Effects of a Specific Core Stability Program on the Sprint and Change-of-Direction Maneuverability Performance in Youth, Male Soccer Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Approach to the Problem
2.2. Participants
2.3. Procedures
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Linear Sprint
4.2. Change-of-Direction Maneuverability
4.3. Limitations of the Study
4.4. Practical Applications
4.5. Future Proposals
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akuthota, V.; Ferreiro, A.; Moore, T.; Fredericson, M. Core stability exercise principles. Curr. Sports Med. Rep. 2008, 7, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, B.I. Myths and reality: Training the torso. Prof. Strength Cond. 2014, 33, 25–30. [Google Scholar]
- Sharrock, C.; Cropper, J.; Mostad, J.; Johnson, M.; Malone, T. A pilot study of core stability and athletic performance: Is there a relationship? Int. J. Sports Phys. Ther. 2011, 6, 63–74. [Google Scholar] [PubMed]
- Vera-García, F.; Barbado, D.; Moreno, V.; Hernández, S.; Juan, C.; Elvira, J.L. Core Stability. Concepto y aportaciones al entrenamiento y la prevención de lesiones. Rev. Andal. Med. del Deporte 2015, 8, 79–85. [Google Scholar] [CrossRef]
- Willardson, J. Core stability training: Applications to sports conditioning programs. J. Strength Cond. Res. 2007, 21, 979–985. [Google Scholar] [CrossRef] [PubMed]
- Wirth, K.; Hartmann, H.; Mickel, C.; Szilvas, E.; Keiner, M.; Sander, A. Core stability in athletes: A critical analysis of current guidelines. Sports Med. 2017, 47, 401–414. [Google Scholar] [CrossRef]
- Clark, D.R.; Lambert, M.I.; Hunter, A.M. Contemporary perspectives of core stability training for dynamic athletic performance: A survey of athletes, coaches, sports science and sports medicine practitioners. Sports Med.-Open 2018, 4, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.; McGill, S. The effect of core training on distal limb performance during ballistic strike manoeuvres. J. Sports Sci. 2016, 35, 1–13. [Google Scholar] [CrossRef]
- Reed, C.A.; Ford, K.R.; Myer, G.D.; Hewett, T.E. The effects of isolated and integrated ‘core stability’ training on athletic performance measures. Sports Med. 2012, 42, 697–706. [Google Scholar] [CrossRef] [PubMed]
- Borghuis, J.; Hof, A.L.; Lemmink, K.A.P.M. The importance of sensory-motor control in providing core stability: Implications for measurement and training. Sports Med. 2008, 38, 893–916. [Google Scholar] [CrossRef]
- Hibbs, A.E.; Thompson, K.G.; French, D.; Wrigley, A.; Spears, I. Optimizing performance by improving core stability and core strength. Sports Med. 2008, 38, 995–1008. [Google Scholar] [CrossRef] [PubMed]
- McGill, S. Core training: Evidence translating to better performance and injury prevention. Strength Cond. J. 2010, 32, 33–46. [Google Scholar] [CrossRef] [Green Version]
- Kibler, W.B.; Press, J.; Sciascia, A. The role of core stability in athletic function. Sports Med. 2006, 36, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Jamison, S.T.; McNeilan, R.J.; Young, G.S.; Givens, D.L.; Best, T.M.; Chaudhari, A.M.W. Randomized controlled trial of the effects of a trunk stabilization program on trunk control and knee loading. Med. Sci. Sports Exerc. 2012, 44, 1924–1934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGill, S. Low Back Disorders 3rd Edition eBook With Web Resource, 3rd ed.; Human Kinetics: Champaign, IL, USA, 2016; ISBN 9781492520887. [Google Scholar]
- Nesser, T.; Huxel, K.; Tincher, J.; Okada, T. The relationship between core stability and performance in division I football players. J. Strength Cond. Res. 2008, 22, 1750–1754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbado, D.; Irles-Vidal, B.; Prat-Luri, A.; García-Vaquero, M.P.; Vera-Garcia, F.J. Training intensity quantification of core stability exercises based on a smartphone accelerometer. PLoS ONE 2018, 13, e0208262. [Google Scholar] [CrossRef]
- Barbado, D.; Barbado, L.C.; Elvira, J.L.L.; van Dieën, J.H.; Vera-Garcia, F.J. Sports-related testing protocols are required to reveal trunk stability adaptations in high-level athletes. Gait Posture 2016, 49, 90–96. [Google Scholar] [CrossRef] [Green Version]
- Taskin, C. Effect of Core Training Program on Physical Functional Performance in Female Soccer Players. Int. Educ. Stud. 2016, 9, 115. [Google Scholar] [CrossRef] [Green Version]
- Lago, C.; Rey, E.; Padrón, A.; De Rellán, A.S.; Fragueiro, A.; García, J. Effects of core strength training using stable and unstable surfaces on physical fitness and functional performance in professional female futsal players. J. Hum. Kinet. 2018, 65, 213–224. [Google Scholar] [CrossRef] [Green Version]
- Prieske, O.; Muehlbauer, T.; Borde, R.; Gube, M.; Bruhn, S.; Behm, D.G.; Granacher, U. Neuromuscular and athletic performance following core strength training in elite youth soccer: Role of instability. Scand. J. Med. Sci. Sport. 2016, 26, 48–56. [Google Scholar] [CrossRef]
- Hoshikawa, Y.; Iida, T.; Muramatsu, M.; Ii, N.; Nakajami, Y.; Chumank, K.; Kanehisa, H. Effects of stabilization training on trunk muscularity and physical performance in youth soccer players. J. Strength Cond. Res. 2013, 27, 3142–3149. [Google Scholar] [CrossRef]
- Dello, A.; Padulo, J.; Ayalon, M. Core stability training on lower limb balance strength. J. Sports Sci. 2016, 34, 671–678. [Google Scholar] [CrossRef] [PubMed]
- Saeterbakken, A.; Van Den Tillaar, R.; Seiler, S. Effect of core stability training on throwing velocity in female handball players. J. Strength Cond. Res. 2011, 25, 712–718. [Google Scholar] [CrossRef] [PubMed]
- Vera-García, F.; Barbado, D.; Pérez, V.M.; Sánchez, S.H.; Recio, C.J.; Elvira, J.L. Core stability: Evaluación y criterios para su entrenamiento. Rev. Andal. Med. del Deporte 2015, 8, 130–137. [Google Scholar] [CrossRef]
- Lederman, E. The myth of core stability. J. Bodyw. Mov. Ther. 2009, 14, 84–98. [Google Scholar] [CrossRef] [PubMed]
- Behm, D.G.; Drinkwater, E.J.; Willardson, J.M.; Cowley, P.M. Canadian society for exercise physiology position stand: The use of instability to train the core in athletic and nonathletic conditioning. Appl. Physiol. Nutr. Metab. 2010, 35, 109–112. [Google Scholar] [CrossRef] [Green Version]
- Manchado, C.; García-Ruiz, J.; Cortell-Tormo, J.M.; Tortosa-Martínez, J. Effect of core training on male handball players’ throwing velocity. J. Hum. Kinet. 2017, 56, 177–185. [Google Scholar] [CrossRef] [Green Version]
- Behm, D.; Leonard, A.; Young, W.; Bonsey, A.; MacKinnon, S. Trunk muscle electromyographic activity with unstable and unilateral exercises. Strength Cond. 2005, 19, 193–201. [Google Scholar] [CrossRef]
- García-Vaquero, M.P.; Moreside, J.M.; Brontons-Gil, E.; Peco-González, N.; Vera-Garcia, F.J. Trunk muscle activation during stabilization exercises with single and double leg support. J. Electromyogr. Kinesiol. 2012, 22, 398–406. [Google Scholar] [CrossRef]
- Doğanay, M.; Bingül, B.M.; Álvarez-García, C. Effect of core training on speed, quickness and agility in young male football players. J. Sports Med. Phys. Fit. 2020, 60, 1240–1246. [Google Scholar] [CrossRef]
- Imai, A.; Kaneoka, K.; Okubo, Y.; Shiraki, H. Effects of two types of trunk exercises on balance and athletic performance in youth soccer players. Int. J. Sports Phys. Ther. 2014, 9, 47–57. [Google Scholar] [PubMed]
- Kuhn, L.; Weberruß, H.; Horstmann, T. Effects of core stability training on throwing velocity and core strength in female handball players. J. Sports Med. Phys. Fit. 2019, 59, 1479–1486. [Google Scholar] [CrossRef] [PubMed]
- Faude, O.; Koch, T.; Meyer, T. Straight sprinting is the most frequent action in goal situations in professional football. J. Sports Sci. 2012, 30, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Stølen, T.; Chamari, K.; Castagna, C.; Wisløff, U. Physiology of soccer: An update. Sports Med. 2005, 35, 501–536. [Google Scholar] [CrossRef] [PubMed]
- Barnes, C.; Archer, D.T.; Hogg, B.; Bush, M.; Bradley, P.S. The evolution of physical and technical performance parameters in the English Premier League. Int. J. Sports Med. 2014, 35, 1095–1100. [Google Scholar] [CrossRef]
- Robinson, G.; O’Donoghue, P.; Wooster, B. Path changes in the movement of English Premier League soccer players. J. Sports Med. Phys. Fit. 2011, 51, 220–226. [Google Scholar]
- Moniker Privacy Services Random Team Generator—Split a List into Random Groups. Available online: https://www.randomlists.com/team-generator (accessed on 11 February 2021).
- Pardos-Mainer, E.; Casajús, J.A.; Bishop, C.; Gonzalo-Skok, O. Effects of Combined Strength and Power Training on Physical Performance and Interlimb Asymmetries in Adolescent Female Soccer Players. Int. J. Sports Physiol. Perform. 2020, 15, 1147–1155. [Google Scholar] [CrossRef]
- Gonzalo-Skok, O.; Tous-Fajardo, J.; Suarez-Arrones, L.; Arjol-Serrano, J.L.; Casajús, J.A.; Mendez-Villanueva, A. Validity of the V-cut test for young basketball players. Int. J. Sports Med. 2015, 36, 893–899. [Google Scholar] [CrossRef]
- Menayo, R.; Vidal, A.; Alonso, J. Safety and efficiency of core muscles training programs for motor control and injury prevention: A brief review. Aerob. Fit. 2017, 2, 1–9. [Google Scholar]
- Ehlert, A. The effects of strength and conditioning interventions on golf performance: A systematic review. J. Sports Sci. 2020, 38, 2720–2731. [Google Scholar] [CrossRef]
- Lee, B.; McGill, S. The effect of short-term isometric training on core/torso stiffness. J. Sports Sci. 2016, 35, 1724–1733. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.; McGill, S. Effect of long-term isometric training on core/torso stiffness. J. Strength Cond. Res. 2015, 29, 1515–1526. [Google Scholar] [CrossRef] [PubMed]
- Heredia Elvar, J.R.; Peña García-Orea, G. El Entrenamiento de la Fuerza Para la Mejora de la Condición Física y la Salud; Círculo Rojo: Almeria, Spain, 2019; ISBN 978-84-1331-406-8. [Google Scholar]
- Andersson, H.; Ekblom, B.; Krustrup, P. Elite football on artificial turf versus natural grass: Movement patterns, technical standards, and player impressions. J. Sports Sci. 2008, 26, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Iaia, M.F.; Rampinini, E.; Bangsbo, J. High-intensity training in football. Int. J. Sports Physiol. Perform. 2009, 4, 291–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leetun, D.T.; Ireland, M.L.; Willson, J.D.; Ballantyne, B.T.; Davis, I.M.C. Core stability measures as risk factors for lower extremity injury in athletes. Med. Sci. Sports Exerc. 2004, 36, 926–934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarragó, J.R.; Massafret-Marimón, M.; Seirul·lo, F.; Cos, F. Entrenamiento en deportes de equipo: El entrenamiento estructurado en el FCB. Apunt. Educ. Física Deporte 2019, 137, 103–114. [Google Scholar] [CrossRef]
- Alcalá, E.P.; Garcia, A.M.; Trench, M.G.; Hernández, I.G.; Seirul, F.; Morera, F.C.; Tarragó, J.R. Entrenamiento en deportes de equipo: El entrenamiento optimizador en el Fútbol Club Barcelona. Apunt. Educ. Física Deporte 2020, 142, 55–66. [Google Scholar] [CrossRef]
- Padullés-Riu, J.M. Valoración de los Parámetros Mecánicos de Carrera. Desarrollo de un Nuevo Instrumento de Medición; Universitat de Barcelona: Barcelona, Spain, 2011. [Google Scholar]
- Cronin, J.B.; Green, J.P.; Levin, G.T.; Brughelli, M.E.; Frost, D.M. Effect of Starting Stance on Initial Sprint Performance. J. Strength Cond. Res. 2007, 21, 990. [Google Scholar] [CrossRef]
- Altmann, S.; Spielmann, M.; Engel, F.A.; Neumann, R.; Ringhof, S.; Oriwol, D.; Haertel, S. Validity of Single-Beam Timing Lights at Different Heights. J. Strength Cond. Res. 2017, 31, 7. [Google Scholar] [CrossRef]
- Field, A. Discovering Statistics Using IBM SPSS Statistics; Sage: Newcastle, UK, 2017; ISBN 9781526419521. [Google Scholar]
- Turner, A.; Cscs, D.; Brazier, J.; Bishop, C.; Chavda, S.; Cree, J.; Read, P. Data Analysis for Strength and Conditioning Coaches: Using Excel to Analyze Reliability, Differences, and Relationships. Strength Cond. J. 2015, 37, 76–83. [Google Scholar] [CrossRef]
- Cormack, S.J.; Newton, R.U.; McGuigan, M.R.; Doyle, T.L.A. Reliability of Measures Obtained during Single and Repeated Countermovement Jumps. Int. J. Sports Physiol. Perform. 2008, 3, 131–144. [Google Scholar] [CrossRef] [Green Version]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vickers, A.J.; Altman, D.G. Statistics Notes: Analysing controlled trials with baseline and follow up measurements. BMJ 2001, 323, 1123–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sever, O.; Zorba, E. Comparison of effect of static and dynamic core exercises on speed and agility performance in soccer players. Isokinet. Exerc. Sci. 2018, 26, 29–36. [Google Scholar] [CrossRef]
- Afyon, Y.A. Effect of Core Training on 16 Year-Old Soccer Players. Educ. Res. Rev. 2014, 9, 1275–1279. [Google Scholar] [CrossRef]
- Myer, G.D.; Chu, D.A.; Brent, J.L.; Hewett, T.E. Trunk and hip control neuromuscular training for the prevention of knee joint injury. Clin. Sports Med. 2008, 27, 425–448. [Google Scholar] [CrossRef] [Green Version]
- Soligard, T.; Myklebust, G.; Steffen, K.; Holme, I.; Silvers, H.; Bizzini, M.; Junge, A.; Dvorak, J.; Bahr, R.; Andersen, T.E. Comprehensive warm-up programme to prevent injuries in young female footballers: Cluster randomised controlled trial. BMJ 2008, 337, a2469. [Google Scholar] [CrossRef] [Green Version]
- Imai, A.; Kaneoka, K.; Okubo, Y.; Shiraki, H. Immediate effects of different trunk exercise programs on jump performance. Int. J. Sports Med. 2016, 37, 197–201. [Google Scholar] [CrossRef]
Task 1. Unilateral Skater Squat with Elastic Band | Base Task | Progression Sequence 1. Multiplanar | Progression Sequence 2. Dynamic Stabilization |
---|---|---|---|
Description | 5”: explosive action and stability holding final position + 5”: repeat the same action | 5”: explosive action and stability holding final position + 5”: 90° turn and stability holding final position with two points of support | 5”: explosive action with jump and stability holding final position + 5”: 90° turn with jump and stability holding final position |
Methodologic criteria | |||
Standing up | Yes | Yes | Yes |
Plane of motion | Transverse | Transverse + sagittal | Transverse + sagittal |
Anti-rotational | Yes. Diagonal force vector | Yes | Yes |
Unilateral | Yes | Yes | Yes |
Movement pattern | Jump | Jump, turn, acceleration | Jump, COD, and acceleration |
External force | Elastic band | Elastic band | Elastic band |
Maximal speed of movement | Yes | Yes | Yes |
Video code |
Task 2. Unilateral Linear Sprint with Elastic Band | Base Task | Progression Sequence 1. Multiplanar | Progression Sequence 2. Dynamic Stabilization |
---|---|---|---|
Description | 5”: explosive action and stability holding final position + 5”: repeat the same action | 5”: explosive action and stability holding final position + 5”: 90° turn holding final position with two points of support | 5”: explosive action, acceleration, and return to starting position + 5”: 90° turn with acceleration and return to starting position |
Methodologic criteria | |||
Standing up | Yes | Yes | Yes |
Plane of motion | Sagittal | Sagittal + transverse | Sagittal + transverse |
Anti-rotational | Yes. With one point of support on the floor | Yes | Yes |
Unilateral | Yes | Yes | Yes |
Movement pattern | Linear sprint | Linear sprint, acceleration, and turn | Linear sprint, acceleration, and COD |
External force | Elastic band | Elastic band | Elastic band |
Maximal speed of movement | Yes | Yes | Yes |
Video code |
Task 3. Turn and 90° Pivot Shift With Elastic Band | Base Task | Progression Sequence 1. Multiplanar | Progression Sequence 2. Dynamic Stabilization |
---|---|---|---|
Description | 5”: explosive action and stability holding final position + 5”: repeat the same action | 5”: explosive action and stability holding final position + 5”: 90° turn and stability holding final position elevating the free leg | 5”: explosive action, acceleration, and return to starting position + 5”: 90° turn with acceleration and return to starting position |
Methodologic criteria | |||
Standing up | Yes | Yes | Yes |
Plane of motion | Transverse | Transverse + sagittal | Transverse + sagittal |
Anti-rotational | Yes. Diagonal force vector | Yes | Yes |
Unilateral | Yes. Strength predominates in the front leg | Yes | Yes |
Movement pattern | Turn and acceleration | Turn and acceleration | Turn, cod, and acceleration |
External force | Elastic band | Elastic band | Elastic band |
Maximal speed of movement | Yes | Yes | Yes |
Video code |
Task 4. Lateral Lunge with Elastic Band | Base task | Progression Sequence 1. Multiplanar | Progression Sequence 2. Dynamic Stabilization |
---|---|---|---|
Description | 5”: explosive action and stability holding final position + 5”: repeat the same action | 5”: explosive action and stability holding final position + 5”: 90° turn holding final position with two points of support | 5”: double lateral step and return to starting position + 5”: 90° turn with acceleration and return to starting position |
Methodologic criteria | |||
Standing up | Yes | Yes | Yes |
Plane of motion | Frontal | Frontal + sagittal | Frontal + sagittal |
Anti-rotational | Yes. With one point of support on the floor | Yes | Yes |
Unilateral | Yes | Yes | Yes |
Movement pattern | Acceleration | Acceleration and turn | Acceleration and cod |
External force | Elastic band | Elastic band | Elastic band |
Maximal speed of movement | Yes | Yes | Yes |
Video code |
Unilateral Skater Squat with Elastic Band | Unilateral Linear Sprint with Elastic Band | 90° Turn with Elastic Band | Lateral Stride with Elastic Band | |
---|---|---|---|---|
Level 1. Base task | 10 reps × 10 s | 10 reps × 10 s | 10 reps × 10 s | 10 reps × 10 s |
Level 2. Multiplanar | 10 reps × 10 s 90° turn every 5 s | 10 reps × 10 s 90° turn every 5 s | 10 reps × 10 s 90° turn every 5 s | 10 reps × 10 s 90° turn every 5 s |
Level 3. Dynamic stabilization | 10 reps × 10 s 90° turn Dynamic jump stabilization | 10 reps × 10 s 90° turn every 5 s Acceleration and return to starting position | 10 reps × 10 s 90° turn every 5 s Acceleration and return to starting position | 10 reps × 10 s 90° turn every 5 s Double lateral stride and return to starting position + acceleration and return to standing position |
Task 1. Frontal Bridge | Long-Lever Frontal Bridge | Progression 1. One-Leg Support | Progression 2. Dynamic Stabilization |
---|---|---|---|
Description | Elbows placed in front of the shoulders with the feet together | The same as the previous exercise but with one-leg support | The same as the previous exercise but with dynamic elbow flexo-extension |
Video code |
Task 2. Dorsal Bridge | Long-Lever Drosal Bridge | Progression 1. One-Leg Support | Progression 2. Dynamic Stabilization |
---|---|---|---|
Description | Feet in front of and higher than the knees | The same as the previous exercise but with one-leg support | The same as thw previous exercise but with dynamic hip flexo-extension |
Video code |
Task 3. Brid-Dog | Long-Lever Bird-Dog | Progression 1. One-Leg Support | Progression 2. Dynamic Stabilization |
---|---|---|---|
Description | Hands in front of the shoulders and knees behind the hips | The same as previous exercise but with one-leg support | The same as previous exercise but with dynamic flexo-extension of the hip and the contralateral shoulders at the same time |
Video code |
Task 4. Lateral Bridge | Long-Lever Lateral Bridge | Progression 1. One-Leg Support | Progression 2. Dynamic Stabilization |
---|---|---|---|
Description | Elbow in front of the shoulder | The same as previous exercise but with one-leg support | The same as previous exercise but with dynamic flexo-extension of the upper hip and shoulder at the same time |
Video code |
Front Plank | Dorsal Plank | Bird-Dog | Lateral Plank | |
---|---|---|---|---|
Level 1. Long lever length | 10 reps × 10 s | 10 reps × 10 s | 10 reps × 10 s | 10 reps × 10 s |
Level 2. Base of support | 10 reps × 10 s Single leg stand | 10 reps × 10 s Single leg stand | 10 reps × 10 s Single leg stand | 10 reps × 10 s Single leg stand |
Level 3. Dynamic stabilization | 10 reps × 10 s Single leg stand Elbow flexion and extension | 10 reps × 10 s Single leg stand Hip flexion and extension | 10 reps × 10 s Single leg stand Knee flexion and extension + shoulder flexion and extension | 10 reps × 10 s Single leg stand Knee flexion and extension + elbow flexion and extension |
Characteristics | SCS (n = 7) | GCS (n = 7) |
---|---|---|
Age (y) | 17.14 ± 0.69 | 16.86 ± 0.69 |
Mass (kg) | 66.97 ± 5.05 | 75.09 ± 3.99 |
Height (cm) | 1.72 ± 0.07 | 1.81 ± 0.05 |
Pre-Test | Post-Test | |||
---|---|---|---|---|
Test | CV (95% CI) (%) | ICC (95% CI) | CV (95% CI) (%) | ICC (95% CI) |
Sprint(s) | 2.89 (1.94, 3.83) | 0.70 (0.31, 0.89) | 1.86 (1.12, 2.60) | 0.86 (0.67, 0.95) |
V-Cut(s) | 2.53 (1.57, 3.49) | 0.83 (0.58, 0.94) | 2.35 (1.54, 3.16) | 0.87 (0.68, 0.95) |
Variable | Pre-Test | Post-Test | Δ (%) | MD (95% CI) | p | d (95% CI) | Qualitative Assessment |
---|---|---|---|---|---|---|---|
Sprint(s) | 1.81 ± 0.07 | 1.76 ± 0.06 | −2.76 | 0.05 (0.01, 0.08) | 0.008 * | 0.84 (0.22, 1.45) | Moderate |
SCS | 1.81 ± 0.06 | 1.79 ± 0.07 | −1.10 | 0.02 (−0.03, 0.07) | 0.318 | 0.41 (−0.38, 1.17) | Small |
GCS | 1.82 ± 0.08 | 1.74 ± 0.06 | −4.40 | 0.07 (0.03, 0.12) | 0.008 * | 1.46 (0.34, 2.53) | Large |
V-Cut(s) | 6.32 ± 0.32 | 6.08 ± 0.27 | −3.80 | 0.24 (0.13, 0.35) | <0.001 * | 1.24 (0.52, 1.93) | Large |
SCS | 6.46 ± 0.24 | 6.13 ± 0.29 | −5.11 | 0.32 (0.17, 0.48) | 0.002 * | 1.98 (0.64, 3.28) | Large |
GCS | 6.19 ± 0.35 | 6.03 ± 0.26 | −2.58 | 0.16 (−0.02, 0.34) | 0.079 | 0.80 (−0.09, 1.64) | Moderate |
SCS | GCS | MD (95% CI) | p Tukey | d (95% CI) | Qualitative Assessment | |
---|---|---|---|---|---|---|
Sprint(s) | 1.79 (1.75, 1.83) | 1.74 (1.70, 1.78) | 0.05 (−0.01, 0.10) | 0.082 | 1.03 (−0.25, 2.30) | Moderate |
V-Cut(s) | 6.03 (5.88, 6.18) | 6.13 (5.98, 6.28) | −0.10 (−0.32, 0.13) | 0.370 | −0.56 (−1.89, 0.78) | Small |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brull-Muria, E.; Beltran-Garrido, J.V. Effects of a Specific Core Stability Program on the Sprint and Change-of-Direction Maneuverability Performance in Youth, Male Soccer Players. Int. J. Environ. Res. Public Health 2021, 18, 10116. https://doi.org/10.3390/ijerph181910116
Brull-Muria E, Beltran-Garrido JV. Effects of a Specific Core Stability Program on the Sprint and Change-of-Direction Maneuverability Performance in Youth, Male Soccer Players. International Journal of Environmental Research and Public Health. 2021; 18(19):10116. https://doi.org/10.3390/ijerph181910116
Chicago/Turabian StyleBrull-Muria, Eric, and Jose Vicente Beltran-Garrido. 2021. "Effects of a Specific Core Stability Program on the Sprint and Change-of-Direction Maneuverability Performance in Youth, Male Soccer Players" International Journal of Environmental Research and Public Health 18, no. 19: 10116. https://doi.org/10.3390/ijerph181910116
APA StyleBrull-Muria, E., & Beltran-Garrido, J. V. (2021). Effects of a Specific Core Stability Program on the Sprint and Change-of-Direction Maneuverability Performance in Youth, Male Soccer Players. International Journal of Environmental Research and Public Health, 18(19), 10116. https://doi.org/10.3390/ijerph181910116