Home-Based Stair Climbing as an Intervention for Disease Risk in Adult Females; A Controlled Study
Abstract
:1. Introduction
1.1. Background
1.2. Stair Climbing Interventions and Cardiorespiratory Fitness
1.3. Stair Climbing Interventions and Risk Factors for CVD and MetS
1.4. The Current Study
2. Methods
2.1. Participants
2.2. Measurements and Procedure
2.3. The Intervention Program
2.4. Statistical Analysis
3. Results
3.1. Effects of Stair Climbing
3.2. Comparisons between Home-Based and Gym-Based Interventions
4. Discussion
4.1. Effects of Stair Climbing
4.2. Effects of Intervention by Location
4.3. Alternative Stair Interventions for the Home
4.4. Limitations and Future Directions
4.5. Strengths
4.6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abubakar, I.I.; Tillmann, T.; Banerjee, A. Global, regional, and national age–sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015, 385, 117–171. [Google Scholar]
- Wilkins, E.; Wilson, L.; Wickramasinghe, K.; Bhatnagar, P.; Leal, J.; Luengo-Fernandez, R.; Burns, R.; Rayner, M.; Townsend, N. European Cardiovascular Disease Statistics 2017; European Heart Network: Bruxelles, Brussels, 2017. [Google Scholar]
- Heidenreich, P.A.; Trogdon, J.G.; Khavjou, O.A.; Butler, J.; Dracup, K.; Ezekowitz, M.D.; Finkelstein, E.A.; Hong, Y.; Johnston, S.C.; Khera, A.; et al. Forecasting the Future of Cardiovascular Disease in the United States: A Policy Statement from the American Heart Association. Circulation 2011, 123, 933–944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.-C.; James, W.P.T.; Loria, C.M.; Smith, S.C., Jr. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart Lung and Blood Institute; American Heart association: World Heart Federation; International Atherosclerosis Society: And International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [PubMed] [Green Version]
- Hex, N.; Bartlett, C.; Wright, D.; Taylor, M.; Varley, D. Estimating the current and future costs of Type 1 and Type 2 diabetes in the United Kingdom, including direct health costs and indirect societal and productivity costs. Diabetic Med. 2012, 29, 855–862. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, X.; Brown, J.; Vistisen, D.; Sicree, R.; Shaw, J.; Nichols, G. Global health care expenditure on diabetes for 2010 and 2030. Diabetes Res. Clin. Pract. 2010, 87, 293–301. [Google Scholar] [CrossRef]
- American Diabetes Association. Economic costs of diabetes in the U.S. in 2017. Diabetes Care 2018, 41, 917–928. [Google Scholar] [CrossRef] [Green Version]
- The Health Survey for England 2007. Available online: https://digital.nhs.uk/data-and-information/publications/statistical/health-survey-for-england/health-survey-for-england-2007-latest-trends (accessed on 16 December 2008).
- Tucker, J.M.; Welk, G.J.; Beyler, N.K. Physical Activity in U.S. Adults: Compliance with the Physical Activity Guidelines for Americans. Am. J. Prev. Med. 2011, 40, 454–461. [Google Scholar] [CrossRef]
- Janssen, I.; Ross, R. Vigorous intensity physical activity is related to the metabolic syndrome independent of the physical activity dose. Int. J. Epid. 2012, 41, 1132–1140. [Google Scholar] [CrossRef]
- Laursen, A.H.; Kristiansen, O.P.; Marott, J.L.; Schnohr, P.; Prescott, E. Intensity versus duration of physical activity: Implications for the metabolic syndrome. A prospective cohort study. BMJ Open 2012, 2, e001711. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.; Yarnell, J.W.G.; Sweetnam, P.M.; Murray, L. What level of physical activity protects against premature cardiovascular death? The Caerphilly study. Heart 2003, 89, 502–506. [Google Scholar] [CrossRef] [Green Version]
- Teh, K.C.; Aziz, A.R. Heart rate, oxygen uptake, and energy cost of ascending and descending the stairs. Med. Sci. Sports Exerc. 2002, 34, 695–699. [Google Scholar]
- Lee, I.-M.; Paffenbarger, R.S. Physical activity and stroke incidence: The Harvard Alumni Health Study. Stroke 1998, 29, 2049–2054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paffenbarger, R.S.; Wing, A.L.; Hyde, R.T. Physical activity as an Index of heart attack risk in college alumni. Am. J. Epidemiol. 1978, 108, 161–175. [Google Scholar] [CrossRef] [PubMed]
- Paffenbarger, R.S.; Hyde, R.T.; Wing, A.L.; Lee, I.-M.; Jung, D.L.; Kampert, J.B. The association of changes in physical activity level and other lifestyle characteristics with mortality among men. NEJM 1993, 328, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Allison, M.K.; Baglole, J.H.; Martin, B.J.; Macinnis, M.J.; Gurd, B.J.; Gibala, M.J. Brief intense stair climbing improves cardiorespiratory fitness. Med. Sci. Sports Exerc. 2017, 49, 298–307. [Google Scholar] [CrossRef]
- Boreham, C.A.G.; Wallace, W.F.M.; Nevill, A. Training effects of accumulated daily stair-climbing exercise in previously sedentary young women. Prev. Med. 2000, 30, 277–281. [Google Scholar] [CrossRef]
- Boreham, C.A.G.; Kennedy, R.A.; Murphy, M.H.; Tully, M.; Wallace, W.F.M.; Young, I. Training effects of short bouts of stair climbing on cardiorespiratory fitness, blood lipids, and homocysteine in sedentary young women. Br. J. Sports Med. 2005, 39, 590–593. [Google Scholar] [CrossRef]
- Fardy, P.S.; Ilmarinen, J. Evaluating the effects and feasibility of an at work stair climbing intervention program for men. Med. Sci. Sports Exerc. 1975, 7, 91–93. [Google Scholar] [CrossRef]
- Kennedy, R.A.; Boreham, C.A.G.; Murphy, M.H.; Young, I.S.; Mutrie, N. Evaluating the effects of a low volume stair climbing programme on measures of health-related fitness in sedentary office workers. J. Sport Sci. Med. 2007, 6, 448–454. [Google Scholar]
- Meyer, P.; Kayser, B.; Kossovsky, M.P.; Sigaud, P.; Carballo, D.; Keller, P.; Eric Martin, X.; Farpour-Lambert, N.; Pichard, C.; Mach, F. Stairs instead of elevators at workplace: Cardioprotective effects of a pragmatic intervention. Eur. J. Cardiovasc. Prev. Rehab. 2010, 17, 569–575. [Google Scholar] [CrossRef]
- Jenkins, E.M.; Nairn, L.N.; Skelly, L.E.; Little, J.P.; Gibala, M.J. Do stair climbing exercise “snacks” improve cardiorespiratory fitness? Appl. Physiol. Nutr. Metab. 2019, 44, 681–684. [Google Scholar] [CrossRef] [PubMed]
- Blair, S.N.; Kohl, H.W., III; Paffenbarger, R.S., Jr.; Clark, D.G.; Cooper, K.H.; Gibbons, L.W. Physical fitness and all-cause mortality: A prospective study of healthy men and women. JAMA 1989, 262, 2395–2401. [Google Scholar] [CrossRef]
- Blair, S.N.; Kohl, H.W., III; Barlow, C.E.; Paffenbarger, R.S., Jr.; Gibbons, L.W.; Macera, C.A. Changes in physical fitness and all-cause mortality: A prospective study of healthy and unhealthy men. JAMA 1995, 273, 1093–1098. [Google Scholar] [CrossRef] [PubMed]
- Blair, S.N.; Kampert, J.B.; Kohl, H.W.; Barlow, C.E.; Macera, C.A.; Paffenbarger, R.S.; Gibbons, L.W. Influences of cardiorespiratory fitness and other precursors on cardiovascular disease and all-cause mortality in men and women. JAMA 1996, 276, 205–210. [Google Scholar] [CrossRef]
- Kaminsky, L.A.; Arena, R.; Beckie, T.M.; Brubaker, P.H.; Church, T.S.; Forman, D.E.; Franklin, B.A.; Gulati, M.; Lavie, C.J.; Myers, J. The importance of cardiorespiratory fitness in the United States: The need for a national registry: A policy statement from the American Heart Association. Circulation 2013, 127, 652–662. [Google Scholar] [CrossRef] [Green Version]
- Kodama, S.; Saito, K.; Tanaka, S.; Maki, M.; Yachi, Y.; Asumi, M.; Sugawara, A.; Totsuka, K.; Shimano, H.; Ohashi, Y.; et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: A meta-analysis. JAMA 2009, 301, 2024–2035. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.-C.; Sui, X.; Ortega, F.B.; Kim, Y.S.; Church, T.S.; Winett, R.A.; Ekelund, U.; Katzmarzyk, P.T.; Blair, S.N. Comparisons of leisure-time physical activity and cardiorespiratory fitness as predictors of all-cause mortality in men and women. Br. J. Sports Med. 2011, 45, 504–510. [Google Scholar] [CrossRef]
- Honda, H.; Igaki, M.; Hatanaka, Y.; Komatsu, M.; Tanaka, S.-I.; Miki, T.; Matsuki, Y.; Takaishi, T.; Hayashi, T. Repeated 3-minute stair climbing-descending exercise after a meal over 2 weeks increases serum 1,5-anhydroglucitol levels in people with type 2 diabetes. J. Phys. Ther. Sci. 2017, 29, 75–78. [Google Scholar] [CrossRef]
- World Health Organisation. Global Recommendations on Physical Activity for Health; World Health Organization Press: Geneva, Switzerland, 2010. [Google Scholar]
- Jakicic, J.M.; Kraus, W.E.; Powell, K.E.; Campbell, W.W.; Janz, K.F.; Troiano, R.P.; Sprow, K.; Torres, A. Association for the 2018 Physical Activity Guidelines Advisory Committee. Association between bout duration of physical activity and health: Systematic review. Med. Sci. Sports Exerc. 2019, 51, 1213–1219. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.; Reading, J.; Shephard, R.J. Revision of the Physical Activity Readiness Questionnaire (PAR-Q). Canad. J. Sport Sci. 1992, 17, 338–345. [Google Scholar]
- Jackson, A.S.; Pollock, M.L.; Ward, A. Generalized Equations for Predicting Body Density of Women. Med. Sci. Sports Exerc. 1980, 12, 175–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leger, L.; Lambert, J. A maximal multistage 20 m shuttle run test to predict VO2max. Eur. J. Appl. Physiol. Occup. Physiol. 1982, 49, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, I.J.; Duggan, A. Validation of a Progressive 20 m Shuttle Run Test as an Alternative to the Basic Fitness Test. APRE Rep. 1990, 90, R043. [Google Scholar]
- Borg, G. Borg’s Perceived Exertion and Pain Scales; Human Kinetics: Champaign, IL, USA, 1998. [Google Scholar]
- Komi, P.V.; Bosco, C. Utilization of stored elastic energy in leg extensor muscles by men and women. Med. Sci. Sports Exerc. 1978, 10, 261–265. [Google Scholar]
- Crouse, S.F.; O’Brien, B.C.; Grandjean, P.W.; Lowe, R.C.; Rohack, J.J.; Green, J.S. Effects of training and a single session of exercise on lipids and apolipoproteins in hypercholesterolemic men. J. Appl. Physiol. 1997, 83, 2019–2028. [Google Scholar] [CrossRef]
- Blanca, M.J.; Alarcón, R.; Arnau, J.; Bono, R.; Bendayan, R. Non-normal data: Is ANOVA still a valid option? Psicothema 2017, 29, 552–557. [Google Scholar]
- Chow, B.C.; Li, S.; Zhu, X.; Jiao, J.; Quach, B.; Baker, J.S.; Zhang, H. Effects of descending or ascending stair exercise on body composition, insulin sensitivity, and inflammatory markers in young Chinese women with obesity: A randomized controlled trial. J. Sports Sci. 2020. [Google Scholar] [CrossRef]
- Takaishi, T.; Imaeda, K.; Tanaka, T.; Moritani, T.; Hayashi, T. A short bout of stair climbing–descending exercise attenuates postprandial hyperglycemia in middle-aged males with impaired glucose tolerance. Appl. Physiol. Nutr. Metab. 2012, 37, 193–196. [Google Scholar] [CrossRef]
- Honda, H.; Igaki, M.; Hatanaka, Y.; Komatsu, M.; Tanaka, S.; Miki, T.; Suzuki, T.; Takaishi, T.; Hayashi, T. Stair climbing/descending exercise for a short time decreases blood glucose levels after a meal in people with type 2 diabetes. BMJ Open Diabetes Res. Care 2016, 4, e000232. [Google Scholar] [CrossRef] [Green Version]
- Takaishi, T.; Hayashi, T. Stair climbing/descending exercise-immediate effect against postprandial hyperglycemia in older people with type 2 diabetes mellitus. Ann. Sports Med. Res. 2015, 2, 1023. [Google Scholar]
- Takaishi, T.; Hayashi, T. Stair ascending–descending exercise accelerates the decrease in postprandial hyperglycemia more efficiently than bicycle exercise. BMJ Open Diab Res. Care 2017, 5, e000428. [Google Scholar] [CrossRef] [PubMed]
- Godkin, F.E.; Jenkins, E.M.; Little, J.P.; Nazarali, Z.; Percival, M.E.; Gibala, M.J. The effect of brief intermittent stair climbing on glycemic control in people with type 2 diabetes: A pilot study. Appl. Physiol. Nutr. Metab. 2018, 43, 969–972. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.C.; Hsieh, C.-C.; Tseng, K.-W.; Ho, C.-C.; Nosaka, K. Effects of descending stair walking on health and fitness of elderly obese women. Med. Sci. Sports Exerc. 2017, 49, 1614–1622. [Google Scholar] [CrossRef]
- Gibala, M.J.; McGee, S.L. Metabolic adaptations to short-term high-intensity interval training: A little pain for a lot of gain? Exerc. Sport Sci. Rev. 2008, 36, 58–63. [Google Scholar] [CrossRef]
- Gillen, J.B.; Gibala, M.J. Is high-intensity interval training a time-efficient exercise strategy to improve health and fitness? Appl. Physiol. Nutr. Metab. 2014, 39, 409–412. [Google Scholar] [CrossRef]
- Sloth, M.; Sloth, D.; Overgaard, K.; Dalgas, U. Effects of sprint interval training on VO2max and aerobic exercise performance: A systematic review and meta-analysis. Scand. J. Med. Sci. Sports 2013, 23, 341–352. [Google Scholar] [CrossRef]
- Gillen, J.B.; Martin, B.J.; MacInnis, M.J.; Skelly, L.E.; Tarnopolsky, M.A.; Gibala, M.J. Twelve weeks of sprint interval training improves indices of cardiometabolic health similar to traditional endurance training despite a five-fold lower exercise volume and time commitment. PLoS ONE 2016, 11, e0154075. [Google Scholar] [CrossRef]
- Biddle, S.J.H.; Batterham, A.M. High-intensity interval exercise training for public health: A big HIT or shall we HIT it on the head? Int. J. Behav. Nutr. Phys. Act. 2015, 12, 95. [Google Scholar] [CrossRef] [Green Version]
- Stork, M.J.; Banfield, L.E.; Gibala, M.J.; Martin Ginis, K.A. A scoping review of the psychological responses to interval exercise: Is interval exercise a viable alternative to traditional exercise? Health Psych. Rev. 2017, 11, 324–344. [Google Scholar] [CrossRef]
- Bassett, D.R.; Vachon, J.A.; Kirkland, A.O.; Howley, E.T.; Duncan, G.E.; Johnston, K.R. Energy cost of stair climbing and descending on the college alumnus questionnaire. Med. Sci. Sports Exerc. 1997, 29, 1250–1254. [Google Scholar] [CrossRef]
- Eurofit. Eurofit Tests of Physical Fitness, 2nd ed.; Council of Europe: Strasbourg, France, 1993. [Google Scholar]
- Michie, S.; Abraham, C.; Whittington, C.; McAteer, J.; Gupta, S. Effective techniques in healthy eating and physical activity interventions: A meta-regression. Health Psychol. 2009, 28, 690–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blair, S.N.; Cheng, Y.; Holder, J.S. Is physical activity or physical fitness more important in defining health benefits? Med. Sci. Sports Exerc. 2001, 33, S379–S399. [Google Scholar] [CrossRef] [PubMed]
- Bandura, A. Self Efficacy: The Exercise of Control; W.H. Freeman Press: Basingstoke, UK, 1997. [Google Scholar]
- McAuley, E.; Courneya, K.; Lettunich, J. Effects of acute and long-term exercise on self-efficacy responses in sedentary middle-aged males and females. Gerontologist 1991, 31, 534–542. [Google Scholar] [CrossRef] [PubMed]
- McAuley, E. Self-efficacy and the maintenance of exercise participation in older adults. J. Behav. Med. 1993, 16, 103–113. [Google Scholar] [CrossRef]
- Sniehotta, F.F.; Scholz, U.; Schwarzer, R. Bridging the intention-behaviour gap: Planning, self-efficacy and action control in the adoption and maintenance of physical exercise. Psychol. Health 2005, 20, 143–160. [Google Scholar] [CrossRef]
- Trost, S.G.; Owen, N.; Bauman, A.E.; Sallis, J.F.; Brown, W. Correlates of adults’ participation in physical activity: Review and update. Med. Sci. Sports Exerc. 2002, 34, 1996–2001. [Google Scholar] [CrossRef]
Variable | Control (SE) (n = 10) | Gym (SE) (n = 24) | Home (SE) (n = 26) |
---|---|---|---|
Age (years) | 32.00 (2.75) | 31.58 (1.41) | 31.76 (1.33) |
Smoking n (%) | 5 (50) | 8 (33) | 12 (46) |
BMI | 20.59 (0.59) | 26.33 (1.18) | 27.80 (1.11) |
O2max (ml.min−1.kg−1) | 25.50 (1.32) | 25.67 (0.85) | 24.98 (0.86) |
Weekly MVPA a (min) | 52.00 (28.12) | 9.38 (2.63) | 10.96 (2.04) |
Control (n = 10) | Gym-Based (n = 24) | Home-Based (n = 26) | Cnt:Exp a x Pre:Post F1,58 Effect Size | Stair Group Pre:Post F1,48 Effect Size | Climbing Location F1,48 Effect Size | Location x Pre:Post F1,48 Effect Size | ||||
---|---|---|---|---|---|---|---|---|---|---|
Variable | Pre (SE) | Post (SE) | Pre (SE) | Post (SE) | Pre (SE) | Post (SE) | ||||
O2max d (ml.min−1.kg−1) | 25.50 (1.32) | 26.03 (1.52) | 25.68 (0.85) | 27.28 (0.99) | 24.99 (0.86) | 26.64 (0.98) | 6.01 *bc ɳp2 = 0.10 | 64.50 *** ɳp2 = 0.58 | 0.34 ɳp2 = 0.01 | 05 ɳp2 = 0.00 |
Lactate (mmol.L−1) | 10.52 (0.71) | 9.76 (0.90) | 11.20 (0.70) | 8.90 (0.69) | 12.58 (1.04) | 9.70 (0.84) | 2.17 ɳp2 = 0.04 | 25.45 *** ɳp2 = 0.35 | 0.33 ɳp2 = 0.01 | 0.03 ɳp2 = 0.00 |
Rating of perceived exertion d | 16.80 (0.80) | 17.00 (0.82) | 15.63 (0.82) | 15.92 (0.74) | 17.58 (0.54) | 17.81 (0.32) | 0.01 ɳp2 = 0.00 | 0.55 ɳp2 = 0.01 | 5.64 * ɳp2 = 0.11 | 0.01 ɳp2 = 0.00 |
Counter movement jump height (cm) | 20.73 (1.52) | 20.40 (1.60) | 21.32 (1.42) | 22.70 (1.71) | 18.21 (1.12) | 19.05 (1.13) | 2.01 ɳp2 = 0.03 | 8.37 ** ɳp2 = 0.15 | 3.45 ɳp2 = 0.07 | 0.01 ɳp2 = 0.00 |
9 | Control (n = 10) | Gym-Based (n = 24) | Home-Based (n = 26) | Cnt:Exp a x Pre:Post F1,58 Effect Size | Stair Group Pre:Post F1,48 Effect Size | Climbing Location F1,48 Effect Size | Location X Pre:Post F1,48 Effect Size | |||
---|---|---|---|---|---|---|---|---|---|---|
Variable | Pre (SE) | Post (SE) | Pre (SE) | Post (SE) | Pre (SE) | Post (SE) | ||||
HDL cholesterol (mmol.L−1) | 1.58 (0.06) | 1.64 (0.06) | 1.41 (0.76) | 1.51 (0.07) | 1.39 (0.08) | 1.54 (0.08) | 3.56 †bc ɳp2 = 0.06 | 65.05 *** ɳp2 = 0.58 | 0.00 ɳp2 = 0.00 | 3.39 ɳp2 = 0.06 |
LDL cholesterol (mmol.L−1) | 2.74 (0.26) | 2.88 (0.22) | 3.31 (0.20) | 3.10 (0.21) | 3.48 (0.24) | 3.28 (0.22) | 7.21 ** ɳp2 = 0.11 | 13.80 *** ɳp2 = 0.22 | 0.33 ɳp2 = 0.01 | 0.01 ɳp2 = 0.00 |
Non-HDL cholesterol (mmol.L−1) | 2.93 (0.24) | 2.95 (0.24) | 3.32 (0.20) | 3.09 (0.21) | 3.63 (0.26) | 3.38 (0.24) | 3.70 † ɳp2 = 0.06 | 16.88 *** ɳp2 = 0.26 | 0.89 ɳp2 = 0.02 | 0.03 ɳp2 = 0.00 |
Triglycerides d (mmol.L−1) | 0.93 (0.09) | 0.97 (0.15) | 1.30 (0.14) | 1.14 (0.11) | 1.43 (0.10) | 1.16 (0.08) | 10.87 ** ɳp2 = 0.16 | 50.54 *** ɳp2 = 0.51 | 0.22 ɳp2 = 0.00 | 3.50 ɳp2 = 0.07 |
9 | Control (n = 10) | Gym-Based (n = 24) | Home-Based (n = 26) | Cnt:Exp a x Pre:Post F1,58 Effect Size | Stair Group Pre:Post F1,48 Effect Size | Climbing Location F1,48 Effect Size | Location x Pre:Post F1,48 Effect Size | |||
---|---|---|---|---|---|---|---|---|---|---|
Variable | Pre (SE) | Post (SE) | Pre (SE) | Post (SE) | Pre (SE) | Post (SE) | ||||
Weight (kg) d | 52.87 (1.45) | 52.91 (1.49) | 69.39 (3.03) | 68.26 (3.03) | 74.35 (3.12) | 73.49 (3.14) | 5.41 *bc ɳp2 = 0.09 | 26.10 *** ɳp2 = 0.35 | 1.37 ɳp2 = 0.03 | 0.51 ɳp2 = 0.01 |
Body fat (%) d | 22.52 (1.15) | 21.79 (1.14) | 27.21 (1.18) | 25.20 (1.28) | 29.79 (1.31) | 27.46 (1.32) | 2.58 ɳp2 = 0.04 | 30.77 *** ɳp2 = 0.39 | 1.97 ɳp2 = 0.04 | 0.18 ɳp2 = 0.00 |
Fasting Glucose (mmol.L−1) | 5.00 (0.12) | 5.03 (0.07) | 5.00 (0.09) | 5.09 (0.08) | 5.06 (0.06) | 4.86 (0.09) | 0.52 ɳp2 = 0.01 | 1.18 ɳp2 = 0.02 | 0.81 ɳp2 = 0.02 | 8.31 ** ɳp2 = 0.15 |
Control (n = 10) | Gym-Based (n = 24) | Home-Based (n = 26) | Cnt:Exp a x Pre:Post F1,58 Effect Size | Stair Group Pre:Post F1,48 Effect Size | Climbing Location F1,48 Effect Size | Location x Pre:Post F1,48 Effect Size | ||||
---|---|---|---|---|---|---|---|---|---|---|
Variable | Pre (SE) | Post (SE) | Pre (SE) | Post (SE) | Pre (SE) | Post (SE) | ||||
Systolic blood pressure (mmHg) | 115.60 (2.16) | 114.00 (2.42) | 121.71 (2.29) | 118.88 (2.64) | 120.27 (2.06) | 118.70 (2.04) | 0.05 ɳp2 = 0.00 | 4.18 *bc ɳp2 = 0.08 | 0.07 ɳp2 = 0.00 | 0.33 ɳp2 = 0.01 |
Diastolic blood pressure (mmHg) | 79.00 (1.85) | 72.60 (2.48) | 77.04 (1.21) | 76.42 (1.53) | 75.50 (1.49) | 74.50 (1.89) | 8.15 ** ɳp2 = 0.12 | 1.25 ɳp2 = 0.03 | 0.70 ɳp2 = 0.01 | 0.06 ɳp2 = 0.00 |
Resting heart rate (bpm) | 82.90 (3.58) | 81.60 (2.33) | 86.00 (1.57) | 82.54 (1.24) | 84.19 (2.74) | 83.96 (2.20) | 0.02 ɳp2 = 0.00 | 1.60 ɳp2 = 0.03 | 0.01 ɳp2 = 0.00 | 1.22 ɳp2 = 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michael, E.; White, M.J.; Eves, F.F. Home-Based Stair Climbing as an Intervention for Disease Risk in Adult Females; A Controlled Study. Int. J. Environ. Res. Public Health 2021, 18, 603. https://doi.org/10.3390/ijerph18020603
Michael E, White MJ, Eves FF. Home-Based Stair Climbing as an Intervention for Disease Risk in Adult Females; A Controlled Study. International Journal of Environmental Research and Public Health. 2021; 18(2):603. https://doi.org/10.3390/ijerph18020603
Chicago/Turabian StyleMichael, Elpida, Michael J. White, and Frank F. Eves. 2021. "Home-Based Stair Climbing as an Intervention for Disease Risk in Adult Females; A Controlled Study" International Journal of Environmental Research and Public Health 18, no. 2: 603. https://doi.org/10.3390/ijerph18020603
APA StyleMichael, E., White, M. J., & Eves, F. F. (2021). Home-Based Stair Climbing as an Intervention for Disease Risk in Adult Females; A Controlled Study. International Journal of Environmental Research and Public Health, 18(2), 603. https://doi.org/10.3390/ijerph18020603