Dietary Acid Load Is Positively Associated with the Incidence of Hyperuricemia in Middle-Aged and Older Korean Adults: Findings from the Korean Genome and Epidemiology Study
Abstract
:1. Introduction
2. Methods
2.1. Data Source and Study Population
2.2. Dietary Data, PRAL, and NEAP Score
2.3. Incidence of Hyperuricemia
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iseki, K.; Ikemiya, Y.; Inoue, T.; Iseki, C.; Kinjo, K.; Takishita, S. Significance of hyperuricemia as a risk factor for developing ESRD in a screened cohort. Am. J. Kidney Dis. 2004, 44, 642–650. [Google Scholar] [CrossRef]
- Ito, H.; Abe, M.; Mifune, M.; Oshikiri, K.; Antoku, S.; Takeuchi, Y.; Togane, M. Hyperuricemia is independently associated with coronary heart disease and renal dysfunction in patients with type 2 diabetes mellitus. PLoS ONE 2011, 6, e27817. [Google Scholar] [CrossRef]
- Becker, M.A.; Jolly, M. Hyperuricemia and associated diseases. Rheum. Dis. Clin. 2006, 32, 275–293. [Google Scholar] [CrossRef]
- Choi, H.K.; Ford, E.S. Prevalence of the metabolic syndrome in individuals with hyperuricemia. Am. J. Med. 2007, 120, 442–447. [Google Scholar] [CrossRef]
- Grayson, P.C.; Kim, S.Y.; LaValley, M.; Choi, H.K. Hyperuricemia and incident hypertension: A systematic review and meta-analysis. Arthritis Care Res. 2011, 63, 102–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnan, E.; Kwoh, C.K.; Schumacher, H.R.; Kuller, L. Hyperuricemia and incidence of hypertension among men without metabolic syndrome. Hypertension 2007, 49, 298–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnan, E.; Pandya, B.J.; Chung, L.; Hariri, A.; Dabbous, O. Hyperuricemia in Young Adults and Risk of Insulin Resistance, Prediabetes, and Diabetes: A 15-Year Follow-up Study. Am. J. Epidemiol. 2012, 176, 108–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, N.; Perveen, R.; Rahman, S.; Mahmood, S.; Rahman, S.; Islam, S.; Haque, T.; Sumon, A.H.; Kathak, R.R.; Molla, N.H. Prevalence of hyperuricemia and the relationship between serum uric acid and obesity: A study on Bangladeshi adults. PLoS ONE 2018, 13, e0206850. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Pandya, B.J.; Choi, H.K. Comorbidities of Gout and Hyperuricemia in the US General Population: NHANES 2007–2008. Am. J. Med. 2012, 125, 679–687.e1. [Google Scholar] [CrossRef] [PubMed]
- Esche, J.; Krupp, D.; Mensink, G.B.M.; Remer, T. Dietary Potential Renal Acid Load Is Positively Associated with Serum Uric Acid and Odds of Hyperuricemia in the German Adult Population. J. Nutr. 2018, 148, 49–55. [Google Scholar] [CrossRef] [Green Version]
- George, C.; Minter, D. Hyperuricemia. Available online: https://www.ncbi.nlm.nih.gov/books/NBK459218/ (accessed on 3 August 2021).
- Emmerson, B.T. The management of gout. N. Engl. J. Med. 1996, 334, 445–451. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.K.; Liu, S.; Curhan, G. Intake of purine-rich foods, protein, and dairy products and relationship to serum levels of uric acid: The Third National Health and Nutrition Examination Survey. Arthritis Rheum. 2005, 52, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Miao, Z.; Li, C.; Chen, Y.; Zhao, S.; Wang, Y.; Wang, Z.; Chen, X.; Xu, F.; Wang, F.; Sun, R.; et al. Dietary and Lifestyle Changes Associated with High Prevalence of Hyperuricemia and Gout in the Shandong Coastal Cities of Eastern China. J. Rheumatol. 2008, 35, 1859. [Google Scholar] [PubMed]
- Choi, H.K.; Atkinson, K.; Karlson, E.W.; Willett, W.; Curhan, G. Purine-rich foods, dairy and protein intake, and the risk of gout in men. N. Engl. J. Med. 2004, 350, 1093–1103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanbara, A.; Miura, Y.; Hyogo, H.; Chayama, K.; Seyama, I. Effect of urine pH changed by dietary intervention on uric acid clearance mechanism of pH-dependent excretion of urinary uric acid. Nutr. J. 2012, 11, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Remer, T.; Dimitriou, T.; Manz, F. Dietary potential renal acid load and renal net acid excretion in healthy, free-living children and adolescents. Am. J. Clin. Nutr. 2003, 77, 1255–1260. [Google Scholar] [CrossRef] [Green Version]
- Han, E.; Kim, G.; Hong, N.; Lee, Y.H.; Kim, D.W.; Shin, H.J.; Lee, B.W.; Kang, E.S.; Lee, I.K.; Cha, B.S. Association between dietary acid load and the risk of cardiovascular disease: Nationwide surveys (KNHANES 2008–2011). Cardiovasc. Diabetol. 2016, 15, 122. [Google Scholar] [CrossRef] [Green Version]
- Williams, R.S.; Kozan, P.; Samocha-Bonet, D. The role of dietary acid load and mild metabolic acidosis in insulin resistance in humans. Biochimie 2016, 124, 171–177. [Google Scholar] [CrossRef]
- DeFronzo, R.A.; Beckles, A. Glucose intolerance following chronic metabolic acidosis in man. Am. J. Physiol. Endocrinol. Metab. 1979, 236, E328. [Google Scholar] [CrossRef]
- Engberink, M.F.; Bakker, S.J.; Brink, E.J.; van Baak, M.A.; van Rooij, F.J.; Hofman, A.; Witteman, J.C.; Geleijnse, J.M. Dietary acid load and risk of hypertension: The Rotterdam Study. Am. J. Clin. Nutr. 2012, 95, 1438–1444. [Google Scholar] [CrossRef] [Green Version]
- Fagherazzi, G.; Vilier, A.; Bonnet, F.; Lajous, M.; Balkau, B.; Boutron-Ruault, M.-C.; Clavel-Chapelon, F. Dietary acid load and risk of type 2 diabetes: The E3N-EPIC cohort study. Diabetologia 2014, 57, 313–320. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Han, B.G. Cohort Profile: The Korean Genome and Epidemiology Study (KoGES) Consortium. Int. J. Epidemiol. 2017, 46, e20. [Google Scholar] [CrossRef]
- Ahn, Y.; Kwon, E.; Shim, J.; Park, M.; Joo, Y.; Kimm, K.; Park, C.; Kim, D. Validation and reproducibility of food frequency questionnaire for Korean genome epidemiologic study. Eur. J. Clin. Nutr. 2007, 61, 1435–1441. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.W.; Woo, H.D.; Cho, M.J.; Park, J.K.; Kim, S.S. Identification of dietary patterns associated with incidence of hyperglycemia in middle-aged and older Korean adults. Nutrients 2019, 11, 1801. [Google Scholar] [CrossRef] [Green Version]
- Shin, H.J.; Cho, E.; Lee, H.-J.; Fung, T.T.; Rimm, E.; Rosner, B.; Manson, J.E.; Wheelan, K.; Hu, F.B. Instant Noodle Intake and Dietary Patterns Are Associated with Distinct Cardiometabolic Risk Factors in Korea. J. Nutr. 2014, 144, 1247–1255. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.; Joung, H. A dairy and fruit dietary pattern is associated with a reduced likelihood of osteoporosis in Korean postmenopausal women. Br. J. Nutr. 2013, 110, 1926–1933. [Google Scholar] [CrossRef] [Green Version]
- Frassetto, L.A.; Todd, K.M.; Morris Jr, R.C.; Sebastian, A. Estimation of net endogenous noncarbonic acid production in humans from diet potassium and protein contents. Am. J. Clin. Nutr. 1998, 68, 576–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willett, W.; Stampfer, M.J. Total energy intake: Implications for epidemiologic analyses. Am. J. Epidemiol. 1986, 124, 17–27. [Google Scholar] [CrossRef]
- Lin, K.C.; Lin, H.Y.; Chou, P. Community based epidemiological study on hyperuricemia and gout in Kin-Hu, Kinmen. J. Rheumatol. 2000, 27, 1045–1050. [Google Scholar]
- Byun, S.-H.; Yoo, D.-M.; Lee, J.-W.; Choi, H.-G. Analyzing the Association between Hyperuricemia and Periodontitis: A Cross-Sectional Study Using KoGES HEXA Data. Int. J. Environ. Res. Public Health 2020, 17, 4777. [Google Scholar] [CrossRef]
- Becker, M.A.; Schumacher, H.R.; Wortmann, R.L.; MacDonald, P.A.; Eustace, D.; Palo, W.A.; Streit, J.; Joseph-Ridge, N. Febuxostat Compared with Allopurinol in Patients with Hyperuricemia and Gout. N. Engl. J. Med. 2005, 353, 2450–2461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagahama, K.; Inoue, T.; Iseki, K.; Touma, T.; Kinjo, K.; Ohya, Y.; Takishita, S. Hyperuricemia as a Predictor of Hypertension in a Screened Cohort in Okinawa, Japan. Hypertens. Res. 2004, 27, 835–841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanbara, A.; Hakoda, M.; Seyama, I. Urine alkalization facilitates uric acid excretion. Nutr. J. 2010, 9, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mena-Sánchez, G.; Babio, N.; Becerra-Tomás, N.; Martínez-González, M.Á.; Díaz-López, A.; Corella, D.; Zomeño, M.D.; Romaguera, D.; Vioque, J.; Alonso-Gómez, Á.M.; et al. Association between dairy product consumption and hyperuricemia in an elderly population with metabolic syndrome. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 214–222. [Google Scholar] [CrossRef]
- Rai, S.K.; Fung, T.T.; Lu, N.; Keller, S.F.; Curhan, G.C.; Choi, H.K. The Dietary Approaches to Stop Hypertension (DASH) diet, Western diet, and risk of gout in men: Prospective cohort study. BMJ 2017, 357, j1794. [Google Scholar] [CrossRef] [Green Version]
- Chuang, S.-Y.; Lee, S.-C.; Hsieh, Y.-T.; Pan, W.-H. Trends in hyperuricemia and gout prevalence: Nutrition and Health Survey in Taiwan from 1993–1996 to 2005–2008. Asia Pac. J. Clin. Nutr. 2011, 20, 301–308. [Google Scholar]
- Lipkowitz, M.S. Regulation of uric acid excretion by the kidney. Curr. Rheumatol. Rep. 2012, 14, 179–188. [Google Scholar] [CrossRef]
- Villegas, R.; Xiang, Y.B.; Elasy, T.; Xu, W.H.; Cai, H.; Cai, Q.; Linton, M.F.; Fazio, S.; Zheng, W.; Shu, X.O. Purine-rich foods, protein intake, and the prevalence of hyperuricemia: The Shanghai Men’s Health Study. Nutr. Metab. Cardiovasc. Dis. 2012, 22, 409–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aihemaitijiang, S.; Zhang, Y.; Zhang, L.; Yang, J.; Ye, C.; Halimulati, M.; Zhang, W.; Zhang, Z. The Association between Purine-Rich Food Intake and Hyperuricemia: A Cross-Sectional Study in Chinese Adult Residents. Nutrients 2020, 12, 3835. [Google Scholar] [CrossRef] [PubMed]
- Clifford, A.J.; Riumallo, J.A.; Young, V.R.; Scrimshaw, N.S. Effect of Oral Purines on Serum and Urinary Uric Acid of Normal, Hyperuricemic and Gouty Humans. J. Nutr. 1976, 106, 428–434. [Google Scholar] [CrossRef]
- Clifford, A.J.; Story, D.L. Levels of purines in foods and their metabolic effects in rats. J. Nutr. 1976, 106, 435–442. [Google Scholar] [CrossRef]
- Choi, H.K.; Curhan, G. Beer, liquor, and wine consumption and serum uric acid level: The Third National Health and Nutrition Examination Survey. Arthritis Care Res. 2004, 51, 1023–1029. [Google Scholar] [CrossRef] [PubMed]
- Stibůrková, B.; Pavlíková, M.; Sokolová, J.; Kožich, V. Metabolic syndrome, alcohol consumption and genetic factors are associated with serum uric acid concentration. PLoS ONE 2014, 9, e97646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trinchieri, A.; Maletta, A.; Lizzano, R.; Marchesotti, F. Potential renal acid load and the risk of renal stone formation in a case–control study. Eur. J. Clin. Nutr. 2013, 67, 1077–1080. [Google Scholar] [CrossRef] [PubMed]
- Kataya, Y.; Murakami, K.; Kobayashi, S.; Suga, H.; Sasaki, S. Higher dietary acid load is associated with a higher prevalence of frailty, particularly slowness/weakness and low physical activity, in elderly Japanese women. Eur. J. Nutr. 2018, 57, 1639–1650. [Google Scholar] [CrossRef]
- Xu, H.; Åkesson, A.; Orsini, N.; Håkansson, N.; Wolk, A.; Carrero, J.J. Modest U-shaped association between dietary acid load and risk of all-cause and cardiovascular mortality in adults. J. Nutr. 2016, 146, 1580–1585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwalfenberg, G.K. The alkaline diet: Is there evidence that an alkaline pH diet benefits health? J. Environ. Public Health 2012, 2012, 7. [Google Scholar] [CrossRef]
- Sakiyama, M.; Matsuo, H.; Shimizu, S.; Nakashima, H.; Nakamura, T.; Nakayama, A.; Higashino, T.; Naito, M.; Suma, S.; Hishida, A.; et al. The effects of URAT1/SLC22A12 nonfunctional variants, R90H and W258X, on serum uric acid levels and gout/hyperuricemia progression. Sci. Rep. 2016, 6, 20148. [Google Scholar] [CrossRef] [Green Version]
- Preitner, F.; Bonny, O.; Laverrière, A.; Rotman, S.; Firsov, D.; Da Costa, A.; Metref, S.; Thorens, B. Glut9 is a major regulator of urate homeostasis and its genetic inactivation induces hyperuricosuria and urate nephropathy. Proc. Natl. Acad. Sci. USA 2009, 106, 15501–15506. [Google Scholar] [CrossRef] [Green Version]
- Nakayama, A.; Matsuo, H.; Takada, T.; Ichida, K.; Nakamura, T.; Ikebuchi, Y.; Ito, K.; Hosoya, T.; Kanai, Y.; Suzuki, H.; et al. ABCG2 is a high-capacity urate transporter and its genetic impairment increases serum uric acid levels in humans. Nucleosides Nucleotides Nucleic Acids 2011, 30, 1091–1097. [Google Scholar] [CrossRef]
- Matsuo, H.; Takada, T.; Ichida, K.; Nakamura, T.; Nakayama, A.; Ikebuchi, Y.; Ito, K.; Kusanagi, Y.; Chiba, T.; Tadokoro, S.; et al. Common defects of ABCG2, a high-capacity urate exporter, cause gout: A function-based genetic analysis in a Japanese population. Sci. Transl. Med. 2009, 1, 5ra11. [Google Scholar] [CrossRef] [PubMed]
- Woodward, O.M.; Köttgen, A.; Coresh, J.; Boerwinkle, E.; Guggino, W.B.; Köttgen, M. Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proc. Natl. Acad. Sci. USA 2009, 106, 10338–10342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuo, H.; Nakayama, A.; Sakiyama, M.; Chiba, T.; Shimizu, S.; Kawamura, Y.; Nakashima, H.; Nakamura, T.; Takada, Y.; Oikawa, Y.; et al. ABCG2 dysfunction causes hyperuricemia due to both renal urate underexcretion and renal urate overload. Sci. Rep. 2014, 4, 3755. [Google Scholar] [CrossRef]
- Nakayama, A.; Matsuo, H.; Nakaoka, H.; Nakamura, T.; Nakashima, H.; Takada, Y.; Oikawa, Y.; Takada, T.; Sakiyama, M.; Shimizu, S.; et al. Common dysfunctional variants of ABCG2 have stronger impact on hyperuricemia progression than typical environmental risk factors. Sci. Rep. 2014, 4, 5227. [Google Scholar] [CrossRef] [Green Version]
Quartile 1 (Lowest) | Quartile 2 | Quartile 3 | Quartile 4 (Highest) | Total | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
n | % | n | % | n | % | n | % | n | % | p Value | |
n | 11,093 | 11,094 | 11,094 | 11,094 | 44,375 | ||||||
Median PRAL, mEq/day | −6.6 | 1.6 | 6.7 | 12.8 | 4.1 | ||||||
NEAP score, mEq/day | 31.1 | 39.2 | 45.9 | 55.6 | 42.4 | ||||||
Age, years | 53.8 | 7.6 | 53.5 | 7.9 | 53 | 8.1 | 52.4 | 8.1 | 53.2 | 7.9 | <0.0001 |
BMI (kg/m2) | 23.8 | 2.7 | 23.7 | 2.8 | 23.8 | 2.8 | 23.8 | 2.9 | 23.8 | 2.8 | 0.41 |
Sex | |||||||||||
Men | 2307 | 20.8 | 3165 | 28.53 | 3755 | 33.85 | 4428 | 39.91 | 13655 | 30.77 | <0.0001 |
Women | 8786 | 79.2 | 7929 | 71.47 | 7339 | 66.15 | 6666 | 60.09 | 30720 | 69.23 | |
Educational level | |||||||||||
≤Elementary school | 1761 | 15.87 | 1786 | 16.1 | 1596 | 14.39 | 1328 | 11.97 | 6471 | 14.58 | <0.0001 |
Middle school | 1902 | 17.15 | 1949 | 17.57 | 1790 | 16.13 | 1673 | 15.08 | 7314 | 16.48 | |
High school | 4404 | 39.7 | 4171 | 37.6 | 4283 | 38.61 | 4227 | 38.1 | 17085 | 38.5 | |
≥College | 3026 | 27.28 | 3188 | 28.74 | 3425 | 30.87 | 3866 | 34.85 | 13505 | 30.43 | |
Smoking status | |||||||||||
Non-smoker | 9336 | 84.16 | 8668 | 78.13 | 8172 | 73.66 | 7592 | 68.43 | 33768 | 76.1 | <0.0001 |
Past smoker | 1115 | 10.05 | 1465 | 13.21 | 1708 | 15.4 | 1947 | 17.55 | 6235 | 14.05 | |
Current smoker | 642 | 5.79 | 961 | 8.66 | 1214 | 10.94 | 1555 | 14.02 | 4372 | 9.85 | |
Drinking status | |||||||||||
Non-drinker | 6771 | 61.04 | 6097 | 54.96 | 5607 | 50.54 | 5058 | 45.59 | 23533 | 53.03 | <0.0001 |
Past drinker | 366 | 3.3 | 339 | 3.06 | 324 | 2.92 | 429 | 3.87 | 1458 | 3.29 | |
Current drinker | 3956 | 35.66 | 4658 | 41.99 | 5163 | 46.54 | 5607 | 50.54 | 19384 | 43.68 | |
Physical activity | |||||||||||
No | 4364 | 39.34 | 4827 | 43.51 | 5105 | 46.02 | 5194 | 46.82 | 19490 | 43.92 | <0.0001 |
Yes | 6729 | 60.66 | 6267 | 56.49 | 5989 | 53.98 | 5900 | 53.18 | 24885 | 56.08 |
PRAL | |||||||||
---|---|---|---|---|---|---|---|---|---|
Quartile 1 (n = 11,093) | Quartile 2 (n = 11,094) | Quartile 3 (n = 11,094) | Quartile 4 (n = 11,094) | p Value | |||||
Nutrient intake | |||||||||
Energy, kcal/day | 1721 | 564 | 1725 | 491 | 1727 | 487 | 1740 | 571 | 0.008 |
% Energy from carbohydrate | 75.3 | 6.3 | 74.3 | 5.9 | 73 | 6.2 | 69 | 8.2 | <0.0001 |
% Energy from fat | 12 | 4.9 | 12.2 | 4.8 | 12.9 | 5 | 15.2 | 6.3 | <0.0001 |
% Energy from total protein | 12.5 | 2.6 | 12.2 | 2.3 | 12.4 | 2.3 | 13.7 | 3.1 | <0.0001 |
% Energy from plant protein | 7.8 | 1.3 | 7.5 | 1 | 7.4 | 0.9 | 7.3 | 1.1 | <0.0001 |
% Energy from animal protein | 4.7 | 2.4 | 4.6 | 2.3 | 4.9 | 2.4 | 6.5 | 3.4 | <0.0001 |
Dietary fiber, g/day | 17.4 | 8.8 | 12.2 | 5.6 | 10.4 | 5.2 | 9.4 | 5.3 | <0.0001 |
Phosphorous, mg/day | 921.1 | 375 | 859.8 | 315.5 | 842.7 | 312.4 | 885.4 | 388 | <0.0001 |
Potassium, mg/day | 2832 | 1129.8 | 2254 | 774.4 | 2025.4 | 734 | 1907.4 | 828.6 | <0.0001 |
Calcium, mg/day | 571.6 | 301.6 | 475.7 | 237.9 | 433.4 | 223 | 412 | 241 | <0.0001 |
Magnesium, mg/day | 158.1 | 79.4 | 123.7 | 59.5 | 112.3 | 56.2 | 113 | 63.4 | <0.0001 |
Food groups | |||||||||
Grains and grain products, g/day | 577.5 | 214.5 | 662.5 | 191 | 691.2 | 194.1 | 677.5 | 223.6 | <0.0001 |
Rice, g/day | 516.6 | 205.9 | 588.7 | 179 | 606.1 | 177.6 | 573 | 191 | <0.0001 |
Vegetables, g/day | 431.8 | 250.8 | 285.6 | 135.6 | 230.6 | 121 | 185.9 | 122 | <0.0001 |
Fruits, g/day | 333.4 | 270.7 | 196.7 | 134.4 | 138 | 111.8 | 95.9 | 91.2 | <0.0001 |
Meat, g/day | 32 | 32.8 | 38 | 35.9 | 45.4 | 41.8 | 70.5 | 73.2 | <0.0001 |
Fish and shellfish, g/day | 39.4 | 36.9 | 36.4 | 32.1 | 38.1 | 35.3 | 49.7 | 54.1 | <0.0001 |
Milk and dairy products, g/day | 149.1 | 170.1 | 130 | 146.5 | 114.7 | 128.4 | 99 | 115.1 | <0.0001 |
Biochemical data | |||||||||
Triglyceride level (mg/dL) (Reference range: <150 mg/dL) | 116.6 | 74.5 | 119.7 | 81.3 | 122.4 | 85.7 | 123.3 | 86.8 | <0.0001 |
Total cholesterol level (mg/dL) (Reference range: <200 mg/dL) | 197.8 | 35 | 197.6 | 34.6 | 197.2 | 34.9 | 196.9 | 34.9 | 0.04 |
HDL-cholesterol level (mg/dL) (Reference range: ≥40 mg/dL for men and ≥50 mg/dL for women) | 54.9 | 12.7 | 54.7 | 12.7 | 54.5 | 12.9 | 54.8 | 13.2 | 0.49 |
Dietary Acid Load | ||||||
---|---|---|---|---|---|---|
Quartile 1 (Lowest) | Quartile 2 | Quartile 3 | Quartile 4 (Highest) | p for Trend | Per 1 SD Increase | |
Energy-Adjusted PRAL | ||||||
Median, mEq/day | −6.9 | 1.6 | 6.7 | 12.4 | 4.2 | |
Person years | 58,000 | 55,458 | 55,273 | 54,821 | 223,552 | |
Incident cases (n) | 539 | 594 | 629 | 738 | 2500 | |
Rate per 1000 person years | 9.3 | 10.7 | 11.4 | 13.5 | 11.2 | |
HR (95% CI) | HR (95% CI) | HR (95% CI) | HR (95% CI) | HR (95% CI) | ||
Model 1 | 1.00 | 1.22 | 1.29 | 1.54 | <0.0001 | 1.05 |
(1.09–1.37) | (1.15–1.45) | (1.38–1.72) | 1.03–1.06) | |||
Model 2 | 1.00 | 1.13 | 1.13 | 1.27 | <0.0001 | 1.02 |
(1.00–1.27) | (1.00–1.27) | (1.14–1.43) | (1.01–1.04) | |||
Model 3 | 1.00 | 1.11 | 1.08 | 1.21 | <0.0001 | 1.02 |
(0.99–1.25) | (0.96–1.21) | (1.07–1.35) | (1.00–1.03) | |||
Energy-Adjusted NEAP Score | ||||||
Median, mEq/day | 31.2 | 39.2 | 45.8 | 55.5 | 42.5 | |
Person years | 57,650 | 55,349 | 55,431 | 55,122 | 223,552 | |
Incident cases (n) | 528 | 612 | 629 | 731 | 2500 | |
Rate per 1000 person years | 9.2 | 11.1 | 11.3 | 13.3 | 11.2 | |
HR (95% CI) | HR (95% CI) | HR (95% CI) | HR (95% CI) | HR (95% CI) | ||
Model 1 | 1.00 | 1.27 | 1.29 | 1.51 | <0.0001 | 1.6 |
(1.13–1.43) | (1.15–1.45) | (1.35–1.69) | (1.38–1.84) | |||
Model 2 | 1.00 | 1.19 | 1.13 | 1.24 | <0.0001 | 1.2 |
(1.06–1.34) | (1.01–1.27) | (1.11–1.39) | (1.04–1.40) | |||
Model 3 | 1.00 | 1.15 | 1.06 | 1.17 | <0.0001 | 1.12 |
(1.02–1.29) | (0.95–1.20) | (1.04–1.31) | (0.96–1.31) |
Food Group Consumption, g/Day | Tertile 1 | Tertile 2 | Tertile 3 |
---|---|---|---|
Grains and grain products | 1.00 | 0.87 (0.79–0.97) | 0.88 (0.80–0.97) |
Rice | 1.00 | 0.88 (0.81–0.96) | 0.87 (0.74–1.02) |
Vegetables | 1.00 | 0.96 (0.87–1.06) | 0.85 (0.77–0.94) |
Fruits | 1.00 | 1.07 (0.97–1.18) | 1.01 (0.91–1.12) |
Meat and meat products | 1.00 | 0.95 (0.86–1.06) | 0.98 (0.88–1.08) |
Fish and shellfish | 1.00 | 0.96 (0.87–1.06) | 0.96 (0.87–1.06) |
Milk and dairy products | 1.00 | 1.00 (0.91–1.09) | 0.90 (0.81–0.99) |
Alcohol Consumption, g/Day | Βeta 1 | Standard Error | p Value |
---|---|---|---|
Beer intake | 0.0016 | 0.0003 | <0.0001 |
Wine intake | 0.00001 | 0.0009 | 0.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, D.; Lee, K.W. Dietary Acid Load Is Positively Associated with the Incidence of Hyperuricemia in Middle-Aged and Older Korean Adults: Findings from the Korean Genome and Epidemiology Study. Int. J. Environ. Res. Public Health 2021, 18, 10260. https://doi.org/10.3390/ijerph181910260
Shin D, Lee KW. Dietary Acid Load Is Positively Associated with the Incidence of Hyperuricemia in Middle-Aged and Older Korean Adults: Findings from the Korean Genome and Epidemiology Study. International Journal of Environmental Research and Public Health. 2021; 18(19):10260. https://doi.org/10.3390/ijerph181910260
Chicago/Turabian StyleShin, Dayeon, and Kyung Won Lee. 2021. "Dietary Acid Load Is Positively Associated with the Incidence of Hyperuricemia in Middle-Aged and Older Korean Adults: Findings from the Korean Genome and Epidemiology Study" International Journal of Environmental Research and Public Health 18, no. 19: 10260. https://doi.org/10.3390/ijerph181910260
APA StyleShin, D., & Lee, K. W. (2021). Dietary Acid Load Is Positively Associated with the Incidence of Hyperuricemia in Middle-Aged and Older Korean Adults: Findings from the Korean Genome and Epidemiology Study. International Journal of Environmental Research and Public Health, 18(19), 10260. https://doi.org/10.3390/ijerph181910260