Application of Solid Phase Extraction and High-Performance Liquid Chromatography with Fluorescence Detection to Analyze Bisphenol A Bis (2,3-Dihydroxypropyl) Ether (BADGE 2H2O), Bisphenol F (BPF), and Bisphenol E (BPE) in Human Urine Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Solvents and Mobile-Phase Solutions
2.3. Apparatus and HPLC-FLD Conditions
2.4. HPLC-FLD Analysis and Method Validation
2.4.1. Selectivity
2.4.2. Linearity
2.5. Enzymatic Standard and Solutions
2.6. Preparation of Urine Samples before SPE
2.7. SPE-Based Extraction Procedure
2.8. Calculation of Relative Standard Deviation Values (RSD) and Extraction Recovery
2.9. Dispersive Solid Phase (d-SPE) Salts
2.10. The d-SPE Stage before SPE-Based Extraction Procedure
2.11. Human Urine Sample Collection
3. Results and Discussion
- A 10–fold reduction in the sample volume (from 5 to 0.5 mL);
- Optimization of the d-SPE/SPE technique for the majority of analyzed bisphenols;
- Optimal recovery values obtained for all of the analytes in the range from 57 to 88% for seven bisphenols combined with a low matrix effect, ensuring the reliable identification and quantification of analytes;
- The sample volume of 0.5 mL enabled to combine several milk samples from one woman allowing the identification and quantitation of the analytes in biological samples using a sensitive fluorescence detector (FLD);
- Due to the use of HPLC-FLD it was possible to identify and quantify bisphenols in human milk samples.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Ma, Y.; Liu, H.; Wu, J.; Yuan, L.; Wang, Y.; Du, X.; Wang, R.; Marwa, P.W.; Petlulu, P.; Chen, X.; et al. The adverse health effects of bisphenol A and related toxicity mechanisms. Environ. Res. 2019, 176, 108575. [Google Scholar] [CrossRef]
- Castellini, C.; Totaro, M.; Parisi, A.; D’Andrea, S.; Lucente, L.; Cordeschi, G.; Francavilla, S.; Francavilla, F.; Barbonetti, A. Bisphenol A and male fertility: Myths and realities. Front. Endocrinol. 2020, 11, 353. [Google Scholar] [CrossRef] [PubMed]
- Brieno-Enriquez, M.A.; Reig-Viader, R.; Cabero, L.; Toran, N.; Martinez, F.; Roig, I.; Garcia Caldes, M. Gene expression is altered after bisphenol a exposure in human fetal oocytes in vitro. Mol. Hum. Reprod. 2012, 18, 171–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peretz, J.; Vrooman, L.; Ricke, W.A.; Hunt, P.A.; Ehrlich, S.; Hauser, R.; Padmanabhan, V.; Taylor, H.S.; Swan, S.H.; VandeVoort, C.A.; et al. Bisphenol a and reproductive health: Update of experimental and human evidence, 2007–2013. Environ. Health Perspect. 2014, 122, 775–786. [Google Scholar] [CrossRef] [PubMed]
- European-Parliament Comission Directive 2011/8/EU. 2011. Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32011L0008 (accessed on 14 June 2021).
- European Commission Commission Regulation (EU). 2018/213 of 12 February 2018 on the Use of Bisphenol A in Varnishes and Coatings Intended to Come into Contact with Food and Amending Regulation (EU) No 10/2011 as Regards the Use of That Substance in Plastic Food Contact Materi. Off. J. Eur. Union 2018, 2001, 20–30. [Google Scholar]
- Lehmler, H.J.; Liu, B.; Gadogbe, M.; Bao, W. Exposure to Bisphenol A, Bisphenol F, and Bisphenol S in U.S. Adults and Children: The National Health and Nutrition Examination Survey 2013–2014. ACS Omega 2018, 3, 6523–6532. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Kannan, K.; Tan, H.; Zheng, Z.; Feng, Y.L.; Wu, Y.; Widelka, M. Bisphenol Analogues Other Than BPA: Environmental Occurrence, Human Exposure, and Toxicity—A Review. Environ. Sci. Technol. 2016, 50, 5438–5453. [Google Scholar] [CrossRef]
- Wang, C.; He, J.; Xu, T.; Han, H.; Zhu, Z.; Meng, L.; Pang, Q.; Fan, R. Bisphenol A(BPA), BPS and BPB-Induced Oxidative Stress and Apoptosis Mediated by Mitochondria in Human Neuroblastoma Cell Lines. Ecotoxicol. Environ. Saf. 2021, 207. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, X.; Bai, J.; Li, J.; Zhang, C.; Zhao, Y.; Zhu, Y.; Zhang, J.; Zhou, X. Bisphenol S Increases the Obesogenic Effects of a High-Glucose Diet through Regulating Lipid Metabolism in Caenorhabditis Elegans. Food Chem. 2021, 339, 127813. [Google Scholar] [CrossRef]
- Žalmanová, T.; Hošková, K.; Nevoral, J.; Adámková, K.; Kott, T.; Šulc, M.; Kotíková, Z.; Prokešová, Š.; Jílek, F.; Králíčková, M.; et al. Bisphenol S negatively affects the meotic maturation of pig oocytes. Sci. Rep. 2017, 7, 485. [Google Scholar] [CrossRef]
- Prokešová, Š.; Ghaibour, K.; Liška, F.; Klein, P.; Fenclová, T.; Štiavnická, M.; Hošeka, P.; Žalmanová, T.; Hošková, K.; Řimnáčová, H.; et al. Acute low-dose bisphenol S exposure affects mouse oocyte quality. Reprod. Toxicol. 2020, 93, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Nevoral, J.; Havránkova, J.; Kolinko, J.; Prokešová, Š.; Fenclová, T.; Monsef, L.; Žalmanová, T.; Petr, J.; Králíčková, M. Exposure to alternative bisphenols BPS and BPF through breast milk: Noxious heritage effect during nursing associated with idiopathic infertility. Toxicol. Appl. Pharmacol. 2021, 413, 115409. [Google Scholar] [CrossRef] [PubMed]
- European Union Commission Regulation (EU). No 10/2011 of 14 January 2011. 2011. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:012:0001:0089:EN:PDF (accessed on 14 June 2021).
- Williams, M.J.; Cao, H.; Lindkvist, T.; Mothes, T.J.; Schiöth, H.B. Exposure to the Environmental Pollutant Bisphenol A Diglycidyl Ether (BADGE) Causes Cell over-Proliferation in Drosophila. Environ. Sci. Pollut. Res. 2020, 27, 25261–25270. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.B.; Lee, S.; Lee, J.E.; Choi, J.C.; Park, S.J.; Kang, Y. LC-MS/MS Analysis of BADGE, NOGEs, and Their Derivatives Migrated from Food and Beverage Metal Cans. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2020, 37, 1974–1984. [Google Scholar] [CrossRef]
- Bello, A.; Xue, Y.; Bello, D. Urinary biomonitoring of occupational exposures to Bisphenol A Diglycidyl Ether (BADGE)—Based epoxy resins among construction painters in metal structure coating. Environ. Int. 2021, 156, 106632. [Google Scholar] [CrossRef]
- Wang, L.; Liao, C.; Liu, F.; Wu, Q.; Guo, Y.; Moon, H.B.; Nakata, H.; Kannan, K. Occurrence and human exposure of p-hydroxybenzoic acid esters (parabens), bisphenol A diglycidyl ether (BADGE), and their hydrolysis products in indoor dust from the United States and three East Asian countries. Environ. Sci. Technol. 2012, 46, 11584–11593. [Google Scholar] [CrossRef]
- Biedermann, S.; Zurfluh, M.; Grob, K.; Vedani, A.; Brüschweiler, B.J. Migration of cyclo-diBA from coatings into canned food: Method of analysis, concentration determined in a survey and in silico profiling. Food Chem. Toxicol. 2013, 58, 107–115. [Google Scholar] [CrossRef]
- Sanchisa, Y.; Coscollà, C.; Corpas-Burgosa, F.; Ventoc, M.; Gormaz, M.; Yusà, V. Bettermilk project. Biomonitoring of bisphenols A, F, S and parabens in urine of breastfeeding mothers: Exposure and risk assessment. Environ. Res. 2020, 185, 109481. [Google Scholar] [CrossRef]
- Moura, H.S.R.P.; Rocha, P.R.S.; Amato, A.A.; Sodré, F.F. Quantification of bisphenol A in urine samples from children studying in public schools from the Brazilian Capital. Microchem. J. 2020, 152, 104347. [Google Scholar] [CrossRef]
- Gys, C.; Bamai, Y.A.; Araki, A.; Bastiaensen, M.; Caballero-Casero, N.; Kishi, R.; Covaci, A. Biomonitoring and temporal trends of bisphenols exposure in Japanese school children. Environ. Res. 2020, 191, 110172. [Google Scholar] [CrossRef]
- Polovkov, N.Y.; Starkova, J.E.; Borisov, R.S. A simple, inexpensive, non-enzymatic microwave-assisted method for determining bisphenol-A in urine in the form of trimethylsilyl derivative by GC/MS with single quadrupole. J. Pharm. Biomed. Anal. 2020, 188, 113417. [Google Scholar] [CrossRef]
- Gys, C.; Bastiaensen, M.; Bruckers, L.; Colles, A.; Govarts, E.; Martin, L.R.; Verheyen, V.; Koppen, G.; Morrens, B.; Hond, E.D.; et al. Determinants of exposure levels of bisphenols in flemish adolescents. Environ. Res. 2021, 193, 110567. [Google Scholar] [CrossRef] [PubMed]
- Rebai, I.; Fernandes, J.O.; Azzouz, M.; Benmohammed, K.; Bader, G.; Benmbarek, K.; Cunha, S.C. Urinary bisphenol levels in plastic industry workers. Environ. Res. 2021, 202, 111666. [Google Scholar] [CrossRef]
- Alampanos, V.; Kabir, A.; Furton, K.G.; Samanidou, V. Rapid exposure monitoring of six bisphenols and diethylstilbestrol in human urine using fabric phase sorptive extraction followed by high performance liquid chromatography-photodiode array analysis. J. Chromatogr. B 2021, 1177, 122760. [Google Scholar] [CrossRef]
- Zhang, B.; He, Y.; Zhu, H.; Huang, X.; Bai, X.; Kannan, K.; Zhang, T. Concentrations of bisphenol A and its alternatives in paired maternal–fetal urine, serum and amniotic fluid from an e-waste dismantling area in China. Environ. Int. 2020, 136, 105407. [Google Scholar] [CrossRef] [PubMed]
- Dima, A.P.; De Santis, L.; Verlengia, C.; Lombardo, F.; Lenzi, A.; Mazzarino, M.; Botrè, F.; Paoli, D.; on behalf of the Italian Society of Embryology, Reproduction, Research (SIERR). Development and validation of a liquid chromatography-tandem mass spectrometry method for the simultaneous determination of phthalates and bisphenol a in serum, urine and follicular fluid. Clin. Mass Spectrom. 2020, 18, 54–65. [Google Scholar] [CrossRef]
- Khmiri, I.; Côté, J.; Mantha, M.; Khemiri, R.; Lacroix, M.; Gely, C.; Toutain, P.-L.; Picard-Hagen, N.; Gayrard, V.; Bouchard, M. Toxicokinetics of bisphenol-S and its glucuronide in plasma and urine following oral and dermal exposure in volunteers for the interpretation of biomonitoring data. Environ. Int. 2020, 138, 105644. [Google Scholar] [CrossRef]
- Pastor-Belda, M.; Drauschke, T.; Campillo, N.; Arroyo-Manzanares, N.; Torres, C.; Pérez-Cárceles, M.D.; Hernández-Córdoba, M.; Viñas, P. Dual stir bar sorptive extraction coupled to thermal desorption-gas chromatography-mass spectrometry for the determination of endocrine disruptors in human tissues. Talanta 2020, 207, 120331. [Google Scholar] [CrossRef] [PubMed]
- Nowak, K.; Jabłońska, E.; Ratajczak-Wrona, W. Immunomodulatory effects of synthetic endocrine disrupting chemicals on the development and functions of human immune cells. Environ. Int. 2019, 125, 350–364. [Google Scholar] [CrossRef]
- Tuzimski, T.; Szubartowski, S. Method Development for Selected Bisphenols Analysis in Sweetened Condensed Milk from a Can and Breast Milk Samples by HPLC–DAD and HPLC-QQQ-MS: Comparison of Sorbents (Z-Sep, Z-Sep Plus, PSA, C18, Chitin and EMR-Lipid) for Clean-up of QuEChERS Extract. Molecules 2019, 24, 2093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuzimski, T.; Szubartowski, S.; Gadzała-Kopciuch, R.; Miturski, A.; Wójtowicz-Marzec, M.; Kwaśniewski, W.; Buszewski, B. Comparison of DAD and FLD Detection for Identification of Selected Bisphenols in Human Breast Milk Samples and Their Quantitative Analysis by LC-MS/MS. J. AOAC Int. 2020, 103. [Google Scholar] [CrossRef] [PubMed]
- Tuzimski, T.; Szubartowski, S. Application of d-SPE before SPE and HPLC-FLD to the analysis of bisphenols in human breast milk samples. Molecules 2021, 26, 4930. [Google Scholar] [CrossRef]
- Dualde, P.; Pardo, O.; Fernández, S.F.; Pastor, A.; Yusà, V. Determination of four parabens and bisphenols A, F and S in human breast milk using QuEChERS and liquid chromatography coupled to mass spectrometry. J. Chromatogr. B 2019, 1114, 154–166. [Google Scholar] [CrossRef]
- Klingelhofer, I.; Hockamp, N.; Morlock, G.E. Non-targeted detection and differentiation of agonists versus antagonists, directly in bioprofiles of everyday products. Anal. Chim. Acta 2020, 1125, 288–298. [Google Scholar] [CrossRef]
- Yi, B.; Kim, C.; Yang, M. Biological monitoring of bisphenol A with HPLC/FLD and LC/MS/MS assays. J. Chromatogr. B 2010, 878, 2606–2610. [Google Scholar] [CrossRef]
- Tuzimski, T.; Rejczak, T. A QuEChERS-based sample preparation method for the analysis of 5-nitroimidazoles in bovine milk by HPLC-DAD. J. AOAC Int. 2017, 100, 1671–1680. [Google Scholar] [CrossRef]
- Rejczak, T.; Tuzimski, T. A review of recent developments and trends in the QuEChERS sample preparation approach. Open Chem. 2015, 13, 980–1010. [Google Scholar] [CrossRef]
- Tuzimski, T.; Rejczak, T. Determination of pesticides in sunflower seeds by high-performance liquid chromatography coupled with a diode array detector. J. AOAC Int. 2014, 97, 1012–1020. [Google Scholar] [CrossRef] [PubMed]
- Tuzimski, T.; Rejczak, T. Application of HPLC-DAD after SPE/QuEChERS with ZrO2-based sorbent in d-SPE clean-up step for pesticide analysis in edible oils. Food Chem. 2016, 190, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Rejczak, T.; Tuzimski, T. QuEChERS-based extraction with dispersive solid phase extraction clean-up using PSA and ZrO2-based sorbents for determination of pesticides in bovine milk samples by HPLC-DAD. Food Chem. 2017, 217, 225–233. [Google Scholar] [CrossRef]
- Rejczak, T.; Tuzimski, T. Method development for sulfonylurea herbicides analysis in rapeseed oil samples by HPLC–DAD: Comparison of zirconium-based sorbents and EMR-Lipid for Clean-up of QuEChERS extract. Food Anal. Methods 2017, 10, 3666–3679. [Google Scholar] [CrossRef] [Green Version]
- European Medicines Agency. ICH Topic Q 2 (R1) Validation of Analytical Procedures: Text and Methodology, Note for Guidance on Validation of Analytical Procedures: Text and Methodology (CPMP/ICH/381/95); European Medicines Agency: London, UK, 1995. [Google Scholar]
Sample Number | Determined Bisphenols | ||
---|---|---|---|
BADGE∙2H2O | BPF | BPE | |
1 | <LOQ | <LOQ | <LOQ |
2 | <LOQ | ||
3 | <LOQ | <LOQ | <LOQ |
4 | <LOQ | <LOQ | <LOQ |
5 | <LOQ | <LOQ | |
6 | <LOQ | <LOQ | <LOQ |
7 | <LOQ | ||
8 | <LOQ | ||
9 | <LOQ | ||
10 | <LOQ | ||
11 | <LOQ | <LOQ | <LOQ |
12 | <LOQ | <LOQ | <LOQ |
No. | Bisphenol | IUPAC Name | Chemical Structure | Molecular Weight 1 (g/mol) | Log P 1 | Proton Donors 1 | Proton Acceptors 1 |
---|---|---|---|---|---|---|---|
1 | BADGE∙2H2O | 2,2-bis[4 -(2,3-hydroxypropoxy)phenyl]propane | 376.4 | 2.1 | 4 | 6 | |
2 | BPF | 4-[(4-hydroxyphenyl)methyl]phenol | 200.23 | 2.9 | 2 | 2 | |
3 | BPE | 4-[1-(4-hydroxyphenyl)ethyl]phenol | 214.26 | 3.9 | 2 | 2 |
No. | Bisphenol | Retention Time, tr (min) | Concentration Range (ng mL−1) | λ (nm) | Linear Regression | Correlation Coefficient (r) | LOD (ng mL −1) | LOQ (ng mL −1) | mLOD (ng mL −1) | mLOQ (ng mL −1) |
---|---|---|---|---|---|---|---|---|---|---|
1 | BADGE∙2H2O | ~7.5 | 10–500 | 240 | y = 1.5781x + 9.9644 | r = 0.9995 | 7.37 | 22.35 | 33.90 | 102.73 |
2 | BPF | ~9.7 | 10–500 | 240 | y = 0.9516x + 2.286 | r = 0.9999 | 3.77 | 11.42 | 18.93 | 57.35 |
3 | BPE | ~10.3 | 10–500 | 240 | y = 0.7022x − 2.5784 | r = 0.9999 | 4.42 | 13.39 | 18.00 | 54.53 |
Recoveries Obtained for Fortification at 100 ng/mL (1 × LOQ) Sample after the SPE Procedure | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bisphenol | Intra-Day Repeatability a | Inter-Day Repeatability b (n = 18) | Intra-Laboratory Reproducibility c | Overall d (n = 30) | ||||||||||||
Name | Day 1 (n = 6) | Day 2 (n = 6) | Day 3 (n = 6) | Analyst 1 (n = 6) | Analyst 2 (n = 6) | Mean (n = 12) | ||||||||||
Recovery % | RSD% | Recovery % | RSD% | Recovery (%) | RSD% | Recovery % | RSD% | Recovery % | RSD% | Recovery % | RSD% | Recovery % | RSD% | Recovery % | RSD% | |
BADGE·2H2O | 85.4 | 5% | 84.8 | 2% | 84.7 | 4% | 85.0 | 3.7% | 85.0 | 4% | 84.8 | 4% | 84.9 | 4.0% | 85.0 | 3.8% |
BPF | 76.5 | 6% | 75.5 | 5% | 76.5 | 3% | 76.2 | 4.8% | 75.8 | 5% | 75.8 | 11% | 75.8 | 8.2% | 76.0 | 6.1% |
BPE | 74.0 | 3% | 73.8 | 4% | 74.0 | 7% | 73.9 | 4.9% | 73.7 | 5% | 74.0 | 7% | 73.8 | 5.9% | 73.9 | 5.3% |
Recoveries Obtained for Fortification at 150 ng/mL (1.5 × LOQ) Sample after the SPE Procedure | ||||||||||||||||
Bisphenol | Intra-Day Repeatability a | Inter-Day Repeatability b (n = 18) | Intra-Laboratory Reproducibility c | Overall d (n = 30) | ||||||||||||
Name | Day 1 (n = 6) | Day 2 (n = 6) | Day 3 (n = 6) | Analyst 1 (n = 6) | Analyst 2 (n = 6) | Mean (n = 12) | ||||||||||
Recovery % | RSD% | Recovery % | RSD% | Recovery (%) | RSD% | Recovery % | RSD% | Recovery % | RSD% | Recovery % | RSD% | Recovery % | RSD% | Recovery % | RSD% | |
BADGE·2H2O | 86.5 | 9% | 87.0 | 1% | 86.8 | 5% | 86.8 | 5.2% | 86.3 | 1% | 87.2 | 5% | 86.8 | 3.0% | 86.8 | 4.3% |
BPF | 76.0 | 10% | 75.7 | 3% | 76.5 | 4% | 76.1 | 5.6% | 76.3 | 6% | 76.0 | 6% | 76.2 | 6.0% | 76.1 | 5.7% |
BPE | 73.8 | 8% | 73.5 | 7% | 73.7 | 9% | 73.7 | 7.9% | 73.3 | 7% | 74.2 | 7% | 73.8 | 6.6% | 73.7 | 7.4% |
Recoveries Obtained for Fortification at 300 ng/mL (3 × LOQ) Sample after the SPE Procedure | ||||||||||||||||
Bisphenol | Intra-Day Repeatability a | Inter-Day Repeatability b (n = 18) | Intra-Laboratory Reproducibility c | Overall d (n = 30) | ||||||||||||
Name | Day 1 (n = 6) | Day 2 (n = 6) | Day 3 (n = 6) | Analyst 1 (n = 6) | Analyst 2 (n = 6) | Mean (n = 12) | ||||||||||
Recovery % | RSD% | Recovery % | RSD% | Recovery (%) | RSD% | Recovery % | RSD% | Recovery % | RSD% | Recovery % | RSD% | Recovery % | RSD% | Recovery % | RSD% | |
BADGE·2H2O | 84.6 | 2% | 84.2 | 3% | 84.2 | 5% | 84.3 | 3.4% | 84.5 | 2% | 84.2 | 3% | 84.3 | 2.5% | 84.3 | 3.0% |
BPF | 76.5 | 5% | 76.2 | 5% | 76.3 | 3% | 76.3 | 4.2% | 75.7 | 3% | 76.0 | 5% | 75.8 | 4.1% | 76.1 | 4.2% |
BPE | 74.2 | 4% | 74.3 | 5% | 74.2 | 4% | 74.2 | 4.3% | 74.7 | 4% | 73.8 | 3% | 74.3 | 3.2% | 74.2 | 3.9% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tuzimski, T.; Szubartowski, S. Application of Solid Phase Extraction and High-Performance Liquid Chromatography with Fluorescence Detection to Analyze Bisphenol A Bis (2,3-Dihydroxypropyl) Ether (BADGE 2H2O), Bisphenol F (BPF), and Bisphenol E (BPE) in Human Urine Samples. Int. J. Environ. Res. Public Health 2021, 18, 10307. https://doi.org/10.3390/ijerph181910307
Tuzimski T, Szubartowski S. Application of Solid Phase Extraction and High-Performance Liquid Chromatography with Fluorescence Detection to Analyze Bisphenol A Bis (2,3-Dihydroxypropyl) Ether (BADGE 2H2O), Bisphenol F (BPF), and Bisphenol E (BPE) in Human Urine Samples. International Journal of Environmental Research and Public Health. 2021; 18(19):10307. https://doi.org/10.3390/ijerph181910307
Chicago/Turabian StyleTuzimski, Tomasz, and Szymon Szubartowski. 2021. "Application of Solid Phase Extraction and High-Performance Liquid Chromatography with Fluorescence Detection to Analyze Bisphenol A Bis (2,3-Dihydroxypropyl) Ether (BADGE 2H2O), Bisphenol F (BPF), and Bisphenol E (BPE) in Human Urine Samples" International Journal of Environmental Research and Public Health 18, no. 19: 10307. https://doi.org/10.3390/ijerph181910307
APA StyleTuzimski, T., & Szubartowski, S. (2021). Application of Solid Phase Extraction and High-Performance Liquid Chromatography with Fluorescence Detection to Analyze Bisphenol A Bis (2,3-Dihydroxypropyl) Ether (BADGE 2H2O), Bisphenol F (BPF), and Bisphenol E (BPE) in Human Urine Samples. International Journal of Environmental Research and Public Health, 18(19), 10307. https://doi.org/10.3390/ijerph181910307