Association of Pesticides and Kidney Function among Adults in the US Population 2001–2010
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Kidney Function Data
(κ is 0.7 if female, 0.9 if male, Scr is serum creatinine (mg/dL)
2.3. Measurement of Pesticides
2.4. Other Variables
2.5. Statistical Analysis
3. Results
3.1. Demographic Characteristics of the Study Population
3.2. Risk of Low Kidney Function from Pesticide Exposures
3.3. Sensitivity Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Levey, A.S.; Coresh, J. Chronic kidney disease. Lancet 2012, 379, 165–180. [Google Scholar] [CrossRef]
- Nanayakkara, S.; Komiya, T.; Ratnatunga, N.; Senevirathna, S.T.; Harada, K.H.; Hitomi, T.; Gobe, G.; Muso, E.; Abeysekera, T.; Koizumi, A. Tubulointerstitial damage as the major pathological lesion in endemic chronic kidney disease among farmers in North Central Province of Sri Lanka. Environ. Health Prev. Med. 2012, 17, 213–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jayasumana, C.; Orantes, C.; Herrera, R.; Almaguer, M.; Lopez, L.; Silva, L.C.; Ordunez, P.; Siribaddana, S.; Gunatilake, S.; De Broe, M.E. Chronic interstitial nephritis in agricultural communities: A worldwide epidemic with social, occupational and environmental determinants. Nephrol. Dial. Transplant. 2017, 32, 234–241. [Google Scholar] [CrossRef]
- Garcia–Trabanino, R.; Jarquin, E.; Wesseling, C.; Johnson, R.J.; Gonzalez–Quiroz, M.; Weiss, I.; Glaser, J.; Vindell, J.J.; Stockfelt, L.; Roncal, C.; et al. Heat stress, dehydration, and kidney function in sugarcane cutters in El Salvador––A cross–shift study of workers at risk of Mesoamerican nephropathy. Environ. Res. 2015, 142, 746–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandrajith, R.; Nanayakkara, S.; Itai, K.; Aturaliya, T.N.; Dissanayake, C.B.; Abeysekera, T.; Harada, K.; Watanabe, T.; Koizumi, A. Chronic kidney diseases of uncertain etiology (CKDue) in Sri Lanka: Geographic distribution and environmental implications. Environ. Geochem. Health 2011, 33, 267–278. [Google Scholar] [CrossRef]
- Jayasumana, C.; Paranagama, P.; Agampodi, S.; Wijewardane, C.; Gunatilake, S.; Siribaddana, S. Drinking well water and occupational exposure to Herbicides is associated with chronic kidney disease, in Padavi–Sripura, Sri Lanka. Environ. Health 2015, 14, 6. [Google Scholar] [CrossRef] [Green Version]
- Ganguli, A. Uddanam Nephropathy/Regional Nephropathy in India: Preliminary Findings and a Plea for Further Research. Am. J. Kidney Dis. 2016, 68, 344–348. [Google Scholar] [CrossRef] [Green Version]
- John, O.; Gummudi, B.; Jha, A.; Gopalakrishnan, N.; Kalra, O.; Kaur, P.; Kher, V.; Kumar, V.; Machiraju, R.; Ookalkar, D.; et al. Chronic kidney disease of unknown aetiology In India: What do we know and where do we need to go. Kid. Int. Rep. 2021, in press. [Google Scholar] [CrossRef]
- Rajapakse, S.; Shivanthan, M.C.; Selvarajah, M. Chronic kidney disease of unknown etiology in Sri Lanka. Int. J. Occup. Environ. Health 2016, 22, 259–264. [Google Scholar] [CrossRef] [Green Version]
- Soderland, P.; Lovekar, S.; Weiner, D.E.; Brooks, D.R.; Kaufman, J.S. Chronic kidney disease associated with environmental toxins and exposures. Adv. Chronic Kidney Dis. 2010, 17, 254–264. [Google Scholar] [CrossRef] [Green Version]
- Gooch, K.; Culleton, B.F.; Manns, B.J.; Zhang, J.; Alfonso, H.; Tonelli, M.; Frank, C.; Klarenbach, S.; Hemmelgarn, B.R. NSAID Use and Progression of Chronic Kidney Disease. Am. J. Med. 2007, 120, 280.e1–280.e7. [Google Scholar] [CrossRef]
- Agampodi, S.B.; Amarasinghe, G.S.; Naotunna, P.; Jayasumana, C.S.; Siribaddana, S.H. Early renal damage among children living in the region of highest burden of chronic kidney disease of unknown etiology (CKDu) in Sri Lanka. BMC Nephrol. 2018, 19, 115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Debelle, F.D.; Vanherweghem, J.-L.; Nortier, J.L. Aristolochic acid nephropathy: A worldwide problem. Kidney Int. 2008, 74, 158–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mesnage, R.; Arno, M.; Costanzo, M.; Malatesta, M.; Seralini, G.E.; Antoniou, M.N. Transcriptome profile analysis reflects rat liver and kidney damage following chronic ultra–low dose Roundup exposure. Environ. Health 2015, 14, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nasuti, C.; Cantalamessa, F.; Falcioni, G.; Gabbianelli, R. Different effects of Type I and Type II pyrethroids on erythrocyte plasma membrane properties and enzymatic activity in rats. Toxicology 2003, 191, 233–244. [Google Scholar] [CrossRef]
- Tanvir, E.M.; Afroz, R.; Chowdhury, M.; Gan, S.H.; Karim, N.; Islam, M.N.; Khalil, M.I. A model of chlorpyrifos distribution and its biochemical effects on the liver and kidneys of rats. Hum. Exp. Toxicol. 2016, 35, 991–1004. [Google Scholar] [CrossRef]
- Lebov, J.F.; Engel, L.S.; Richardson, D.; Hogan, S.L.; Hoppin, J.A.; Sandler, D.P. Pesticide use and risk of end–stage renal disease among licensed pesticide applicators in the Agricultural Health Study. Occup. Environ. Med. 2016, 73, 3–12. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. International Expert Consultation on Chronic Kidney Disease of Unknown Etiology; World Health Organization, Country Office for Sri Lanka: Colombo, Sri Lanka, 2016; ISBN 9789550261154. [Google Scholar]
- Wanigasuriya, K.P.; Peiris–John, R.J.; Wickremasinghe, R.; Hittarage, A. Chronic renal failure in North Central Province of Sri Lanka: An environmentally induced disease. Trans. R. Soc. Trop. Med. Hyg. 2007, 101, 1013–1017. [Google Scholar] [CrossRef]
- Athuraliya, N.T.; Abeysekera, T.D.; Amerasinghe, P.H.; Kumarasiri, R.; Bandara, P.; Karunaratne, U.; Milton, A.H.; Jones, A.L. Uncertain etiologies of proteinuric–chronic kidney disease in rural Sri Lanka. Kidney Int. 2011, 80, 1212–1221. [Google Scholar] [CrossRef] [Green Version]
- Zipf, G.; Chiappa, M.; Porter, K.S.; Ostchega, Y.; Lewis, B.G.; Dostal, J. National Health and Nutrition Examination Survey: Plan and Operations, 1999–2010; Vital and health statistics, Series 10; DHHS: Victoria, Australia, 2013; pp. 1–37.
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Barr, D.B.; Allen, R.; Olsson, A.O.; Bravo, R.; Caltabiano, L.M.; Montesano, A.; Nguyen, J.; Udunka, S.; Walden, D.; Walker, R.D.; et al. Concentrations of selective metabolites of organophosphorus pesticides in the United States population. Environ. Res. 2005, 99, 314–326. [Google Scholar] [CrossRef] [PubMed]
- Chobanian, A.V.; Bakris, G.L.; Black, H.R.; Cushman, W.C.; Green, L.A.; Izzo, J.L., Jr.; Jones, D.W.; Materson, B.J.; Oparil, S.; Wright, J.T.; et al. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: The JNC 7 report. JAMA 2003, 289, 2560–2572. [Google Scholar] [CrossRef] [PubMed]
- Resnick, H.E.; Harris, M.I.; Brock, D.B.; Harris, T.B. American Diabetes Association diabetes diagnostic criteria, advancing age, and cardiovascular disease risk profiles: Results from the Third National Health and Nutrition Examination Survey. Diabetes Care 2000, 23, 176–180. [Google Scholar] [CrossRef] [Green Version]
- Johnson, C.L.; Paulose–Ram, R.; Ogden, C.L.; Carroll, M.D.; Kruszon–Moran, D.; Dohrmann, S.M.; Curtin, L.R. National Health and Nutrition Examination Survey: Analytic Guidelines, 1999–2010; Vital and health statistics, Series 10; DHHS: Victoria, Australia, 2013; pp. 1–24.
- Pearce, N.; Caplin, B. Let’s take the heat out of the CKDu debate: More evidence is needed. Occup. Environ. Med. 2019, 76, 357–359. [Google Scholar] [CrossRef] [Green Version]
- Tayeb, W.; Nakbi, A.; Trabelsi, M.; Miled, A.; Hammami, M. Biochemical and histological evaluation of kidney damage after sub–acute exposure to 2,4–dichlorophenoxyacetic herbicide in rats: Involvement of oxidative stress. Toxicol. Mech. Methods 2012, 22, 696–704. [Google Scholar] [CrossRef]
- Selmi, S.; Rtibi, K.; Grami, D.; Sebai, H.; Marzouki, L. Malathion, an organophosphate insecticide, provokes metabolic, histopathologic and molecular disorders in liver and kidney in prepubertal male mice. Toxicol. Rep. 2018, 5, 189–195. [Google Scholar] [CrossRef]
- Badr, A.M. Organophosphate toxicity: Updates of malathion potential toxic effects in mammals and potential treatments. Environ. Sci. Pollut. Res. Int. 2020, 27, 26036–26057. [Google Scholar] [CrossRef]
- Wesseling, C.; Aragon, A.; Gonzalez, M.; Weiss, I.; Glaser, J.; Rivard, C.J.; Roncal–Jimenez, C.; Correa–Rotter, R.; Johnson, R.J. Heat stress, hydration and uric acid: A cross–sectional study in workers of three occupations in a hotspot of Mesoamerican nephropathy in Nicaragua. BMJ Open 2016, 6, e011034. [Google Scholar] [CrossRef] [Green Version]
- Bonner, M.R.; Coble, J.; Blair, A.; Beane Freeman, L.E.; Hoppin, J.A.; Sandler, D.P.; Alavanja, M.C.R. Malathion Exposure and the Incidence of Cancer in the Agricultural Health Study. Am. J. Epidemiol. 2007, 166, 1023–1034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bogen, K.T.; Singhal, A. Malathion dermal permeability in relation to dermal load: Assessment by physiologically based pharmacokinetic modeling of in vivo human data. J. Environ. Sci. Health Part B 2017, 52, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Albright, R.K.; Kram, B.W.; White, R.P. Malathion Exposure Associated With Acute Renal Failure. JAMA 1983, 250, 2469. [Google Scholar] [CrossRef] [PubMed]
- Yokota, K.; Fukuda, M.; Katafuchi, R.; Okamoto, T. Nephrotic syndrome and acute kidney injury induced by malathion toxicity. BMJ Case Rep. 2017, 2017, bcr2017220733. [Google Scholar] [CrossRef]
Characteristics † | All Participants (N = 41,847) 1 | 2,4-D (n = 6232) 2 | 3,5,6 (n = 4994) 3 | 3-PBA (n = 4910) 4 | Malathion (n = 3557) 5 |
---|---|---|---|---|---|
Sex, % (95% CI) | |||||
Male | 48.9 (48.4–49.4) | 48.7 (47.3–50.1) | 48.6 (46.9–50.3) | 48.4 (46.7–50.1) | 48.6 (46.5–50.7) |
Female | 51.1 (50.6–51.7) | 51.3 (50.0–52.8) | 51.4 (49.7–53.1) | 51.7 (49.9–53.3) | 51.4 (49.4–53.5) |
Age (years), mean (SD, 95% CI), n = 41,847 | 36.0 (0.26, 35.5–36.6) | 45.7 (0.27, 45.1–46.2) | 45.9 (0.33, 45.2–46.5) | 46.0 (0.38, 45.3–46.6) | 46.8 (0.36, 46.0–47.5) |
Waist circumference (cm), mean (SD, 95% CI), n = 34,964 | 90.2 (0.21, 89.8–90.6) | 97.3 (0.26, 96.7–97.8) | 97.3 (0.31, 96.7–98.0) | 97.2 (0.31, 96.6–97.8) | 98.0 (0.34, 97.3–98.7) |
Serum creatinine (mg/dL), mean (SD, 95% CI), n = 19,728 | 0.87 (0.01, 0.86–0.87) | 0.87 (0.01, 0.86–0.88) | 0.87 (0.01, 0.86–0.88) | 0.87 (0.01, 0.86–0.89) | 0.87 (0.01, 0.86–0.89) |
Race, % (n, 95% CI) | |||||
Mexican American | 9.1 (9836, 7.4–11.1) | 8.3 (1218, 6.7–10.2) | 8.2 (956, 6.5–10.3) | 8.3 (950, 6.6–10.4) | 8.7 (646, 6.4–11.8) |
Other Hispanic | 5.0 (3192, 3.8–6.6) | 4.9 (495, 3.7–6.5) | 5.1 (447, 3.6–7.1) | 5.0 (435, 3.6–7.1) | 4.9 (385, 3.4–7.1) |
Non-Hispanic White | 67.7 (17,274, 64.1–71.0) | 69.8 (3071, 66.2–73.1) | 69.8 (2439, 65.6–73.6) | 70.1 (2407, 66.0–73.8) | 69.0 (1703, 63.5–73.9) |
Non-Hispanic Black | 12.0 (9512, 10.3–13.9) | 10.7 (1149, 9.1–12.7) | 10.6 (917, 8.8–12.7) | 10.4 (890, 8.7–12.5) | 10.6 (643, 8.7–12.9) |
Other Race/multiracial | 6.3 (2033, 5.4–7.4) | 6.4 (299, 5.4–7.6) | 6.3 (235, 5.2–7.7) | 6.2 (228, 5.1–7.5) | 6.8 (180, 5.4–8.6) |
Family poverty-income ratio (PIR), % (n, 95% CI) | |||||
Below poverty (PIR < 1) | 15.9 (10,365, 14.8–17.0) | 12.6 (1122, 11.5–13.7) | 12.8 (898, 11.7–14.0) | 12.7 (876, 11.6–13.8) | 13.3 (684, 11.9–14.8) |
At or above poverty (PIR ≥ 1) | 84.1 (31,482, 83.0–85.2) | 87.4 (5110, 86.3–88.5) | 87.2 (4096, 86.0–88.3) | 87.3 (4034, 86.2–88.5) | 86.7 (2873, 85.2–88.1) |
Cigarette smoking, % (n, 95% CI), n = 22,5766 | |||||
Current smoker | 23.3 (4967, 22.2–24.4) | 23.4 (1423, 21.9–24.8) | 23.0 (1128, 21.4–24.9) | 23.0 (1098, 21.3–24.8) | 21.6 (777, 19.5–23.8) |
Former smoker | 24.6 (5791, 23.5–25.6) | 24.2 (1578, 23.0–25.5) | 24.1 (1258, 22.6–25.6) | 24.3 (1248, 22.9–25.9) | 23.7 (874, 22.2–25.4) |
Nonsmoker | 52.2 (11,818, 50.6–53.7) | 52.4 (3226, 50.7–54.1) | 52.9 (2604, 50.7–55.0) | 52.7 (2560, 50.5–54.8) | 54.7 (1903, 52.0–57.4) |
Alcohol consumption, % (n, 95% CI), n = 41,8317 | |||||
Current drinker | 9.7 (2993, 8.9–10.6) | 12.3 (856, 11.2–13.4) | 11.4 (661, 10.2–12.7) | 11.5 (654, 10.2–12.8) | 10.8 (457, 9.2–12.6) |
Abstinence | 90.3 (38,838, 89.4–91.2) | 87.7 (5373, 86.6–88.8) | 88.6 (4330, 87.3–89.8) | 88.5 (4253, 87.2–89.8) | 89.2 (3097, 87.4–90.8) |
Hypertension, % (n, 95% CI), n = 29,3828 | |||||
Yes | 29.9 (9026, 28.4–31.4) | 34.9 (2394, 33.1–36.7) | 34.7 (1941, 32.8–36.7) | 34.7 (1910, 32.8–36.8) | 35.2 (1428, 33.0–37.5) |
No | 70.2 (20,356, 68.7–71.6) | 65.1 (3443, 63.3–66.9) | 65.3 (2790, 63.4–67.2) | 65.3 (2740, 63.3–67.2) | 64.8 (1976, 62.5–67.0) |
Diabetes, % (n, 95% CI), n = 14,9469 | |||||
Yes | 18.5 (3331, 17.6–19.5) | 19.2 (855, 17.5–20.9) | 19.9 (723, 18.0–21.8) | 19.8 (711, 17.9–21.8) | 22.9 (587, 20.4–25.6) |
No | 81.5 (11,615, 80.5–82.4) | 80.9 (2600, 79.1–82.5) | 80.1 (2103, 78.2–82.0) | 80.2 (2067, 78.2–82.1) | 77.1 (1473, 74.4–79.6) |
Chronic kidney disease, % (n, 95% CI), n = 26,619 | |||||
Yes | 5.1 (1776, 94.3–95.4) | 4.8 (423, 4.2–5.4) | 4.9 (346, 4.3–5.6) | 5.0 (346, 4.5–5.7) | 5.3 (267, 4.7–6.1) |
No | 94.9 (24,843, 4.6–5.7) | 95.2 (5809, 94.6–95.8) | 95.1 (4648, 94.4–95.7) | 95.0 (4564, 94.3–95.6) | 94.7 (3290, 93.9–95.4) |
Pesticide (n Samples) | Crude OR | Adjusted OR * |
---|---|---|
log cadmium (n = 19,468) | 1.40 (1.30–1.50) | 1.21 (1.05–1.38) |
log 2,4-D (n = 6232) | 1.05 (0.89–1.23) | 0.88 (0.72–1.09) |
log 3,5,6-trichloropyridinol (n = 4994) | 1.07 (0.95–1.20) | 0.96 (0.83–1.12) |
log malathion diacid (n = 3557) | 1.30 (1.15–1.46) | 1.26 (1.01–1.56) |
log 3-phenoxybenzoic acid (n = 4910) | 0.97 (0.88–1.06) | 1.03 (0.94–1.13) |
Pesticide (n Samples) | Crude OR | Adjusted OR * |
---|---|---|
log cadmium (n = 17,508) | 1.48 (1.36–1.61) | 1.30 (1.10–1.52) |
log 2,4-D (n = 5620) | 1.12 (0.93–1.34) | 0.97 (0.76–1.25) |
log 3,5,6-trichloropyridinol (n = 4480) | 1.08 (0.93–1.25) | 0.93 (0.79–1.10) |
log malathion diacid (n = 3140) | 1.34 (1.16–1.54) | 1.32 (1.01–1.73) |
log 3-phenoxybenzoic acid (n = 4405) | 0.96 (0.88–1.05) | 1.02 (0.93–1.12) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, E.-T.; Darssan, D.; Karatela, S.; Reid, S.A.; Osborne, N.J. Association of Pesticides and Kidney Function among Adults in the US Population 2001–2010. Int. J. Environ. Res. Public Health 2021, 18, 10249. https://doi.org/10.3390/ijerph181910249
Wan E-T, Darssan D, Karatela S, Reid SA, Osborne NJ. Association of Pesticides and Kidney Function among Adults in the US Population 2001–2010. International Journal of Environmental Research and Public Health. 2021; 18(19):10249. https://doi.org/10.3390/ijerph181910249
Chicago/Turabian StyleWan, En-Tzu, Darsy Darssan, Shamshad Karatela, Simon A. Reid, and Nicholas John Osborne. 2021. "Association of Pesticides and Kidney Function among Adults in the US Population 2001–2010" International Journal of Environmental Research and Public Health 18, no. 19: 10249. https://doi.org/10.3390/ijerph181910249
APA StyleWan, E.-T., Darssan, D., Karatela, S., Reid, S. A., & Osborne, N. J. (2021). Association of Pesticides and Kidney Function among Adults in the US Population 2001–2010. International Journal of Environmental Research and Public Health, 18(19), 10249. https://doi.org/10.3390/ijerph181910249