selection in Escherichia Coli. Proc. Natl. Acad. Sci. USA 1951, 37, 146–155. [Google Scholar] [CrossRef] [Green Version]
- Dykhuizen, D.E.; Hartl, D.L. Selection in Chemostats. Microbiol. Rev. 1983, 47, 150–168. [Google Scholar] [CrossRef]
- Lenski, R.E. Experimental evolution and the dynamics of adaptation and genome evolution in microbial populations. ISME J. 2017, 11, 2181–2194. [Google Scholar] [CrossRef] [Green Version]
- Lenski, R.E.; Rose, M.R.; Simpson, S.C.; Tadler, S.C. Long-Term Experimental Evolution in Escherichia coli. I. Adaptation and Divergence during 2000 Generations. Am. Nat. 1991, 138, 1315–1341. [Google Scholar] [CrossRef]
- Elena, S.F.; Lenski, R. Evolution experiments with microorganisms: The dynamics and genetic bases of adaptation. Nat. Rev. Genet. 2003, 4, 457–469. [Google Scholar] [CrossRef] [PubMed]
- De Visser, J.A.G.; Krug, J. Empirical fitness landscapes and the predictability of evolution. Nat. Rev. Genet. 2014, 15, 480–490. [Google Scholar] [CrossRef]
- Harvey, P.H.; Pagel, M.D. The Comparative Method in Evolutionary Biology; Oxford University Press: Oxford, UK, 1991; Volume 239. [Google Scholar]
- Lenski, R.E.; Ofria, C.; Collier, T.C.; Adami, C. Genome complexity, robustness and genetic interactions in digital organisms. Nature 1999, 400, 661–664. [Google Scholar] [CrossRef] [PubMed]
- Lenski, R.E. Convergence and Divergence in a Long-Term Experiment with Bacteria. Am. Nat. 2017, 190, S57–S68. [Google Scholar] [CrossRef] [PubMed]
- Dettman, J.R.; Rodrigue, N.; Melnyk, A.H.; Wong, A.; Bailey, S.; Kassen, R. Evolutionary insight from whole-genome sequencing of experimentally evolved microbes. Mol. Ecol. 2012, 21, 2058–2077. [Google Scholar] [CrossRef] [PubMed]
- Kawecki, T.J.; Lenski, R.E.; Ebert, D.; Hollis, B.; Olivieri, I.; Whitlock, M.C. Experimental evolution. Trends Ecol. Evol. 2012, 27, 547–560. [Google Scholar] [CrossRef] [Green Version]
- Cooper, V.S.; Bennett, A.F.; Lenski, R.E. Evolution of Thermal Dependence of Growth Rate of Escherichia Coli Populations During 20,000 Generations in a Constant Environment. Evolution 2001, 55, 889–896. [Google Scholar] [CrossRef]
- Cooper, V.S.; Lenski, R.E. The population genetics of ecological specialization in evolving Escherichia coli populations. Nature 2000, 407, 736–739. [Google Scholar] [CrossRef] [PubMed]
- Novak, M.; Pfeiffer, T.; Lenski, R.E.; Sauer, U.; Bonhoeffer, S. Experimental Tests for an Evolutionary Trade-off between Growth Rate and Yield in E. coli. Am. Nat. 2006, 168, 242–251. [Google Scholar] [CrossRef]
- Celiker, H.; Gore, J. Clustering in community structure across replicate ecosystems following a long-term bacterial evolution experiment. Nat. Commun. 2014, 5, 4643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Roy, K.; Marzorati, M.; Negroni, A.; Thas, O.; Balloi, A.; Fava, F.; Verstraete, W.; Daffonchio, D.; Boon, N. Environmental conditions and community evenness determine the outcome of biological invasion. Nat. Commun. 2013, 4, 1383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fredrickson, J.K. Ecological communities by design. Science 2015, 348, 1425–1427. [Google Scholar] [CrossRef] [Green Version]
- Friedman, J.; Higgins, L.M.; Gore, J. Community structure follows simple assembly rules in microbial microcosms. Nat. Ecol. Evol. 2017, 1, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Großkopf, T.; Soyer, O.S. Synthetic microbial communities. Curr. Opin. Microbiol. 2014, 18, 72–77. [Google Scholar] [CrossRef] [Green Version]
- Wittebolle, L.; Marzorati, M.; Clement, L.; Balloi, A.; Daffonchio, D.; Heylen, K.; De Vos, P.; Verstraete, W.; Boon, N. Initial community evenness favours functionality under selective stress. Nature 2009, 458, 623–626. [Google Scholar] [CrossRef]
- De Roy, K.; Marzorati, M.; Abbeele, P.V.D.; Van De Wiele, T.; Boon, N. Synthetic microbial ecosystems: An exciting tool to understand and apply microbial communities. Environ. Microbiol. 2014, 16, 1472–1481. [Google Scholar] [CrossRef] [Green Version]
- Røder, H.L.; Sørensen, S.J.; Burmølle, M. Studying Bacterial Multispecies Biofilms: Where to Start? Trends Microbiol. 2016, 24, 503–513. [Google Scholar] [CrossRef]
- Cairns, J.; Jokela, R.; Hultman, J.; Tamminen, M.; Virta, M.; Hiltunen, T. Construction and Characterization of Synthetic Bacterial Community for Experimental Ecology and Evolution. Front. Genet. 2018, 9, 312. [Google Scholar] [CrossRef]
- Spus, M. Mixed Culture Engeneering for Steering Starter Functionality. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2016. [Google Scholar] [CrossRef]
- Spus, M.; Li, M.; Alexeeva, S.; Wolkers-Rooijackers, J.C.M.; Zwietering, M.H.; Abee, T.; Smid, E. Strain diversity and phage resistance in complex dairy starter cultures. J. Dairy Sci. 2015, 98, 5173–5182. [Google Scholar] [CrossRef] [Green Version]
- Wright, E.S.; Vetsigian, K.H. Inhibitory interactions promote frequent bistability among competing bacteria. Nat. Commun. 2016, 7, 11274. [Google Scholar] [CrossRef] [Green Version]
- Huisman, J.; Weissing, F.J. Biodiversity of plankton by species oscillations and chaos. Nature 1999, 402, 407–410. [Google Scholar] [CrossRef]
- Tilman, D. Niche tradeoffs, neutrality, and community structure: A stochastic theory of resource competition, invasion, and community assembly. Proc. Natl. Acad. Sci. USA 2004, 101, 10854–10861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldford, J.E.; Lu, N.; Bajić, D.; Estrela, S.; Tikhonov, M.; Sanchez-Gorostiaga, A.; Segrè, D.; Mehta, P.; Sanchez, A. Emergent simplicity in microbial community assembly. Science 2018, 361, 469–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Metabolic Rules of Microbial Community Assembly. Available online: https://scholar.google.com/citations?view_op=view_citation&hl=en&user=Jc6QcMje5ZoC&citation_for_view=Jc6QcMje5ZoC:eQOLeE2rZwMC (accessed on 20 August 2021).
- Yu, Z.; Krause, S.M.B.; Beck, D.A.C.; Chistoserdova, L. A Synthetic Ecology Perspective: How Well Does Behavior of Model Organisms in the Laboratory Predict Microbial Activities in Natural Habitats? Front. Microbiol. 2016, 7, 946. [Google Scholar] [CrossRef] [PubMed]
- Bell, T.; Newman, J.; Silverman, B.W.; Turner, S.L.; Lilley, A.K. The contribution of species richness and composition to bacterial services. Nature 2005, 436, 1157–1160. [Google Scholar] [CrossRef]
- Fiegna, F.; Moreno-Letelier, A.; Bell, T.; Barraclough, T.G. Evolution of species interactions determines microbial community productivity in new environments. ISME J. 2015, 9, 1235–1245. [Google Scholar] [CrossRef] [Green Version]
- Scheuerl, T.; Hopkins, M.; Nowell, R.W.; Rivett, D.W.; Barraclough, T.G.; Bell, T. Bacterial adaptation is constrained in complex communities. Nat. Commun. 2020, 11, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daims, H.; Taylor, M.; Wagner, M. Wastewater treatment: A model system for microbial ecology. Trends Biotechnol. 2006, 24, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Bessmeltseva, M.; Viiard, E.; Simm, J.; Paalme, T.; Sarand, I. Evolution of Bacterial Consortia in Spontaneously Started Rye Sourdoughs during Two Months of Daily Propagation. PLoS ONE 2014, 9, e95449. [Google Scholar] [CrossRef]
- Blasche, S.; Kim, Y.; Oliveira, A.P.; Patil, K.R. Model microbial communities for ecosystems biology. Curr. Opin. Syst. Biol. 2017, 6, 51–57. [Google Scholar] [CrossRef]
- Erkus, O.; De Jager, V.C.L.; Spus, M.; Van Alen-Boerrigter, I.J.; Van Rijswijck, I.M.H.; Hazelwood, L.; Janssen, P.W.M.; van Hijum, S.; Kleerebezem, M.; Smid, E.J. Multifactorial diversity sustains microbial community stability. ISME J. 2013, 7, 2126–2136. [Google Scholar] [CrossRef] [PubMed]
- Schoustra, S.E.; Kasase, C.; Toarta, C.; Kassen, R.; Poulain, A.J. Microbial Community Structure of Three Traditional Zambian Fermented Products: Mabisi, Chibwantu and Munkoyo. PLoS ONE 2013, 8, e63948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smid, E.J.; Erkus, O.; Spus, M.; Wolkers-Rooijackers, J.C.M.; Alexeeva, S.; Kleerebezem, M. Functional implications of the microbial community structure of undefined mesophilic starter cultures. Microb. Cell Factories 2014, 13, S1–S2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nout, M. Accelerated natural lactic fermentation of cereal-based formulas at reduced water activity. Int. J. Food Microbiol. 1992, 16, 313–322. [Google Scholar] [CrossRef]
- Groenenboom, A.E.; Shindano, J.; Cheepa, N.; Smid, E.J.; Schoustra, S.E. Microbial population dynamics during traditional production of Mabisi, a spontaneous fermented milk product from Zambia: A field trial. World J. Microbiol. Biotechnol. 2020, 36, 184. [Google Scholar] [CrossRef]
- Gatti, M.; Bottari, B.; Lazzi, C.; Neviani, E.; Mucchetti, G. Invited review: Microbial evolution in raw-milk, long-ripened cheeses produced using undefined natural whey starters. J. Dairy Sci. 2014, 97, 573–591. [Google Scholar] [CrossRef] [Green Version]
- Moonga, H.B.; Schoustra, S.E.; Linnemann, A.R.; Kuntashula, E.; Shindano, J.; Smid, E.J. The art of mabisi production: A traditional fermented milk. PLoS ONE 2019, 14, e0213541. [Google Scholar] [CrossRef] [Green Version]
- Franz, C.M.; Huch, M.; Mathara, J.M.; Abriouel, H.; Benomar, N.; Reid, G.; Galvez, A.; Holzapfel, W.H. African fermented foods and probiotics. Int. J. Food Microbiol. 2014, 190, 84–96. [Google Scholar] [CrossRef]
- Gadaga, T.H.; Mutukumira, A.N.; Narvhus, J.A.; Feresu, S.B. A review of traditional fermented foods and beverages of Zimbabwe. Int. J. Food Microbiol. 1999, 53, 1–11. [Google Scholar] [CrossRef]
- Ravyts, F.; De Vuyst, L.; Leroy, F. Bacterial diversity and functionalities in food fermentations. Eng. Life Sci. 2012, 12, 356–367. [Google Scholar] [CrossRef]
- Tamang, J.P.; Watanabe, K.; Holzapfel, W.H. Review: Diversity of Microorganisms in Global Fermented Foods and Beverages. Front. Microbiol. 2016, 7, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Gänzle, M. Lactic metabolism revisited: Metabolism of lactic acid bacteria in food fermentations and food spoilage. Curr. Opin. Food Sci. 2015, 2, 106–117. [Google Scholar] [CrossRef]
- Teusink, B.; Smid, E.J. Modelling strategies for the industrial exploitation of lactic acid bacteria. Nat. Rev. Microbiol. Genet. 2006, 4, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Teusink, B.; Wiersma, A.; Molenaar, D.; Francke, C.; de Vos, W.M.; Siezen, R.J.; Smid, E.J. Analysis of Growth of Lactobacillus plantarum WCFS1 on a Complex Medium Using a Genome-scale Metabolic Model. J. Biol. Chem. 2006, 281, 40041–40048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Visser, J.A.G.M.; Akkermans, A.D.L.; Hoekstra, R.F.; de Vos, W.M. Insertion-Sequence-Mediated Mutations Isolated During Adaptation to Growth and Starvation in Lactococcus lactis. Genetics 2004, 168, 1145–1157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bachmann, H.; Starrenburg, M.J.; Molenaar, D.; Kleerebezem, M.; Vlieg, J.E.V.H. Microbial domestication signatures of Lactococcus lactis can be reproduced by experimental evolution. Genome Res. 2012, 22, 115–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahony, J.; van Sinderen, D. Virome studies of food production systems: Time for ‘farm to fork’ analyses. Curr. Opin. Biotechnol. 2022, 73, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Ledormand, P.; Desmasures, N.; Dalmasso, M. Phage community involvement in fermented beverages: An open door to technological advances? Crit. Rev. Food Sci. Nutr. 2020, 1–10. [Google Scholar] [CrossRef]
- Jung, M.-J.; Kim, M.-S.; Yun, J.-H.; Lee, J.-Y.; Kim, P.S.; Lee, H.-W.; Ha, J.-H.; Roh, S.W.; Bae, J.-W. Viral community predicts the geographical origin of fermented vegetable foods more precisely than bacterial community. Food Microbiol. 2018, 76, 319–327. [Google Scholar] [CrossRef]
- Carbonetto, B.; Ramsayer, J.; Nidelet, T.; Legrand, J.; Sicard, D. Bakery yeasts, a new model for studies in ecology and evolution. Yeast 2018, 35, 591–603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiegna, F.; Scheuerl, T.; Moreno-Letelier, A.; Bell, T.; Barraclough, T.G. Saturating effects of species diversity on life-history evolution in bacteria. Proc. R. Soc. B Boil. Sci. 2015, 282, 20151794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Székely, A.J.; Langenheder, S. The importance of species sorting differs between habitat generalists and specialists in bacterial communities. FEMS Microbiol. Ecol. 2014, 87, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Pelletier, F.; Garan, D.; and Hendry, A.P. Eco-evolutionary dynamics. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009, 364, 1483–1489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teotónio, H.; Chelo, I.M.; Bradic, M.; Rose, M.R.; Long, A.D. Experimental evolution reveals natural selection on standing genetic variation. Nat. Genet. 2009, 41, 251–257. [Google Scholar] [CrossRef]
- Fussmann, G.F.; Loreau, M.; Abrams, P.A. Eco-evolutionary dynamics of communities and ecosystems. Funct. Ecol. 2007, 21, 465–477. [Google Scholar] [CrossRef]
- Johnson, M.T.J.J.; Stinchcombe, J.R. An emerging synthesis between community ecology and evolutionary biology. Trends Ecol. Evol. 2007, 22, 250–257. [Google Scholar] [CrossRef]
- McPeek, M.A. Evolutionary Community Ecology; Princeton University Press: Princeton, NJ, USA, 2017; Volume 58. [Google Scholar] [CrossRef]
- Stearns, S. The Emergence of Evolutionary and Community Ecology as Experimental Sciences. Perspect. Biol. Med. 1982, 25, 621–648. [Google Scholar] [CrossRef]
- Wilcox, T.M.; Schwartz, M.K.; Lowe, W.H. Evolutionary Community Ecology: Time to Think Outside the (Taxonomic) Box. Trends Ecol. Evol. 2018, 33, 240–250. [Google Scholar] [CrossRef]
- McPeek, M.A. The Ecological Dynamics of Natural Selection: Traits and the Coevolution of Community Structure. Am. Nat. 2017, 189, E91–E117. [Google Scholar] [CrossRef]
- Diaz, M.; Kellingray, L.; Akinyemi, N.; Adefiranye, O.O.; Olaonipekun, A.B.; Bayili, G.R.; Ibezim, J.; Du Plessis, A.S.; Houngbédji, M.; Kamya, D.; et al. Comparison of the microbial composition of African fermented foods using amplicon sequencing. Sci. Rep. 2019, 9, 13863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, M.; Hedin, L.O. Global plant–symbiont organization and emergence of biogeochemical cycles resolved by evolution-based trait modelling. Nat. Ecol. Evol. 2019, 3, 239–250. [Google Scholar] [CrossRef]
- Lopatkin, A.J.; Collins, J.J. Predictive biology: Modelling, understanding and harnessing microbial complexity. Nat. Rev. Genet. 2020, 18, 507–520. [Google Scholar] [CrossRef] [PubMed]
- Sheffer, E.; Batterman, S.A.; Levin, S.A.; Hedin, L.O. Biome-scale nitrogen fixation strategies selected by climatic constraints on nitrogen cycle. Nat. Plants 2015, 1, 1–6. [Google Scholar] [CrossRef]
- Venturelli, O.S.; Carr, A.V.; Fisher, G.; Hsu, R.H.; Lau, R.; Bowen, B.P.; Hromada, S.; Northen, T.; Arkin, A.P. Deciphering microbial interactions in synthetic human gut microbiome communities. Mol. Syst. Biol. 2018, 14, e8157. [Google Scholar] [CrossRef] [PubMed]
- Özcan, E.; Seven, M.; Şirin, B.; Çakır, T.; Nikerel, E.; Teusink, B.; Öner, E.T. Dynamic co-culture metabolic models reveal the fermentation dynamics, metabolic capacities and interplays of cheese starter cultures. Biotechnol. Bioeng. 2021, 118, 223–237. [Google Scholar] [CrossRef]
- Costa, J.C.C.P.; Bover-Cid, S.; Bolívar, A.; Zurera, G.; Pérez-Rodríguez, F. Modelling the interaction of the sakacin-producing Lactobacillus sakei CTC494 and Listeria monocytogenes in filleted gilthead sea bream (Sparus aurata) under modified atmosphere packaging at isothermal and non-isothermal conditions. Int. J. Food Microbiol. 2019, 297, 72–84. [Google Scholar] [CrossRef]
- McCann, K.S. The diversity–stability debate. Nature 2000, 405, 228–233. [Google Scholar] [CrossRef]
- Awasthi, A.; Singh, M.; Soni, S.K.; Singh, R.; Kalra, A. Biodiversity acts as insurance of productivity of bacterial communities under abiotic perturbations. ISME J. 2014, 8, 2445–2452. [Google Scholar] [CrossRef] [Green Version]
- Mallon, C.A.; van Elsas, J.D.; Salles, J.F. Microbial Invasions: The Process, Patterns, and Mechanisms. Trends Microbiol. 2015, 23, 719–729. [Google Scholar] [CrossRef]
- Thingstad, T.F.; Lignell, R. Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand. Aquat. Microb. Ecol. 1997, 13, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Feldgarden, M.; Stoebel, D.M.; Brisson, D.; Dykhuizen, D.E. Size Doesn’t Matter: Microbial Selection Experiments Address Ecological Phenomena. Ecology 2003, 84, 1679–1687. [Google Scholar] [CrossRef] [Green Version]
- Koskella, B.; Lively, C.M. Evidence for Negative Frequency-Dependent Selection during Experimental Coevolution of a Freshwater Snail and a Sterilizing Trematode. Evolution 2009, 63, 2213–2221. [Google Scholar] [CrossRef] [PubMed]
- Naureen, Z.; Dautaj, A.; Anpilogov, K.; Camilleri, G.; Dhuli, K.; Tanzi, B.; Maltese, P.E.; Cristofoli, F.; De Antoni, L.; Beccari, T.; et al. Bacteriophages presence in nature and their role in the natural selection of bacterial populations. Acta Biomed. Atenei Parm. 2020, 91, e2020024. [Google Scholar] [CrossRef]
- Park, E.-J.; Kim, K.-H.; Abell, G.C.J.; Kim, M.-S.; Roh, S.W.; Bae, J.-W. Metagenomic Analysis of the Viral Communities in Fermented Foods. Appl. Environ. Microbiol. 2011, 77, 1284–1291. [Google Scholar] [CrossRef] [Green Version]
- Paillet, T.; Dugat-Bon, E. Bacteriophage ecology of fermented foods: Anything new under the sun? Curr. Opin. Food Sci. 2021, 40, 102–111. [Google Scholar] [CrossRef]
- Jung, J.Y.; Lee, S.H.; Kim, J.M.; Park, M.S.; Bae, J.-W.; Hahn, Y.; Madsen, E.L.; Jeon, C.O. Metagenomic Analysis of Kimchi, a Traditional Korean Fermented Food. Appl. Environ. Microbiol. 2011, 77, 2264–2274. [Google Scholar] [CrossRef] [Green Version]
- Gause, G.F. Experimental Analysis of Vito Volterra’s Mathematical Theory of the Struggle for Existence. Science 1934, 79, 16–17. [Google Scholar] [CrossRef] [Green Version]
- Hardin, G. The Competitive Exclusion Principle. Science 1960, 131, 1292–1297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hutchinson, G.E. Concluding Remarks. Cold Spring Harb. Symp. Quant. Biol. 1957, 22, 415–427. [Google Scholar] [CrossRef]
- Ashby, B.; Watkins, E.; Lourenço, J.; Gupta, S.; Foster, K.R. Competing species leave many potential niches unfilled. Nat. Ecol. Evol. 2017, 1, 1495–1501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- May, R.M. On the theory of niche overlap. Theor. Popul. Biol. 1974, 5, 297–332. [Google Scholar] [CrossRef]
- Pacala, S.W.; Roughgarden, J. The evolution of resource partitioning in a multidimensional resource space. Theor. Popul. Biol. 1982, 22, 127–145. [Google Scholar] [CrossRef]
- Stecher, B.; Berry, D.; Loy, A. Colonization resistance and microbial ecophysiology: Using gnotobiotic mouse models and single-cell technology to explore the intestinal jungle. FEMS Microbiol. Rev. 2013, 37, 793–829. [Google Scholar] [CrossRef] [Green Version]
- Stecher, B.; Chaffron, S.; Käppeli, R.; Hapfelmeier, S.; Freedrich, S.; Weber, T.C.; Kirundi, J.; Suar, M.; McCoy, K.D.; von Mering, C.; et al. Like Will to Like: Abundances of Closely Related Species Can Predict Susceptibility to Intestinal Colonization by Pathogenic and Commensal Bacteria. PLoS Pathog. 2010, 6, e1000711. [Google Scholar] [CrossRef] [PubMed]
- Grant, P.R. Convergent and divergent character displacement. Biol. J. Linn. Soc. 1972, 4, 39–68. [Google Scholar] [CrossRef]
- Rainey, P.B.; Travisano, M. Adaptive radiation in a heterogeneous environment. Nature 1998, 394, 69–72. [Google Scholar] [CrossRef]
- Machida, M.; Asai, K.; Sano, M.; Tanaka, T.; Kumagai, T.; Terai, G.; Kusumoto, K.-I.; Arima, T.; Akita, O.; Kashiwagi, Y.; et al. Genome sequencing and analysis of Aspergillus oryzae. Nature 2005, 438, 1157–1161. [Google Scholar] [CrossRef] [Green Version]
- Van de Guchte, M.; Penaud, S.; Grimaldi, C.; Barbe, V.; Bryson, K.; Nicolas, P.; Robert, C.; Oztas, S.; Mangenot, S.; Couloux, A.; et al. The complete genome sequence of Lactobacillus bulgaricus reveals extensive and ongoing reductive evolution. Proc. Natl. Acad. Sci. USA 2006, 103, 9274–9279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ni, K.; Wang, F.; Zhu, B.; Yang, J.; Zhou, G.; Pan, Y.; Tao, Y.; Zhong, J. Effects of lactic acid bacteria and molasses additives on the microbial community and fermentation quality of soybean silage. Bioresour. Technol. 2017, 238, 706–715. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, S.; Watanabe, T.; Toyama, H.; Morinaga, Y. Significance of microbial symbiotic coexistence in traditional fermentation. J. Biosci. Bioeng. 2013, 116, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Papadimitriou, K.; Pot, B.; Tsakalidou, E. How microbes adapt to a diversity of food niches. Curr. Opin. Food Sci. 2015, 2, 29–35. [Google Scholar] [CrossRef]
- Fitzsimmons, J.M.; Schoustra, S.E.; Kerr, J.T.; Kassen, R. Population consequences of mutational events: Effects of antibiotic resistance on the r/K trade-off. Evol. Ecol. 2010, 24, 227–236. [Google Scholar] [CrossRef]
- Reznick, D.N.; Bryant, M.J.; Bashey-Visser, F. r- and K-Selection Revisited: The Role of Population Regulation in Life-History Evolution. Ecology 2002, 83, 1509–1520. [Google Scholar] [CrossRef] [Green Version]
- García-García, N.; Tamames, J.; Linz, A.M.; Pedrós-Alió, C.; Puente-Sánchez, F. Microdiversity ensures the maintenance of functional microbial communities under changing environmental conditions. ISME J. 2019, 13, 2969–2983. [Google Scholar] [CrossRef]
- Nguyen, J.; Lara-Gutiérrez, J.; Stocker, R. Environmental fluctuations and their effects on microbial communities, populations and individuals. FEMS Microbiol. Rev. 2020, 45, fuaa068. [Google Scholar] [CrossRef]
- Van Mastrigt, O.; Abee, T.; Lillevang, S.K.; Smid, E.J. Quantitative physiology and aroma formation of a dairy Lactococcus lactis at near-zero growth rates. Food Microbiol. 2018, 73, 216–226. [Google Scholar] [CrossRef]
- Wang, S.; Xiong, W.; Wang, Y.; Nie, Y.; Wu, Q.; Xu, Y.; Geisen, S. Temperature-Induced Annual Variation in Microbial Community Changes and Resulting Metabolome Shifts in a Controlled Fermentation System. mSystems 2020, 5, e00555-20. [Google Scholar] [CrossRef]
- Dutta, D.; Gachhui, R. Novel nitrogen-fixing Acetobacter nitrogenifigens sp. nov., isolated from Kombucha tea. Int. J. Syst. Evol. Microbiol. 2006, 56, 1899–1903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutta, D.; Gachhui, R. Nitrogen-Fixing and CelluloseProducing Gluconacetobacter kombuchae sp. nov., Isolated from Kombucha Tea. Int. J. Syst. Evol. Microbiol. 2007, 57, 353–357. [Google Scholar] [CrossRef] [PubMed]
- Rillig, M.C.; Antonovics, J.; Caruso, T.; Lehmann, A.; Powell, J.R.; Veresoglou, S.D.; Verbruggen, E. Interchange of entire communities: Microbial community coalescence. Trends Ecol. Evol. 2015, 30, 470–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tikhonov, M. Community-level cohesion without cooperation. eLife 2016, 5, e15747. [Google Scholar] [CrossRef]
- Sierocinski, P.; Milferstedt, K.; Bayer, F.; Großkopf, T.; Alston, M.; Bastkowski, S.; Swarbreck, D.; Hobbs, P.J.; Soyer, O.S.; Hamelin, J.; et al. A Single Community Dominates Structure and Function of a Mixture of Multiple Methanogenic Communities. Curr. Biol. 2017, 27, 3390–3395. [Google Scholar] [CrossRef] [Green Version]
- Kort, R.; Sybesma, W. Probiotics for every body. Trends Biotechnol. 2012, 30, 613–615. [Google Scholar] [CrossRef]
- Marco, M.L.; Heeney, D.; Binda, S.; Cifelli, C.J.; Cotter, P.; Foligne, B.; Gänzle, M.; Kort, R.; Pasin, G.; Pihlanto, A.; et al. Health benefits of fermented foods: Microbiota and beyond. Curr. Opin. Biotechnol. 2017, 44, 94–102. [Google Scholar] [CrossRef]
- Dimidi, E.; Cox, S.R.; Rossi, M.; Whelan, K. Fermented Foods: Definitions and Characteristics, Impact on the Gut Microbiota and Effects on Gastrointestinal Health and Disease. Nutrients 2019, 11, 1806. [Google Scholar] [CrossRef] [Green Version]
- Abbeele, P.V.D.; Grootaert, C.; Marzorati, M.; Possemiers, S.; Verstraete, W.; Gérard, P.; Rabot, S.; Bruneau, A.; El Aidy, S.; Derrien, M.; et al. Microbial Community Development in a Dynamic Gut Model Is Reproducible, Colon Region Specific, and Selective for Bacteroidetes and Clostridium Cluster IX. Appl. Environ. Microbiol. 2010, 76, 5237–5246. [Google Scholar] [CrossRef] [Green Version]
- Nissen, L.; Casciano, F.; Gianotti, A. Intestinal fermentation in vitro models to study food-induced gut microbiota shift: An updated review. FEMS Microbiol. Lett. 2020, 367, fnaa097. [Google Scholar] [CrossRef]
- Moreno-Mateos, D.; Alberdi, A.; Morriën, E.; Van Der Putten, W.H.; Rodríguez-Uña, A.; Montoya, D. The long-term restoration of ecosystem complexity. Nat. Ecol. Evol. 2020, 4, 676–685. [Google Scholar] [CrossRef]
- Suyal, D.C.; Joshi, D.; Debbarma, P.; Soni, R.; Das, B.; Goel, R. Soil Metagenomics: Unculturable Microbial Diversity and Its Function. In Mycorrhizosphere and Pedogenesis; Varma, A., Choudhary, D., Eds.; Springer: Singapore, 2019; pp. 355–362. [Google Scholar] [CrossRef]
- Renwick, S.; Ganobis, C.M.; Elder, R.A.; Gianetto-Hill, C.; Higgins, G.; Robinson, A.V.; Vancuren, S.J.; Wilde, J.; Allen-Vercoe, E. Culturing Human Gut Microbiomes in the Laboratory. Annu. Rev. Microbiol. 2021, 75. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Huang, X.; Chen, J.; Han, B. Formation of a Mixed-Species Biofilm Is a Survival Strategy for Unculturable Lactic Acid Bacteria and Saccharomyces cerevisiae in Daqu, a Chinese Traditional Fermentation Starter. Front. Microbiol. 2020, 11, 138. [Google Scholar] [CrossRef]
- Bishara, A.; Moss, E.L.; Kolmogorov, M.; Parada, A.E.; Weng, Z.; Sidow, A.; Dekas, A.E.; Batzoglou, S.; Bhatt, A.S. High-quality genome sequences of uncultured microbes by assembly of read clouds. Nat. Biotechnol. 2018, 36, 1067–1075. [Google Scholar] [CrossRef]
- Cao, Y.; Fanning, S.; Proos, S.; Jordan, K.; Srikumar, S. A Review on the Applications of Next Generation Sequencing Technologies as Applied to Food-Related Microbiome Studies. Front. Microbiol. 2017, 8, 1829. [Google Scholar] [CrossRef]
- Hugerth, L.W.; Andersson, A.F. Analysing Microbial Community Composition through Amplicon Sequencing: From Sampling to Hypothesis Testing. Front. Microbiol. 2017, 8, 1561. [Google Scholar] [CrossRef]
- Bergh, B.V.D.; Swings, T.; Fauvart, M.; Michiels, J. Experimental Design, Population Dynamics, and Diversity in Microbial Experimental Evolution. Microbiol. Mol. Biol. Rev. 2018, 82, e00008-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groenenboom, A.E.; Parker, M.E.; De Vries, A.; De Groot, S.; Zobrist, S.; Mansen, K.; Milani, P.; Kort, R.; Smid, E.J.; Schoustra, S.E. Bacterial community dynamics in lait caillé, a traditional product of spontaneous fermentation from Senegal. PLoS ONE 2019, 14, e0215658. [Google Scholar] [CrossRef] [PubMed]
- Phiri, S.; Schoustra, S.E.; Heuvel, J.V.D.; Smid, E.J.; Shindano, J.; Linnemann, A.R. How processing methods affect the microbial community composition in a cereal-based fermented beverage. LWT 2020, 128, 109451. [Google Scholar] [CrossRef]
- Winter, C.; Smit, A.; Herndl, G.J.; Weinbauer, M.G. Impact of Virioplankton on Archaeal and Bacterial Community Richness as Assessed in Seawater Batch Cultures. Appl. Environ. Microbiol. 2004, 70, 804–813. [Google Scholar] [CrossRef] [Green Version]
- Xun, W.; Li, W.; Xiong, W.; Ren, Y.; Liu, Y.; Miao, Y.; Xu, Z.; Zhang, N.; Shen, Q.; Zhang, R. Diversity-triggered deterministic bacterial assembly constrains community functions. Nat. Commun. 2019, 10, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Terefe, N.S.; Augustin, M.A. Fermentation for tailoring the technological and health related functionality of food products. Crit. Rev. Food Sci. Nutr. 2020, 60, 2887–2913. [Google Scholar] [CrossRef] [PubMed]
- Dallinger, W.H. The President’s Address. J. R. Microsc. Soc. 1887, 7, 185–199. [Google Scholar] [CrossRef]
- Rozen, D.E.; Lenski, R.E. Long-Term Experimental Evolution inEscherichia coli. VIII. Dynamics of a Balanced Polymorphism. Am. Nat. 2000, 155, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Lenski, R.E.; Travisano, M. Dynamics of adaptation and diversification: A 10,000-generation experiment with bacterial populations. Proc. Natl. Acad. Sci. USA 1994, 91, 6808–6814. [Google Scholar] [CrossRef] [Green Version]
- Deatherage, D.E.; Kepner, J.L.; Bennett, A.F.; Lenski, R.E.; Barrick, J.E. Specificity of genome evolution in experimental populations of Escherichia coli evolved at different temperatures. Proc. Natl. Acad. Sci. USA 2017, 114, E1904–E1912. [Google Scholar] [CrossRef] [Green Version]
- Sachs, J.L.; Hollowell, A.C. The Origins of Cooperative Bacterial Communities. mBio 2012, 3, 1–3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lenski, R.E.; Burnham, T.C. Experimental evolution of bacteria across 60,000 generations, and what it might mean for economics and human decision-making. J. Bioecon. 2018, 20, 107–124. [Google Scholar] [CrossRef]
- Cremer, J.; Melbinger, A.; Frey, E. Growth dynamics and the evolution of cooperation in microbial populations. Sci. Rep. 2012, 2, 281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zabat, M.A.; Sano, W.H.; Wurster, J.I.; Cabral, D.J.; Belenky, P. Microbial Community Analysis of Sauerkraut Fermentation Reveals a Stable and Rapidly Established Community. Foods 2018, 7, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sybesma, W.; Molenaar, D.; van Ijcken, W.; Venema, K.; Kort, R. Genome Instability in Lactobacillus rhamnosus GG. Appl. Environ. Microbiol. 2013, 79, 2233–2239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Materia, V.C.; Linnemann, A.R.; Smid, E.J.; Schoustra, S.E. Contribution of traditional fermented foods to food systems transformation: Value addition and inclusive entrepreneurship. Food Secur. 2021, 1–15. [Google Scholar] [CrossRef]
- The Nagoya Protocol on Access and Benefit-Sharing. Available online: https://www.cbd.int/abs/ (accessed on 5 March 2019).
Patterns of Diversity | Diversity Stability Hypotheses | Niche Space | Fluctuating Environmental Factors | Community Coalescence | |
---|---|---|---|---|---|
Communities can show radiation, be divergent or convergent | More diverse communities are more stable | Number of niches available gives a maximum for the number of stable members in a community | Nutrient-rich and poor periods can make communities more diverse and more flexible | Co-evolved communities will maintain their function upon coalescence with a less stable community | |
Single genotype that radiated into a mixed population | All players in the community can be followed exactly | Diversity is very low | Very limited number of niches is filled in the community | Small communities have little potential to respond to fluctuations or might be too instable for fluctuations | Origin of remaining players can be easily analysed |
Defined mixed population | Communities can be analysed, more complex community structures can be followed | Due to initial instability of the communities the link with diversity can be challenging | Niche space can be constructed in an organised or pre-defined manner | Well-constructed communities might have enough potential to show flexibility and increasing diversity | Origin of remaining players can be analysed well |
Community from fermented food | Most players can be analysed, natural behaviour can be followed | Natural communities with different diversities and similar function can be used | Bacteria are fully adapted to their niche. Bacterial interactions make full community analyses challenging | Natural communities contain a lot of microbial potential to see how adaptive they can be towards challenging environments | Challenging to see the origin of the final community structure, however, functional groups can be interchanged |
Complex natural community | Groups of players can be followed over time | Most communities found in nature are too diverse and/or too stable to find the relation | Bacterial interactions shape niche space and make analyses of all niches challenging | Natural communities contain a lot of microbial potential to see how adaptive they can be towards challenging environments | Challenging to see the origin of all players to see how the communities behaved after coalescence has taken place |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alekseeva, A.Y.; Groenenboom, A.E.; Smid, E.J.; Schoustra, S.E. Eco-Evolutionary Dynamics in Microbial Communities from Spontaneous Fermented Foods. Int. J. Environ. Res. Public Health 2021, 18, 10093. https://doi.org/10.3390/ijerph181910093
Alekseeva AY, Groenenboom AE, Smid EJ, Schoustra SE. Eco-Evolutionary Dynamics in Microbial Communities from Spontaneous Fermented Foods. International Journal of Environmental Research and Public Health. 2021; 18(19):10093. https://doi.org/10.3390/ijerph181910093
Chicago/Turabian StyleAlekseeva, Anna Y., Anneloes E. Groenenboom, Eddy J. Smid, and Sijmen E. Schoustra. 2021. "Eco-Evolutionary Dynamics in Microbial Communities from Spontaneous Fermented Foods" International Journal of Environmental Research and Public Health 18, no. 19: 10093. https://doi.org/10.3390/ijerph181910093
APA StyleAlekseeva, A. Y., Groenenboom, A. E., Smid, E. J., & Schoustra, S. E. (2021). Eco-Evolutionary Dynamics in Microbial Communities from Spontaneous Fermented Foods. International Journal of Environmental Research and Public Health, 18(19), 10093. https://doi.org/10.3390/ijerph181910093