Assessing Willingness to Engage in Risky Driving Behaviour Using Naturalistic Driving Footage: The Role of Age and Gender
Abstract
:1. Introduction
1.1. Gender
1.2. Age and Driving Experience
1.3. Risky Driving Manoeuvres: Overtaking and the Amber Light Dilemma Zone
1.4. Driving Scenarios According to the “Active” vs. “Passive” Role of the Driver
1.5. The Current Study
2. Materials and Methods
2.1. Design
2.2. Participants
2.3. Materials
2.3.1. Filming and Video Editing
2.3.2. Video Clips
2.4. Procedure
3. Results
3.1. Internal Consistency
3.2. Age, Gender and Risky Situation
3.2.1. “How Likely Is That You Overtake the Bus/Cyclist or Pass through the Amber Light?” (Q1)
3.2.2. “How Likely Is That You Accelerate at this Point?” (Q2)
3.2.3. Correlations between the Two Questions
3.3. Assessment of Age and Gender on Driving Experience
3.3.1. Driving Experience
3.3.2. Driving Experience with Age and Gender as Covariates
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO (World Health Organisation). Global Status Report on Road Safety 2018. World Health Organization, Geneva. Licence: CC BY-NC-SA 3.0 IGO. 2018. Available online: https://www.who.int/violence_injury_prevention/road_safety_status/2018/en/s (accessed on 20 August 2020).
- Hole, G. The Psychology of Driving; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 2007. [Google Scholar]
- Department for Transport. Transport Statistics Great Britain. 2018. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/787488/tsgb-2018-report-summaries.pdf (accessed on 24 August 2020).
- DVLA. Driver & Vehicle Licensing Agency Annual Report and Accounts 2015 to 2016. 2015. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/545618/dvla-ara-2015-16.pdf (accessed on 14 August 2020).
- Department for Transport. Transport Statistics Great Britain. 2019. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/870647/tsgb-2019.pdf (accessed on 14 August 2020).
- Griffin, L.; Adams, N.; Little, T. Self Determination Theory, Identity Development, and Adolescence. In Development of Self-Determination through the Life-Course; Wehmeyer, M., Shogren, K., Little, T., Lopez, S., Eds.; Springer: Dordrecht, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Horswill, M.; Mckenna, F. The development, validation, and application of a video-based technique for measuring an everyday risk-taking behavior: Drivers’ speed choice. J. Appl. Psychol. 1999, 84, 977–985. [Google Scholar] [CrossRef] [PubMed]
- Horswill, M.; Hill, A.; Rodwell, D.; Larue, G.; Bates, L.; Watson, B. A brief and unsupervised online intervention improves performance on a validated test of hazard perception skill used for driver licensing. Transp. Res. Part F Traffic Psychol. Behav. 2021, 78, 130–136. [Google Scholar] [CrossRef]
- Gomes-Franco, K.; Rivera-Izquierdo, M.; Martín-delosReyes, L.M.; Jiménez-Mejías, E.; Martínez-Ruiz, V. Explaining the Association between Driver’s Age and the Risk of Causing a Road Crash through Mediation Analysis. Int. J. Environ. Res. Public Health 2020, 17, 9041. [Google Scholar] [CrossRef] [PubMed]
- Hatfield, J.; Fernandes, R. The role of risk-propensity in the risky driving of younger drivers. Accid. Anal. Prev. 2009, 41, 25–35. [Google Scholar] [CrossRef] [PubMed]
- McKenna, F.P.; Crick, J.L. Hazard Perception in Drivers: A Methodology for Testing and Training; Final Report; Behavioural Studies Unit, Transport and Road Research Laboratory: Crowthorne, UK, 1991. [Google Scholar]
- Hergovich, A.; Arendasy, M.; Sommer, M.; Bognar, B. The Vienna risk- taking test-traffic: A new measure of road traffic risk-taking. J. Individ. Differ. 2007, 28, 198–204. [Google Scholar] [CrossRef]
- Wilde, G.J.S. The theory of risk homeostasis: Implications for safety and health. Risk Anal. 2006, 2, 209–225. [Google Scholar] [CrossRef]
- Reyna, V.F.; Farley, F. Risk and rationality in adolescent decision making: Implications for theory, practice, and public policy. Psychol. Sci. Public Interest 2006, 7, 1–44. [Google Scholar] [CrossRef] [PubMed]
- Kotchick, B.A.; Shaffer, A.; Forehand, R.; Miller, K.S. Adolescent sexual risk behavior: A multi-system perspective. Clin. Psychol. Rev. 2001, 21, 493–519. [Google Scholar] [CrossRef]
- Janz, N.; Becker, M.H. The health belief model: A decade later. Health Educ. Q. 1984, 11, 1–47. [Google Scholar] [CrossRef] [Green Version]
- Fishbein, M.; Ajzen, I. Belief, Attitude, Intention and Behavior: An Introduction to Theory and Research; Addison-Wesley: Reading, MA, USA, 1975. [Google Scholar]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Kelly, E.; Darke, S.; Ross, J. A review of drug use and driving: Epidemiology, impairment, risk factors and risk perceptions. Drug Alcohol Rev. 2004, 23, 319–344. [Google Scholar] [CrossRef]
- Machin, M.A.; Plint, J.E. Understanding the unique contribution of aversion to risk taking in predicting drivers’ self-reported speeding. In Driver Behaviour and Training. Volume IV. Human Factors in Road and Rail Transport; Dorn, E.L., Ed.; Ashgate: Aldershot, UK, 2010; pp. 61–73. [Google Scholar]
- Rolison, M.R.; Scherman, A. Factors influencing adolescents’ decisions to engage in risk-taking behavior. Adolescence 2002, 37, 585–596. [Google Scholar]
- Siegel, A.W.; Cousins, J.H.; Rubovits, D.S.; Parsons, J.T.; Lavery, B.; Crowley, C.L. Adolescents’ perceptions of the benefits and risks of their own risk taking. J. Emot. Behav. Disord. 1994, 2, 89–98. [Google Scholar] [CrossRef]
- Johnson, R.J.; McCaul, K.D.; Klein, W.M.P. Risk involvement and risk perception among adolescents and young adults. J. Behav. Med. 2002, 25, 67–82. [Google Scholar] [CrossRef]
- Brewer, N.T.; Weinstein, N.D.; Cuite, C.L.; Herrington, J. Risk perceptions and their relation to risk behavior. Ann. Behav. Med. 2004, 27, 125–130. [Google Scholar] [CrossRef]
- Reyna, V.F. How people make decisions that involve risk: A dual-processes approach. Curr. Dir. Psychol. Sci. 2004, 13, 60–66. [Google Scholar] [CrossRef]
- Mills, B.; Reyna, V.F.; Estrada, S. Explaining contradictory relations between risk perception and risk taking. Psychol. Sci. 2008, 19, 429–433. [Google Scholar] [CrossRef]
- Milech, D.; Glencross, D.; Hartley, L. Skill Acquisition by Young Drivers: Perceiving, Interpreting and Responding to the Driving Environment (Report No. MR4); Federal Office of Road Safety: Canberra, Australia, 1989. [Google Scholar]
- Deery, H.A. Hazard and risk perception among young novice drivers’. J. Saf. Res. 1999, 30, 225–236. [Google Scholar] [CrossRef]
- Castro, C.; Muela, I.; Doncel, P.; Garcia-Fernandez, P. Hazard Perception and Prediction test for walking, riding a bike and driving a car: “Understanding of the global traffic situation”. PLoS ONE 2020, 15, e0238605. [Google Scholar] [CrossRef]
- Groeger, J.A.; Chapman, P.R. Judgement of traffic scenes: The role of danger and difficulty. Appl. Cogn. Psychol. 1996, 10, 349–364. [Google Scholar] [CrossRef]
- Crundall, D.; van Loon, E.; Baguley, T.; Kroll, V. A novel driving assessment combining hazard perception, hazard prediction and theory questions. Accid. Anal. Prev. 2021, 149, 105847. [Google Scholar] [CrossRef]
- Mckenna, F.; Crick, J. Developments in Hazard Perception; Transport and Road Research Laboratory, TRL 297: Crowthorne, UK, 1997. [Google Scholar] [CrossRef]
- Krishnan, A.; Samuel, S.; Yamani, Y.; Romoser, M.R.; Fisher, D.L. Effectiveness of a strategic hazard anticipation training intervention in high risk scenarios. Transp. Res. Part F Traffic Psychol. Behav. 2019, 67, 43–56. [Google Scholar] [CrossRef]
- Ivers, R.; Senserrick, T.; Boufous, S.; Stevenson, M.; Chen, H.Y.; Woodward, M.; Norton, R. Novice drivers’ risky driving behavior, risk perception, and crash risk: Findings from the DRIVE study. Am. J. Public Health 2009, 99, 1638–1644. [Google Scholar] [CrossRef]
- Jonah, B.A. Accident risk and risk-taking behaviour among young drivers. Accid. Anal. Prev. 1986, 18, 255–271. [Google Scholar] [CrossRef]
- Harbeck, E.; Glendon, I. How reinforcement sensitivity and perceived risk influence young drivers’ reported engagement in risky driving behaviors. Accid. Anal. Prev. 2013, 54, 73–80. [Google Scholar] [CrossRef]
- Delhomme, P.; Verlhiac, J.F.; Martha, C. Are drivers’ comparative risk judgments about speeding realistic? J. Saf. Res. 2009, 40, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Machin, M.A.; Sankey, K.S. Relationships between young drivers’ personality characteristics, risk perceptions, and driving behaviour. Accid. Anal. Prev. 2008, 40, 541–547. [Google Scholar] [CrossRef] [Green Version]
- Horvath, P.; Zuckerman, M. Sensation seeking, risk appraisal, and risky behavior. Personal. Individ. Differ. 1993, 14, 41–52. [Google Scholar] [CrossRef]
- Rosenbloom, T. Risk evaluation and risky behavior of high and low sensation seekers. Soc. Behav. Personal. Int. J. 2003, 31, 375–386. [Google Scholar] [CrossRef]
- Rosenbloom, T.; Nemrodov, D.; Ben Eliyahu, A. Yielding behavior of Israeli drivers: Interaction of age and sex. Percept Mot. Ski. 2006, 103, 387–390. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, F.; Bible, J.; Liu, D.; Simons-Morton, B.G. Do Young Drivers Become Safer After Being Involved in a Collision? Psychol. Sci. 2017, 28, 407–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuller, R. Driver control theory: From task difficulty homeostasis to risk allostasis (Chapter 2). In Handbook of Traffic Psychology; Porter, B.E., Ed.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 13–26. [Google Scholar] [CrossRef]
- Hu, T.; Xie, X.; Li, J. Negative or positive? The effect of emotion and mood on risky driving. Transp. Res. Part F Traffic Psychol. Behav. 2013, 16, 29–40. [Google Scholar] [CrossRef]
- Mesken, J.; Hagenzieker, M.P.; Rothengatter, T.; de Waard, D. Frequency, determinants, and consequences of different drivers’ emotions: An on-the-road study using self-reports, (observed) behaviour, and physiology. Transp. Res. Part F Traffic Psychol. Behav. 2007, 10, 458–475. [Google Scholar] [CrossRef]
- Taubman-Ben-Ari, O.; Yehiel, D. Driving styles and their associations with personality and motivation. Accid. Anal. Prev. 2012, 45, 416–422. [Google Scholar] [CrossRef]
- Abdu, R.; Shinar, D.; Meiran, N. Situational (State) Anger and Driving. Transp. Res. Part F Traffic Psychol. Behav. 2012, 15, 575–580. [Google Scholar] [CrossRef]
- Lerner, J.; Gonzalez, R.; Small, D.; Fischhoff, B. Effects of Fear and Anger on Perceived Risks of Terrorism A National Field Experiment. Psychol. Sci. 2003, 14, 144–150. [Google Scholar] [CrossRef]
- Underwood, G.; Chapman, P.; Brocklehurst, N.; Underwood, J.; Crundall, D. Visual attention while driving: Sequences of eye fixations made by experienced and novice drivers. Ergonomics 2003, 46, 629–646. [Google Scholar] [CrossRef]
- Lu, J.; Xie, X.; Zhang, R. Focusing on appraisals: How and why anger and fear influence driving risk perception. J. Saf. Res. 2013, 45, 65–73. [Google Scholar] [CrossRef]
- Fuller, R. Towards a general theory of driver behaviour. Accid. Anal. Prev. 2005, 37, 461–472. [Google Scholar] [CrossRef]
- Klauer, S.; Guo, F.; Simons-Morton, B.; Ouimet, M.; Lee, S.; Dingus, T. Distracted Driving and Risk of Road Crashes among Novice and Experienced Drivers. N. Engl. J. Med. 2014, 370, 54–59. [Google Scholar] [CrossRef] [Green Version]
- Parr, M.N.; Ross, L.A.; McManus, B.; Bishop, H.J.; Wittig, S.H.; Stavrinos, D. Differential impact of personality traits on distracted driving behaviors in teens and older adults. Accid. Anal. Prev. 2016, 92, 107–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panayiotou, G. The bold and the fearless among us: Elevated psychopathic traits and levels of anxiety and fear are associated with specific aberrant driving behaviors. Accid. Anal. Prev. 2015, 79, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Armsby, P.; Boyle, A.J.; Wright, C.C. Methods for assessing drivers’ perception of specific hazards on the road. Accid. Anal. Prev. 1989, 21, 45–60. [Google Scholar] [CrossRef]
- Malhotra, N.; Starckey, N.; Charlton, S. Driving under the influence of drugs: Perceptions and attitudes of New Zealand drivers. Accid. Anal. Prev. 2017, 106, 44–52. [Google Scholar] [CrossRef]
- Cox, D.J.; Gonder-Frederick, L.A.; Singh, H.; Ingersoll, K.S.; Banton, T.; Grabman, J.H.; Schmidt, K.; Clarke, W. Predicting and Reducing Driving Mishaps Among Drivers With Type 1 Diabetes. Diabetes Care 2017, 40, 742–750. [Google Scholar] [CrossRef] [Green Version]
- IRTAD (International Traffic Safety Data and Analysis Group). Road Safety Annual Report: International Safety Data, ITF. 2018. Available online: www.itf-oecd.org/road-safety-annual-report-2018 (accessed on 24 August 2020).
- Sarkar, S.; Andreas, M. Drivers’ Perception of Pedestrians’ Rights and Walking Environments. Transp. Res. Rec. J. Transp. Res. Board 2004, 1878, 75–82. [Google Scholar] [CrossRef]
- Boufous, S.; Ivers, R.; Senserrick, T.; Stevenson, M. Attempts as the practical on-road driving test and the hazard perception test and the risk of traffic crashes in young drivers. Traffic Inj. Prev. 2009, 12, 475–482. [Google Scholar] [CrossRef]
- Durán, N.M.; Moreno, N.D. Personalidad e infracciones frecuentes de normas de tránsito. Divers. Perspect. Psicol. 2016, 12, 123–136. [Google Scholar] [CrossRef] [Green Version]
- DeJoy, D.M. An examination of gender differences in traffic accident risk perception. Accid. Anal. Prev. 1992, 24, 237–246. [Google Scholar] [CrossRef]
- Sivak, M.; Soler, J.; Tränkle, U.; Spanghol, J.M. Cross-cultural differences in driver risk perception. Accid. Anal. Prev. 1989, 21, 355–362. [Google Scholar] [CrossRef] [Green Version]
- Williams, A.; Shabanova, V. Responsibility of drivers, by age and gender, for motor-vehicle crash deaths. J. Saf. Res. 2003, 34, 527–531. [Google Scholar] [CrossRef]
- Reason, J.; Manstead, A.; Stradling, S.; Baxter, J.; Campbell, K. Errors and violations on the roads: A real distinction? Ergonomics 1990, 33, 1315–1332. [Google Scholar] [CrossRef] [PubMed]
- European Transport Safety Council ETSC. Risk on the Roads: A Male Problem? The Role of Gender in Road Safety. 2013. Available online: https://etsc.eu/wp-content/uploads/2014/03/Flash25_Gender.pdf (accessed on 24 August 2020).
- Yagil, D. Instrumental and normative motives for compliance with traffic laws among young and older drivers. Accid. Anal. Prev. 1998, 30, 417–424. [Google Scholar] [CrossRef]
- Granie, M.A. Gender differences in preschool children declared and behavioral compliance with pedestrian rules. Transp. Res. Part F Traffic Psychol. Behav. 2007, 10, 371–382. [Google Scholar] [CrossRef] [Green Version]
- McDonald, H.; Berecki-Gisolf, J.; Stephan, K.; Newstead, S. Traffic offending and deterrence: An examination of recidivism amongst drivers in Victoria, Australia, born prior to 1975. PLoS ONE 2020, 15, e0239942. [Google Scholar] [CrossRef]
- Wang, Y.; Mehler, B.; Reimer, B.; Lammers, V.; D’Ambrosio, L.; Coughlin, J. The Validity of Driving Simulation for Assessing Differences between In-Vehicle Informational Interfaces: A Comparison with Field Testing. Ergonomics 2010, 53, 404–420. [Google Scholar] [CrossRef]
- Harbeck, E.; Glendon, A.; Hine, T. Reward versus punishment: Reinforcement sensitivity theory, young novice drivers’ perceived risk, and risky driving. Transp. Res. Part F-Traffic Psychol. Behav. 2017, 47, 13–22. [Google Scholar] [CrossRef]
- Blockey, P.N.; Hartley, L.R. Aberrant driving behaviour: Errors and violations. Ergonomics 1995, 38, 1759–1771. [Google Scholar] [CrossRef]
- De Winter, J.D.; Dodou, D. The Driver Behaviour Questionnaire as a predictor of accidents: A meta-analysis. J. Saf. Res. 2010, 41, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, N.; Pivik, K. Age and gender differences in risky driving: The roles of positive affect and risk perception. Accid. Anal. Prev. 2011, 43, 923–931. [Google Scholar] [CrossRef] [PubMed]
- Arain, M.; Haque, M.; Johal, L.; Mather, P.; Nel, W.; Rais, A.; Sandhu, R.; Sharma, S. Maturation of the adolescent brain. Neuropsychiatr. Dis. Treat. 2013, 9, 449–461. [Google Scholar] [PubMed] [Green Version]
- McCartt, A.; Mayhew, D.; Braitman, K.; Ferguson, S.; Simpson, H. Effects of Age and Experience on Young Driver Crashes: Review of Recent Literature. Traffic Inj. Prev. 2009, 10, 209–219. [Google Scholar] [CrossRef]
- Curry, A.E.; Metzger, K.B.; Williams, A.F.; Tefft, B.C. Comparison of older and younger novice driver crash rates: Informing the need for extended Graduated Driver Licensing restrictions. Accid. Anal. Prev. 2017, 108, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Farrand, P.; Mckenna, F. Risk perception in novice drivers: The relationship between questionnaire measures and response latency. Transp. Res. Part F Traffic Psychol. Behav. 2001, 4, 201–212. [Google Scholar] [CrossRef]
- McKenna, F.P.; Horswill, M.S.; Alexander, J.L. Does anticipation training affect drivers’ risk taking? J. Exp. Psychol. Appl. 2006, 12, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Trivedi, N.; Haynie, D.; Bible, J.; Liu, D.; Simons-Morton, B. Cell Phone Use While Driving: Prospective Association with Emerging Adult Use. Accid. Anal. Prev. 2017, 106, 450–455. [Google Scholar] [CrossRef]
- Deffenbacher, J.L.; Oetting, E.R.; Lynch, R.S. Development of a driving anger scale. Psychol. Rep. 1994, 74, 83–91. [Google Scholar] [CrossRef]
- Delhomme, P.; Chaurand, N.; Paran, F. Personality predictors of speeding in young drivers: Anger vs. sensation seeking. Transp. Res. Part F Traffic Psychol. Behav. 2012, 15, 654–666. [Google Scholar] [CrossRef]
- European Commision. 2019 Road Safety Statistics: What Is Behind the Figures? 2020. Available online: https://ec.europa.eu/commission/presscorner/detail/en/QANDA_20_1004 (accessed on 20 April 2021).
- Swedler, D.I.; Bowman, S.M.; Baker, S.P. Gender and Age Differences among Teen Drivers in Fatal Crashes. Annals of advances in automotive medicine. Association for the Advancement of Automotive Medicine. Annu. Sci. Conf. 2012, 56, 97–106. [Google Scholar]
- Bar-Gera, H.; Shinar, D. The tendency of drivers to pass other vehicles. Transp. Res. Part F Traffic Psychol. Behav. 2005, 8, 429–439. [Google Scholar] [CrossRef]
- Harris, D. The subjective probability of involvement in an overtaking accident in the vicinity of a junction. In User Behaviour: Theory and Research; Rothengatter, J.A., de Bruin, R.A., Eds.; Van Gorcum: Assen, The Netherlands, 1988; pp. 163–168. [Google Scholar]
- Pai, C.W. Motorcycle right-of-way accidents-A literature review. Accid. Anal. Prev. 2011, 43, 971–982. [Google Scholar] [CrossRef]
- Koorey, G. Passing opportunities at slow-vehicle bays. J. Transp. Eng. 2007, 133, 129–137. [Google Scholar] [CrossRef] [Green Version]
- Kaub, A.R. Passing Operations on a Recreational Two-Lane, Two-Way Highway. In Transportation Research Record 1280; TRB; National Research Council: Washington, DC, USA, 1990; pp. 156–162. [Google Scholar]
- Pollatschek, M.; Polus, A. Modeling impatience of drivers in passing situations. In Transportation and Traffic Theory: Flow, Dynamics and Human Interaction; Mahmassimi, H., Ed.; Emerald Group Publications: Bingley, UK, 2005. [Google Scholar]
- Kinnear, N.; Helman, S.; Wallbank, C.; Grayson, G. An experimental study of factors associated with driver frustration and overtaking intentions. Accid. Anal. Prev. 2015, 79, 221–230. [Google Scholar] [CrossRef]
- Harbeck, E.; Glendon, A. Driver prototypes and behavioral willingness: Young driver risk perception and reported engagement in risky driving. J. Saf. Res. 2018, 66, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Elmitiny, N.; Yan, X.; Radwan, E.; Russo, C.; Nashar, D. Classification analysis of driver’s stop/go decision and red-light running violation. Accid. Anal. Prev. 2010, 42, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Qi, W.; Wen, H.; Fu, C.; Song, M. Game Theory Model of Traffic Participants within Amber Time at Signalized Intersection. Comput. Intell. Neurosci. 2014, 2014, 756235. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Najm, W.G. Examining driver behavior using data gathered from red light photo enforcement cameras. J. Saf. Res. 2007, 38, 311–321. [Google Scholar] [CrossRef]
- Caird, J.; Chisholm, S.; Edwards, C.; Creaser, J. The effect of yellow light onset time on older and younger drivers’ perception response time (PRT) and intersection behavior. Transp. Res. Part F Traffic Psychol. Behav. 2007, 10, 383–396. [Google Scholar] [CrossRef]
- Rakha, H.; Amer, A.; El-Shawarby, I. Modeling driver behavior within a signalized intersection approach decision-dilemma zone. Transp. Res. Rec. 2008, 2069, 16–25. [Google Scholar] [CrossRef]
- Papaioannou, P. Driver behaviour, dilemma zone and safety effects at urban signalised intersections in Greece. Accid. Anal. Prev. 2007, 39, 147–158. [Google Scholar] [CrossRef]
- Deery, H.A.; Love, A.W. The effect of a moderate dose of alcohol on the hazard perception profile of young drink drivers. Addiction 1996, 91, 815–827. [Google Scholar] [CrossRef]
- Arendasy, M.; Sommer, M.; Ponocny, I. Psychometric approaches help resolve competing cognitive models: When less is more than it seems. Cogn. Instr. 2005, 23, 503–521. [Google Scholar] [CrossRef]
- Castro, C.; Ventsislavova, P.; García-Fernandez, P.; Crundall, D. Risky Decision Making and Hazard Prediction are negatively related and could be assessed independently using driving footage. Psychol. Res. Behav. Manag. 2021, 14, 857–876. [Google Scholar] [CrossRef]
- Jackson, A.L.; Chapman, P.; Crundall, D. What happens next? Predicting other road users’ behaviour as a function of driving experience and processing time. Ergonomics 2009, 52, 154–164. [Google Scholar] [CrossRef] [PubMed]
- Ventsislavova, P.; Crundall, D. The hazard prediction test: A comparison of free-response and multiple-choice formats. Saf. Sci. 2018, 109, 246–255. [Google Scholar] [CrossRef] [Green Version]
- Ventsislavova, P.; Crundall, D.; Baguely, T.; Castro, C.; Gugliotta, A.; Garcia-Fernandez, P.; Zhang, W.; Ba, Y.; Li, Q. A comparison of hazard perception and hazard prediction test across China, Spain and the UK. Accid. Anal. Prev. 2019, 122, 268–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyce, T.E.; Geller, E.S. An instrumented vehicle assessment of problem behavior and driving style: Do younger males really take more risks? Accid. Anal. Prev. 2002, 34, 51–64. [Google Scholar] [CrossRef]
- Clarke, D.D.; Ward, P.; Bartle, C.; Truman, W. Young driver accidents in the UK: The influence of age, experience, and time of day. Accid. Anal. Prev. 2006, 38, 871–878. [Google Scholar] [CrossRef]
- McKnight, J.; McKnight, S. Young novice drivers: Careless or clueless? Accid. Anal. Prev. 2003, 35, 921–925. [Google Scholar] [CrossRef]
- Parlangeli, O.; Bracci, M.; Guidi, S.; Marchigiani, E.; Duguid, A. Risk perception and emotions regulation strategies in driving behaviour: An analysis of the self-reported data of adolescents and young adults. Int. J. Hum. Factors Ergon. 2018, 5, 166. [Google Scholar] [CrossRef]
- Adanu, E.K.; Smith, R.; Powell, L.; Jones, S. Multilevel analysis of the role of human factors in regional disparities in crash outcomes. Accid. Anal. Prev. 2017, 109, 10–17. [Google Scholar] [CrossRef] [PubMed]
- DeJoy, D.M. The optimism bias and traffic accident risk perception. Accid. Anal. Prev. 1989, 21, 333–340. [Google Scholar] [CrossRef]
- Castro, C.; Padilla, J.L.; Roca, J.; Benitez, I.; Garcia-Fernandez, P.; Estevez, B.; Lopez-Ramon, M.F.; Crundall, D. Development and validation of the Spanish hazard perception test. Traffic Inj. Prev. 2014, 15, 817–826. [Google Scholar] [CrossRef] [PubMed]
- Ventsislavova, P.; Gugliotta, A.; Peña-Suarez, E.; Garcia-Fernandez, P.; Eisman, E.; Crundall, D.; Castro, C. What happens when drivers face hazards on the road? Accid. Anal. Prev. 2016, 91, 43–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byrnes, J.; Miller, D.C.; Schafer, W.D. Gender differences in risk taking: A meta-analysis. Psychol. Bull. 1999, 125, 367–383. [Google Scholar] [CrossRef]
- Hanna, C.L.; Taylor, D.M.; Sheppard, M.A.; Laflamme, L. Fatal crashes involving young unlicensed drivers in the U.S. J. Saf. Res. 2006, 37, 385–393. [Google Scholar] [CrossRef]
- Ohlhauser, A.D.; Milloy, S.; Caird, J.K. Driver responses to motorcycle and lead vehicle braking events: The effects of motorcycling experience and novice versus experienced drivers. Transp. Res. Part F Traffic Psychol. Behav. 2011, 14, 472–483. [Google Scholar] [CrossRef]
- Palat, B.; Delhomme, P. What factors can predict why drivers go through yellow traffic lights? An approach based on an extended Theory of Planned Behavior. Saf. Sci. 2012, 508, 408–417. [Google Scholar] [CrossRef]
- Lum, K.M.; Wong, Y.D. A study of stopping propensity at matured red light camera T-intersections. J. Saf. Res. 2002, 33, 355–369. [Google Scholar] [CrossRef]
- Retting, R.A.; Ferguson, S.A.; Hakkert, A.S. Effects of red-light cameras on violations and crashes: A review of the international literature. Traffic Inj. Prev. 2003, 4, 17–23. [Google Scholar] [CrossRef]
- Bonneson, J.; Zimmerman, K.; Brewer, M. Red-Light Running Handbook: An Engineer’s Guide to Reducing Red-Light-Related Crashes; FHWA/TX-05/0-4196-P1; Texas Transportation Institute, The Texas A&M University System: College Station, TX, USA, 2004. [Google Scholar]
- Cross, K.D.; Fisher, G. A Study of Bicycle/Motor Vehicle Accidents: Identification of Problem Types and Countermeasure Approaches; DOT-HS-803-315; National Highway Traffic Safety Administration: Washington, DC, USA, 1977; Volumes 1 to 3.
- Wood, J.M.; McGwin, G., Jr.; Elgin, J.; Vaphiades, M.S.; Braswell, R.A.; DeCarlo, D.K.; Kline, L.B.; Meek, G.C.; Searcey, K.; Owsley, C. On-road driving performance by persons with hemianopia and quadrantanopia. Investig. Ophthalmol. Vis. Sci. 2009, 50, 577–585. [Google Scholar] [CrossRef] [Green Version]
- Stone, M.; Broughton, J. Getting off your bike: Cycling accidents in Great Britain in 1990–1999. Accid. Anal. Prev. 2003, 35, 549–556. [Google Scholar] [CrossRef]
- Walker, I. Drivers overtaking bicyclists: Objective data on the effects of riding position, helmet use, vehicle type and apparent gender. Accid. Anal. Prev. 2007, 39, 417–425. [Google Scholar] [CrossRef]
- Parkin, J.; Meyers, C. The effect of cycle lanes on the proximity between motor traffic and cycle traffic. Accid. Anal. Prev. 2010, 42, 159–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basford, L.; Reid, S.; Lester, T.; Thomson, J.; Tolmie, A. Drivers’ Perceptions of Cyclists; University of Strathclyde, TRL549: Glasgow, UK, 2002. [Google Scholar]
- Johnson, M.; Charlton, J.; Oxley, J.; Newstead, S. Naturalistic cycling study: Identifying risk factors for on-road commuter cyclists. Ann. Adv. Automot. Med. 2010, 54, 275–283. [Google Scholar] [PubMed]
- Antoun, C.; Couper, M.; Conrad, F. Effects of Mobile versus PC Web on Survey Response Quality: A Crossover Experiment in a Probability Web Panel. Public Opin. Q. 2017, 18, 280–306. [Google Scholar] [CrossRef]
- Huber, B.; Gajos, K.Z. Conducting online virtual environment experiments with uncompensated, unsupervised samples. PLoS ONE 2020, 15, e0227629. [Google Scholar] [CrossRef] [Green Version]
- Møller, M.; Haustein, S.; Prato, C.G. Profiling drunk driving recidivists in Denmark. Accid. Anal. Prev. 2015, 83, 125–131. [Google Scholar] [CrossRef]
- Padilla, J.L.; Doncel, P.; Gugliotta, A.; Castro, C. Which drivers are at risk? Factors that determine the profile of the reoffender driver. Accid. Anal. Prev. 2018, 119, 237–247. [Google Scholar] [CrossRef]
- Kuiken, M.; Twisk, D. Safe Driving and Training Calibration: Literature Review; SWOW Institute for Road Safety Research: Leidschendam, The Netherlands, 2001. [Google Scholar]
n Total = 243 | ||||||||
---|---|---|---|---|---|---|---|---|
Age | Drivers under 30 Years Old n = 164 | Drivers Who Are at the Age of 30 or Older n = 79 | ||||||
Men n = 35 | Women n = 129 | Men n = 26 | Women n = 53 | |||||
Mean | Standard Deviation | Mean | Standard Deviation | Mean | Standard Deviation | Mean | Standard Deviation | |
Age | 21.8 | 2.6 | 22 | 2.9 | 50.8 | 11.8 | 46.1 | 10.6 |
Miles driven in the last 2 years | 17,385.7 | 15,298.6 | 11,385 | 11,566 | 35,000 | 24,147.9 | 24,311 | 30,264 |
Months since driving test | 39.7 | 27.6 | 42.6 | 31.4 | 406.2 | 143.3 | 301.7 | 126.6 |
Collisions since driving test | 0.4 | 0.5 | 0.3 | 0.7 | 2.2 | 2.9 | 1.1 | 1.2 |
Driving Experience | Novice drivers n = 89 (Less than 3 years of driving experience) | Experienced drivers n = 154 (More than 3 years of driving experience) | ||||||
Men n = 19 | Women n = 70 | Men n = 42 | Women n = 112 | |||||
Mean | Standard Deviation | Mean | Standard Deviation | Mean | Standard Deviation | Mean | Standard Deviation | |
Age | 20.3 | 1.4 | 21 | 2.6 | 40.4 | 16.4 | 34 | 13.7 |
Miles driven in the last 2 years | 12,405 | 11,019 | 6459.7 | 6103.6 | 30,543 | 22,456 | 20,580 | 23,224 |
Months since driving test | 21 | 8.6 | 21.9 | 9.4 | 275 | 203.5 | 178.1 | 147.8 |
Collisions since driving test | 0.3 | 0.5 | 0.3 | 0.7 | 1.6 | 2.4 | 0.8 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ventsislavova, P.; Crundall, D.; Garcia-Fernandez, P.; Castro, C. Assessing Willingness to Engage in Risky Driving Behaviour Using Naturalistic Driving Footage: The Role of Age and Gender. Int. J. Environ. Res. Public Health 2021, 18, 10227. https://doi.org/10.3390/ijerph181910227
Ventsislavova P, Crundall D, Garcia-Fernandez P, Castro C. Assessing Willingness to Engage in Risky Driving Behaviour Using Naturalistic Driving Footage: The Role of Age and Gender. International Journal of Environmental Research and Public Health. 2021; 18(19):10227. https://doi.org/10.3390/ijerph181910227
Chicago/Turabian StyleVentsislavova, Petya, David Crundall, Pedro Garcia-Fernandez, and Candida Castro. 2021. "Assessing Willingness to Engage in Risky Driving Behaviour Using Naturalistic Driving Footage: The Role of Age and Gender" International Journal of Environmental Research and Public Health 18, no. 19: 10227. https://doi.org/10.3390/ijerph181910227
APA StyleVentsislavova, P., Crundall, D., Garcia-Fernandez, P., & Castro, C. (2021). Assessing Willingness to Engage in Risky Driving Behaviour Using Naturalistic Driving Footage: The Role of Age and Gender. International Journal of Environmental Research and Public Health, 18(19), 10227. https://doi.org/10.3390/ijerph181910227