Mapping Land-Use/Land-Cover Change in a Critical Biodiversity Area of South Africa
Abstract
:1. Introduction
- (a)
- What is the extent of LULC changes for the 28 years under review (1990 to 2018)?
- (b)
- What are the driving forces behind any changes in LULC?
2. Study Area
3. Materials and Methods
4. Results and Discussion
4.1. Woodland, Thickets/Dense Bush and Indigenous Forest
4.2. Wetlands and Water Bodies
4.3. Grasslands
4.4. Bare Land
4.5. Built-Up Areas and Subsistence Farming
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Parant, A. World Population Prospects. Futuribles 1990, 141, 49–78. Available online: http://www.ncbi.nlm.nih.gov/pubmed/12283219 (accessed on 12 June 2020).
- Mandela, M. Budget Vote Debate on Agriculture, Rural Development and Land Reform. Available online: https://www.daff.gov.za/docs/speeches/Budgetvotespeech.pdf (accessed on 12 July 2019).
- Juanita, A.D.; Ignacio, P.; Jorgelina, G.A.; Cecilia, A.S.; Carlos, M.; Francisco, N. Assessing the effects of past and future land cover changes in ecosystem services, disservices and biodiversity: A case study in Barranquilla Metropolitan Area (BMA). Colomb. Ecosyst. Serv. 2019, 37, 100915. [Google Scholar] [CrossRef]
- Ramaphosa, C. 2019 State of the Nation Address; South African Government: Cape Town, South Africa, 2019; Available online: https://www.gov.za/speeches/president-cyril-ramaphosa-2019-state-nation-address-7-feb-2019-0000 (accessed on 20 March 2020).
- Dhlamini, L. Integrating Agenda 2030 for Sustainable Development Goals (SDGs) into Regional and National Development Plans and Strategies; United Nations Development Programme: Washington, DC, USA, 2019; Available online: https://www.za.undp.org/content/south_africa/en/home/presscenter/articles/2017/01/20/integrating-agenda-2030-for-sustainable-development-goals-sdgs-into-regional-and-national-development-plans-and-strategies-by-lindiwe-dhlamini.html (accessed on 4 October 2020).
- Gashaw, T.; Tulu, T.; Argaw, M.; Worqlul, A.W. Evaluation and prediction of land use/land cover changes in the Andassa watershed, Blue Nile Basin, Ethiopia. Environ. Syst. Res. 2017, 6, 1–15. [Google Scholar] [CrossRef]
- Briassoulis, H. Combating Land Degradation and Desertification: The Land-Use Planning Quandary. Land 2019, 8, 27. [Google Scholar] [CrossRef] [Green Version]
- Turner, B.L., II; Lambin, E.F.; Reenberg, A. The emergence of land change science for global environmental change and sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 20666–20671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandit, M.; Sodhi, N.S.; Koh, L.P.; Bhaskar, A.; Brook, B.W. Unreported yet massive deforestation driving loss of endemic biodiversity in Indian Himalaya. Biodivers. Conserv. 2006, 16, 153–163. [Google Scholar] [CrossRef]
- Karki, S.; Thandar, A.M.; Uddin, K.; Tun, S.; Aye, W.M.; Aryal, K.; Kandel, P.; Chettri, N. Impact of land use land cover change on ecosystem services: A comparative analysis on observed data and people’s perception in Inle Lake, Myanmar. Environ. Syst. Res. 2018, 7, 25. [Google Scholar] [CrossRef] [Green Version]
- Hill, R.; Adem, Ç.; Alangui, W.V.; Molnar, Z.; Aumeeruddy-Thomas, Y.; Bridgewater, P.; Tengo, M.; Thaman, R.; Yao, C.Y.A.; Berkes, F.; et al. Working with Indigenous, local and scientific knowledge in assessments of nature and nature’s linkages with people. Curr. Opin. Environ. Sustain. 2020, 43, 8–20. [Google Scholar] [CrossRef]
- Lawler, J.J.; Lewis, D.J.; Nelson, E.; Plantinga, A.J.; Polasky, S.; Withey, J.C.; Helmers, D.P.; Martinuzzi, S.; Pennington, D.; Radeloff, V.C. Projected land-use change impacts on ecosystem services in the United States. Proc. Natl. Acad. Sci. USA 2014, 111, 7492–7497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chettri, N.; Sharma, E. Reconciling Mountain Biodiversity Conservation and Human Wellbeing: Drivers of Biodiversity Loss and New Approaches in the Hindu-Kush Himalayas. Proc. Indian Natl. Sci. Acad. 2016, 82, 1–22. [Google Scholar] [CrossRef]
- Hollis, G.E. Environmental impacts of development on wetlands in arid and semi-arid lands. Hydrol. Sci. J. 1990, 35, 411–428. [Google Scholar] [CrossRef]
- Walters, D.J.J.; Kotze, D.C.; O’Connor, T.G. Impact of land use on vegetation composition, diversity, and selected soil properties of wetlands in the southern Drakensberg mountains, South Africa. Wetl. Ecol. Manag. 2006, 14, 329–348. [Google Scholar] [CrossRef]
- Munthali, M.G.; Davis, N.; Adeola, A.M.; Botai, J.O.; Kamwi, J.M.; Chisale, H.L.W.; Orimoogunje, O.O.I. Local Perception of Drivers of Land-Use and Land-Cover Change Dynamics across Dedza District, Central Malawi Region. Sustainability 2019, 11, 832. [Google Scholar] [CrossRef] [Green Version]
- Mwampamba, T.H.; Abrams, R.W.; Awoyemi, S.; Babalola, F.D.; Borokini, T.I.; Egoh, B.; Idrissi, H.R.; Koussa, T.; Nganje, M.; O’Leary, J. The implications of globalization for conservation in Africa. Afr. J. Ecol. 2016, 54, 133–135. [Google Scholar] [CrossRef] [Green Version]
- Arunyawat, S.; Shrestha, R.P. Assessing Land Use Change and Its Impact on Ecosystem Services in Northern Thailand. Sustainability 2016, 8, 768. Available online: https://www.mdpi.com/2017-1050/8/8/768/xml (accessed on 6 October 2020). [CrossRef] [Green Version]
- Serra, P.; Pons, X.; Saurí, D. Post-classification change detection with data from different sensors: Some accuracy considerations. Int. J. Remote Sens. 2003, 24, 3311–3340. [Google Scholar] [CrossRef]
- Chen, X.; Chen, J.; Shi, Y.; Yamaguchi, Y. An automated approach for updating land cover maps based on integrated change detection and classification methods. ISPRS J. Photogramm. Remote. Sens. 2012, 71, 86–95. [Google Scholar] [CrossRef]
- Chand, J. Change Detection in Land Use and Land Cover Using Remote Sensing Data and GIS in Renuka Forest Division. Eur. Acad. Res. 2014, 2, 432–447. [Google Scholar]
- Giri, C.P. Remote Sensing of Land Use and Land Cover: Principles and Applications, 1st ed.; CRC Press: Boca Raton, FL, USA, 2016; pp. 1–446. [Google Scholar] [CrossRef]
- Wu, C.; Du, B.; Cui, X.; Zhang, L. A post-classification change detection method based on iterative slow feature analysis and Bayesian soft fusion. Remote. Sens. Environ. 2017, 199, 241–255. [Google Scholar] [CrossRef]
- Borana, S.L.; Yadav, S.K. Markov Chain Modelling of Land Cover Changes in Jodhpur City. Int. J. Eng. Dev. Res. 2017, 5, 2–7. [Google Scholar]
- Skowno, A.L.; Poole, C.J.; Raimondo, D.C.; Sink, K.J.; Van Deventer, H.; Van Niekerk, L.; Harris, L.; Smith-Adao, L.B.; Tolley, K.A.; Zengeya, T.A.; et al. National Biodiversity Assessment 2018: The Status of South Africa’s Ecosystems and Biodiversity; Synthesis Report; South African National Biodiversity Institute, Department of Environment, Forestry and Fisheries: Pretoria, South Africa, 2019; Available online: http://hdl.handle.net/20.500.12143/6362 (accessed on 12 October 2020).
- Statistics South Africa. Living Conditions of Households in South Africa: An Analysis of Household Expenditure and Income Data Using the LCS 2014/2015; Statistical Release P0310. Available online: http://www.statssa.gov.za/P0310/P03102014.pdf (accessed on 12 October 2020).
- Mathivha, F.I.; Kundu, P.M.; Singo, L.R. The impacts of land cover change on stream discharges in Luvuvhu River Catchment, Vhembe District, Limpopo Province, South Africa. WIT Trans. Built Environ. 2016, 165, 259–270. [Google Scholar]
- Reddy, S. Suggested Farming Systems and Associated Risks Over Southern Mozambique; Comunicação No. 24, Série Terra e Água; Instituto Nacional de Investigacao Agronomica: Maputo, Mozambique, 1985; pp. 1–222. Available online: https://library.wur.nl/isric/fulltext/ISRIC_7170.pdf (accessed on 12 October 2020).
- Lombaard, J.; Badenhorst, D.; Van Schalkwyk, A. To line or not to line—New methodology applied to the noordoewer/vioolsdrift dam spillway. In Proceedings of the 26th International Congress on Large Dams, Vienna, Austria, 1–7 July 2018; CRC Press/Balkema: Vienna, Austria, 2018; pp. 760–774. [Google Scholar]
- Thompson, M. South African National Land-Cover 2018 Report & Accuracy Assessment; Department of Environmental Affairs: Pretoria, South Africa, 2019; Available online: https://www.environment.gov.za/projectsprogrammes/egis_landcover_datasets (accessed on 12 October 2020).
- Meshesha, T.W.; Tripathi, S.K.; Khare, D. Analyses of land use and land cover change dynamics using GIS and remote sensing during 1984 and 2015 in the Beressa Watershed Northern Central Highland of Ethiopia. Model. Earth Syst. Environ. 2016, 2, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Gray, D.E. Sampling Strategy; SAGE: London, UK, 2014. [Google Scholar]
- Ravhura, T. Inpatient Substance Abuser’s Care and Treatment: Innovative Guiding Principles for Nurses; University of South Africa: Pretoria, South Africa, 2019. [Google Scholar]
- Robinson, O.C. Sampling in Interview-Based Qualitative Research: A Theoretical and Practical Guide. Qual. Res. Psychol. 2014, 11, 25–41. [Google Scholar] [CrossRef]
- Fagerholm, N.; Torralba, M.; Burgess, P.J.; Plieninger, T. A systematic map of ecosystem services assessments around European agroforestry. Ecol. Indic. 2016, 62, 47–65. [Google Scholar] [CrossRef]
- Jenkins, M.; Schaap, B. Forest Ecosystem Services—Background Analytical Study. Available online: https://www.un.org/esa/forests/wp-content/uploads/2018/05/UNFF13_BkgdStudy_ForestsEcoServices.pdf (accessed on 2 July 2020).
- Williamson, I.; Enemark, S.; Wallace, J.; Rajabifard, A. Understanding Land Administration Systems. Int. Semin. L. Adm. Trends Issues Asia Pacific Reg. 2008, 4, 1–11. Available online: http://www.csdila.unimelb.edu.au/publication/conferences/UnderstandingLandAdministrationSystems.pdf (accessed on 20 March 2020).
- Zevenbergen, J.; Augustinus, C.; Antonio, D.; Bennett, R. Pro-poor land administration: Principles for recording the land rights of the underrepresented. Land Use Policy 2013, 31, 595–604. [Google Scholar] [CrossRef]
- Clemens, P.V.; Mark, S.; Markus, R.; Markus, B. Biodiversity and Ecosystem Services for Asia and the Pacific; IPBES: Medellin, Colombia, 2018; Available online: https:ipbes.net/policy-support/assessments/regional-subregional-assessment-biodiversity-ecosystem-services-asia (accessed on 6 October 2020).
- Leibowitz, S.G.; Wigington, P.J., Jr.; Schofield, K.A.; Alexander, L.C.; Vanderhoof, M.K.; Golden, H.E. Connectivity of Streams and Wetlands to Downstream Waters: An Integrated Systems Framework. J. Am. Water Resour. Assoc. 2018, 54, 298–322. [Google Scholar] [CrossRef] [PubMed]
- Habel, J.; Dengler, J.; Janišová, M.; Török, P.; Wellstein, C.; Wiezik, M. European grassland ecosystems: Threatened hotspots of biodiversity. Biodivers. Conserv. 2013, 22, 2131–2138. [Google Scholar] [CrossRef] [Green Version]
- Fairbanks, D.H.K.; Thompson, M.W.; Vink, D.E.; Newby, T.S.; Van den Berg, H.M.; Everard, D.A. The South African land-cover characteristics database: A synopsis of the landscape. S. Afr. J. Sci. 2000, 96, 1–16. [Google Scholar]
- Bengtsson, J.; Bullock, J.M.; Egoh, B.; Everson, C.; Everson, T.; O’Connor, T.; O’Farrell, P.J.; Smith, H.G.; Lindborg, R. Grasslands-more important for ecosystem services than you might think. Ecosphere 2019, 10, e02582. [Google Scholar] [CrossRef]
- Orr, A.L.; Cowie, V.M.; Castillo Sanchez, P.; Chasek, N.D.; Crossman, A.; Erlewein, G.; Louwagie, M.; Maron, G.I.; Metternicht, S.; Minelli, A.E.; et al. Scientific Conceptual Framework for Land Degradation Neutrality. A Report of the Science-Policy Interface; United Nations Convention to Combat Desertification—UNCCD: Bonn, Germany, 2017. [Google Scholar]
- Mucova, S.A.R.; Filho, W.L.; Azeiteiro, U.; Pereira, M.J. Assessment of land use and land cover changes from 1979 to 2017 and biodiversity & land management approach in Quirimbas National Park, Northern Mozambique, Africa. Glob. Ecol. Conserv. 2018, 16, e00447. [Google Scholar] [CrossRef]
- Elmqvist, T.; Zipperer, W.C.; Güneralp, B. Urbanization, Habitat Loss and Biodiversity Decline: Solution Pathways to Break the Cycle. In The Routledge Handbook of Urbanization and Global Environmental Change; Routledge: Abingdon, UK, 2016; Volume 2, pp. 139–151. Available online: https://www.srs.fs.usda.gov/pubs/ja/2016/ja_2016_zipperer_001.pdf (accessed on 20 March 2020).
Land-Cover Type | New Classes | NLC 1990 | NLC 2018 |
---|---|---|---|
Water bodies | 1 | 1–2 | 14–21 |
Wetlands | 2 | 3 | 22–23, 73 |
Indigenous forest | 3 | 4 | 1 |
Thicket and dense bush | 4 | 5 | 2, 24 |
Woodland | 5 | 6 | 3–4, 42–43 |
Grassland | 6 | 7 | 12, 13, 44 |
Commercial agriculture | 7 | 10–12, 26–31 | 32–40 |
Subsistence agriculture | 8 | 23–25 | 41 |
Forest plantation | 9 | 32–34 | 5–7 |
Bare areas | 10 | 40–41 | 25–31, 45 |
Built-up areas | 11 | 35–39, 42–72 | 47–72 |
Land-Cover Type | Value | 1990 (ha) | 1990 (%) | 2018 (ha) | 2018 (%) | Change (ha) | RΔ (ha/Year) | Ratio (%) Change |
---|---|---|---|---|---|---|---|---|
Water bodies | 1 | 24 | 0.04 | 679 | 1.01 | 655 | 23 | 25.25 |
Wetlands | 2 | 46 | 0.07 | 21 | 0.03 | −25 | −1 | 0.43 |
Indigenous forest | 3 | 6 | 0.01 | 9 | 0.01 | 3 | 0 | 1.00 |
Thicket and dense bush | 4 | 26,862 | 39.89 | 743 | 1.10 | −26,119 | −933 | 0.03 |
Woodland | 5 | 16,299 | 24.21 | 47,906 | 71.15 | 31,607 | 1129 | 2.94 |
Grassland | 6 | 801 | 1.19 | 256 | 0.38 | −545 | −19 | 0.32 |
Commercial agriculture | 8 | 554 | 0.82 | 528 | 0.78 | −26 | −1 | 0.95 |
Subsistence agriculture | 9 | 9713 | 14.42 | 3360 | 4.99 | −6352 | −227 | 0.5 |
Forest plantations | 10 | 332 | 0.49 | 310 | 0.46 | −22 | −1 | 0.94 |
Bare areas | 11 | 7 | 0.01 | 98 | 0.15 | 91 | 3 | 15.00 |
Built-up areas | 12 | 12,690 | 18.85 | 13 423 | 19.94 | 733 | 26 | 1.06 |
67,333 | 100 | 67,333 | 100 |
Identified Drivers of Change | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Affected Land Cover Classes | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | |
Water bodies | X | X | X | X | ||||||||||||||
Wetlands | X | X | X | X | X | X | X | |||||||||||
Indigenous forest | X | X | X | X | ||||||||||||||
Thicket and dense bush | X | X | X | X | ||||||||||||||
Woodlands | X | X | X | X | ||||||||||||||
Grasslands | X | X | X | X | ||||||||||||||
Commercial agriculture | ||||||||||||||||||
Subsistence agriculture | X | X | X | X | ||||||||||||||
Forest plantation | ||||||||||||||||||
Bare areas | X | X | X | |||||||||||||||
Built-up areas | X | X | X | X | X |
NLC 2018 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Land-Cover Type | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | Total Area (ha) | |
NLC 1990 | 1. Water bodies | 8 | 0 | 0 | 0 | 14 | 0 | 0 | 0 | 0 | 1 | 0 | 24 |
2. Wetlands | 10 | 2 | 0 | 3 | 27 | 0 | 0 | 0 | 0 | 0 | 4 | 46 | |
3. Indigenous forest | 0 | 0 | 0 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | |
4. Thicket and dense bush | 192 | 8 | 5 | 669 | 24,613 | 62 | 25 | 427 | 28 | 26 | 806 | 26,862 | |
5. Woodlands | 442 | 3 | 4 | 30 | 14,445 | 130 | 27 | 228 | 45 | 55 | 891 | 16,299 | |
6. Grassland | 22 | 0 | 1 | 2 | 635 | 17 | 3 | 19 | 11 | 7 | 84 | 801 | |
7. Commercial agriculture | 0 | 0 | 0 | 4 | 171 | 0 | 342 | 33 | 0 | 0 | 3 | 554 | |
8. Subsistence agriculture | 4 | 7 | 0 | 27 | 6947 | 12 | 116 | 2488 | 2 | 5 | 105 | 9713 | |
9. Forest plantations | 0 | 0 | 0 | 1 | 56 | 2 | 1 | 4 | 224 | 0 | 45 | 332 | |
10. Bare areas | 0 | 0 | 0 | 0 | 5 | 1 | 0 | 0 | 0 | 0 | 2 | 7 | |
11. Built-up areas | 0 | 0 | 0 | 3 | 991 | 32 | 15 | 161 | 0 | 3 | 11,485 | 12,690 | |
Total area (ha) | 679 | 21 | 9 | 743 | 47,906 | 256 | 528 | 3360 | 310 | 98 | 13,423 | 67,333 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musetsho, K.D.; Chitakira, M.; Nel, W. Mapping Land-Use/Land-Cover Change in a Critical Biodiversity Area of South Africa. Int. J. Environ. Res. Public Health 2021, 18, 10164. https://doi.org/10.3390/ijerph181910164
Musetsho KD, Chitakira M, Nel W. Mapping Land-Use/Land-Cover Change in a Critical Biodiversity Area of South Africa. International Journal of Environmental Research and Public Health. 2021; 18(19):10164. https://doi.org/10.3390/ijerph181910164
Chicago/Turabian StyleMusetsho, Khangwelo Desmond, Munyaradzi Chitakira, and Willem Nel. 2021. "Mapping Land-Use/Land-Cover Change in a Critical Biodiversity Area of South Africa" International Journal of Environmental Research and Public Health 18, no. 19: 10164. https://doi.org/10.3390/ijerph181910164
APA StyleMusetsho, K. D., Chitakira, M., & Nel, W. (2021). Mapping Land-Use/Land-Cover Change in a Critical Biodiversity Area of South Africa. International Journal of Environmental Research and Public Health, 18(19), 10164. https://doi.org/10.3390/ijerph181910164