Sleep Characteristics and Mood of Professional Esports Athletes: A Multi-National Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
Inclusion/Exclusion Criteria
2.2. Measures
2.2.1. Demographic/General Information
2.2.2. Sleep Measures
Objective Sleep
Insomnia Severity Index (ISI)
Pediatric Daytime Sleepiness Scale (PDSS)
2.2.3. Mood Measures
Centre for Epidemiological Studies-Depression (CES-D)
State-Trait Anxiety Inventory (STAI-Y)
2.3. Procedure
2.4. Data Analysis
3. Results
3.1. Demographic and Anthropometric Information
3.2. Characteristics of Esports Athletes
3.3. Sleep Characteristics
3.4. Self-Report Measures
3.5. Associations between Measures
4. Discussion
4.1. Contributing Factors to Esports Players’ Sleep
4.2. Mood and Sleep in Esports Athletes
4.3. Cross-Cultural Issues Associated with Sleep in Esports Athletes
4.4. Chronotype and Performance
4.5. Clinical Implications
4.6. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bonnar, D.; Castine, B.; Kakoschke, N.; Sharp, G. Sleep and performance in Eathletes: For the win! Sleep Health 2019, 5, 647–650. [Google Scholar] [CrossRef] [PubMed]
- Newzoo. Available online: https://newzoo.com/insights/trend-reports/newzoo-global-esports-market-report-2020-light-version/ (accessed on 31 January 2020).
- Epicgames. Available online: https://www.epicgames.com/fortnite/competitive/en-US/news/the-fortnite-world-cup-a-record-setting-tournament (accessed on 1 December 2019).
- Polman, R.; Trotter, M.; Poulus, D.; Borkoles, E. eSport: Friend or foe? In Proceedings of the Joint International Conference on Serious Games, Stoke-on-Trent, UK, 19–20 November 2020; pp. 3–8. [Google Scholar]
- Bonnar, D.; Bartel, K.; Kakoschke, N.; Lang, C. Sleep Interventions Designed to Improve Athletic Performance and Recovery: A Systematic Review of Current Approaches. Sports Med. 2018, 48, 683–703. [Google Scholar] [CrossRef]
- Czeisler, C.A.; Klerman, E.B. Circadian and sleep-dependent regulation of hormone release in humans. Recent Prog. Horm. Res. 1999, 54, 97–130. [Google Scholar] [PubMed]
- Himmelstein, D.; Liu, Y.; Shapiro, J.L. An exploration of mental skills among competitive league of legend players. Int. J. Gaming Comput.-Mediat. Simul. 2017, 9, 1–21. [Google Scholar] [CrossRef]
- Fullagar, H.H.; Skorski, S.; Duffield, R.; Hammes, D.; Coutts, A.J.; Meyer, T. Sleep and athletic performance: The effects of sleep loss on exercise performance, and physiological and cognitive responses to exercise. Sports Med. 2015, 45, 161–186. [Google Scholar] [CrossRef] [PubMed]
- Van Dongen, H.P.; Maislin, G.; Mullington, J.M.; Dinges, D.F. The cumulative cost of additional wakefulness: Dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation. Sleep 2003, 26, 117–126. [Google Scholar] [CrossRef]
- Lowe, C.J.; Safati, A.; Hall, P.A. The neurocognitive consequences of sleep restriction: A meta-analytic review. Neurosci. Biobehav. Rev. 2017, 80, 586–604. [Google Scholar] [CrossRef]
- Ferrara, M.; De Gennaro, L. How much sleep do we need? Sleep Med. Rev. 2001, 5, 155–179. [Google Scholar] [CrossRef]
- Zohar, D.; Tzischinsky, O.; Epstein, R.; Lavie, P. The effects of sleep loss on medical residents’ emotional reactions to work events: A cognitive-energy model. Sleep 2005, 28, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Dinges, D.F.; Pack, F.; Williams, K.; Gillen, K.A.; Powell, J.W.; Ott, G.E.; Aptowicz, C.; Pack, A.I. Cumulative sleepiness, mood disturbance, and psychomotor vigilance performance decrements during a week of sleep restricted to 4–5 h per night. Sleep 1997, 20, 267–277. [Google Scholar]
- Babson, K.A.; Trainor, C.D.; Feldner, M.T.; Blumenthal, H. A test of the effects of acute sleep deprivation on general and specific self-reported anxiety and depressive symptoms: An experimental extension. J. Behav. Ther. Exp. Psychiatry 2010, 41, 297–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonnar, D.; Lee, S.; Gradisar, M.; Suh, S. Risk Factors and Sleep Intervention Considerations in Esports: A Review and Practical Guide. Sleep Med. Res. 2019, 10, 59–66. [Google Scholar] [CrossRef]
- Beedie, C.J.; Terry, P.C.; Lane, A.M. The profile of mood states and athletic performance: Two meta-analyses. J. Appl. Sport Psychol. 2000, 12, 49–68. [Google Scholar] [CrossRef]
- Smithies, T.D.; Toth, A.J.; Conroy, E.; Ramsbottom, N.; Kowal, M.; Campbell, M.J. Life After Esports: A Grand Field Challenge. Front. Psychol. 2020, 11, 883. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.J.; Rothschild, J.; Earnest, C.P.; Blaisdell, A. The Effects of Energy Drink Consumption on Cognitive and Physical Performance in Elite League of Legends Players. Sports 2019, 7, 196. [Google Scholar] [CrossRef] [Green Version]
- Rudolf, K.; Bickmann, P.; Frobose, I.; Tholl, C.; Wechsler, K.; Grieben, C. Demographics and Health Behavior of Video Game and eSports Players in Germany: The eSports Study 2019. Int. J. Environ. Res. Public Health 2020, 17, 1870. [Google Scholar] [CrossRef] [Green Version]
- Mallinson, D.C.; Kamenetsky, M.E.; Hagen, E.W.; Peppard, P.E. Subjective sleep measurement: Comparing sleep diary to questionnaire. Nat. Sci. Sleep 2019, 11, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Kuula, L.; Gradisar, M.; Martinmäki, K.; Richardson, C.; Bonnar, D.; Bartel, K.; Lang, C.; Leinonen, L.; Pesonen, A. Using big data to explore worldwide trends in objective sleep in the transition to adulthood. Sleep Med. 2019, 62, 69–76. [Google Scholar] [CrossRef]
- Chinoy, E.D.; Cuellar, J.A.; Huwa, K.E.; Jameson, J.T.; Watson, C.H.; Bessman, S.C.; Hirsch, D.A.; Cooper, A.D.; Drummond, S.; Markwald, R.R. Performance of Seven Consumer Sleep-Tracking Devices Compared with Polysomnography. Sleep 2021, in press. [Google Scholar]
- Readiband FDA Approval. Available online: https://www.accessdata.fda.gov/cdrh_docs/pdf11/k111514.pdf (accessed on 31 January 2020).
- Hursh, S.R.; Redmond, D.P.; Johnson, M.L.; Thorne, D.R.; Belenky, G.; Balkin, T.J.; Storm, W.F.; Miller, J.C.; Eddy, D.R. Fatigue models for applied research in warfighting. Aviat. Space Environ. Med. 2004, 75, A44–A53. [Google Scholar]
- SAFETY, I. Available online: https://www.icao.int/safety/airnavigation/OPS/CabinSafety/Cabin%20Safety%20Library/ (accessed on 10 December 2019).
- Dunican, I.C.; Higgin, C.C.; Murray, K.; Jones, M.J.; Dawson, B.; Caldwell, J.A.; Halson, S.L.; Eastwood, P.R. Sleep Patterns and Alertness in an Elite Super Rugby Team During a Game Week. J. Hum. Kinet. 2019, 67, 111–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunican, I.C.; Martin, D.T.; Halson, S.L.; Reale, R.J.; Dawson, B.T.; Caldwell, J.A.; Jones, M.J.; Eastwood, P.R. The Effects of the Removal of Electronic Devices for 48 Hours on Sleep in Elite Judo Athletes. J. Strength Cond. Res. 2017, 31, 2832–2839. [Google Scholar] [CrossRef] [PubMed]
- Ancoli-Israel, S.; Cole, R.; Alessi, C.; Chambers, M.; Moorcroft, W.; Pollak, C.P. The role of actigraphy in the study of sleep and circadian rhythms. Sleep 2003, 26, 342–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morin, C.M.; Belleville, G.; Belanger, L.; Ivers, H. The Insomnia Severity Index: Psychometric indicators to detect insomnia cases and evaluate treatment response. Sleep 2011, 34, 601–608. [Google Scholar] [CrossRef] [Green Version]
- Drake, C.; Nickel, C.; Burduvali, E.; Roth, T.; Jefferson, C.; Pietro, B. The pediatric daytime sleepiness scale (PDSS): Sleep habits and school outcomes in middle-school children. Sleep 2003, 26, 455–458. [Google Scholar]
- Richardson, C.; Cain, N.; Bartel, K.; Micic, G.; Maddock, B.; Gradisar, M. A randomised controlled trial of bright light therapy and morning activity for adolescents and young adults with Delayed Sleep-Wake Phase Disorder. Sleep Med. 2018, 45, 114–123. [Google Scholar] [CrossRef] [Green Version]
- Meyer, C.; Barbosa, D.G.; Junior, G.J.F.; Andrade, R.D.; Silva, D.A.S.; Pelegrini, A.; Gomes Felden, E.P. Proposal of cutoff points for pediatric daytime sleepiness scale to identify excessive daytime sleepiness. Chronobiol. Int. 2018, 35, 303–311. [Google Scholar] [CrossRef]
- Radloff, L.S. The CES-D scale: A self-report depression scale for research in the general population. Appl. Psychol. Meas. 1977, 1, 385–401. [Google Scholar] [CrossRef]
- Cosco, T.D.; Prina, M.; Stubbs, B.; Wu, Y.T. Reliability and Validity of the Center for Epidemiologic Studies Depression Scale in a Population-Based Cohort of Middle-Aged U.S. Adults. J. Nurs. Meas. 2017, 25, 476–485. [Google Scholar] [CrossRef]
- Spielberger, C.D.; Gorsuch, R.L.; Lushene, R.; Vagg, P.R.; Jacobs, G.A. Manual for the State-Trait Anxiety Inventory; Consulting Psychologists Press: Palo Alto, CA, USA, 1983. [Google Scholar]
- Spielberger, C. State-Trait Anxiety Inventory: Bibliography, 2nd ed.; Consulting Psychologists Press: Palo Alto, CA, USA, 1989. [Google Scholar]
- Lichstein, K.L.; Durrence, H.H.; Taylor, D.J.; Bush, A.J.; Riedel, B.W. Quantitative criteria for insomnia. Behav. Res. Ther. 2003, 41, 427–445. [Google Scholar] [CrossRef]
- Chang, A.M.; Aeschbach, D.; Duffy, J.F.; Czeisler, C.A. Evening use of light-emitting eReaders negatively affects sleep, circadian timing, and next-morning alertness. Proc. Natl. Acad. Sci. USA 2015, 112, 1232–1237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poulus, D.; Coulter, T.J.; Trotter, M.G.; Polman, R. Stress and coping in esports and the influence of mental toughness. Front. Psychol. 2020, 11, 628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sousa, A.; Ahmad, S.L.; Hassan, T.; Yuen, K.; Douris, P.; Zwibel, H.; DiFrancisco-Donoghue, J. Physiological and cognitive functions following a discrete session of competitive esports gaming. Front. Psychol. 2020, 11, 1030. [Google Scholar] [CrossRef] [PubMed]
- Drake, C.L.; Pillai, V.; Roth, T. Stress and sleep reactivity: A prospective investigation of the stress-diathesis model of insomnia. Sleep 2014, 37, 1295–1304. [Google Scholar] [CrossRef] [Green Version]
- Sargent, C.; Lastella, M.; Halson, S.L.; Roach, G.D. The impact of training schedules on the sleep and fatigue of elite athletes. Chronobiol. Int. 2014, 31, 1160–1168. [Google Scholar] [CrossRef]
- Leeder, J.; Glaister, M.; Pizzoferro, K.; Dawson, J.; Pedlar, C. Sleep duration and quality in elite athletes measured using wristwatch actigraphy. J. Sports Sci. 2012, 30, 541–545. [Google Scholar] [CrossRef]
- Shearer, D.A.; Jones, R.M.; Kilduff, L.P.; Cook, C.J. Effects of competition on the sleep patterns of elite rugby union players. Eur. J. Sport Sci. 2015, 15, 681–686. [Google Scholar] [CrossRef]
- Juliff, L.E.; Halson, S.L.; Peiffer, J.J. Understanding sleep disturbance in athletes prior to important competitions. J. Sci. Med. Sport 2015, 18, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Lastella, M.; Lovell, G.P.; Sargent, C. Athletes’ precompetitive sleep behaviour and its relationship with subsequent precompetitive mood and performance. Eur. J. Sport Sci. 2014, 14, S123–S130. [Google Scholar] [CrossRef]
- Mah, C.D.; Mah, K.E.; Kezirian, E.J.; Dement, W.C. The effects of sleep extension on the athletic performance of collegiate basketball players. Sleep 2011, 34, 943–950. [Google Scholar] [CrossRef]
- Hertenstein, E.; Gabryelska, A.; Spiegelhalder, K.; Nissen, C.; Johann, A.F.; Umarova, R.; Riemann, D.; Baglioni, C.; Feige, B. Reference data for polysomnography-measured and subjective sleep in healthy adults. J. Clin. Sleep Med. 2018, 14, 523–532. [Google Scholar] [CrossRef]
- Lovato, N.; Gradisar, M. A meta-analysis and model of the relationship between sleep and depression in adolescents: Recommendations for future research and clinical practice. Sleep Med. Rev. 2014, 18, 521–529. [Google Scholar] [CrossRef]
- Ogawa, R.; Seo, E.; Maeno, T.; Ito, M.; Sanuki, M.; Maeno, T. The relationship between long working hours and depression among first-year residents in Japan. BMC Med. Educ. 2018, 18, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Killer, S.C.; Svendsen, I.S.; Jeukendrup, A.E.; Gleeson, M. Evidence of disturbed sleep and mood state in well-trained athletes during short-term intensified training with and without a high carbohydrate nutritional intervention. J. Sports Sci. 2017, 35, 1402–1410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Francisco, C.; Arce, C.; Vilchez, M.D.P.; Vales, A. Antecedents and consequences of burnout in athletes: Perceived stress and depression. Int. J. Clin. Health. Psychol. 2016, 16, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Meeusen, R.; Duclos, M.; Foster, C.; Fry, A.; Gleeson, M.; Nieman, D.; Raglin, J.; Rietjens, G.; Steinacker, J.; Urhausen, A.; et al. Prevention, diagnosis, and treatment of the overtraining syndrome: Joint consensus statement of the European College of Sport Science and the American College of Sports Medicine. Med. Sci. Sports Exerc. 2013, 45, 186–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kellmann, M. Preventing overtraining in athletes in high-intensity sports and stress/recovery monitoring. Scand. J. Med. Sci. Sports 2010, 20, 95–102. [Google Scholar] [CrossRef]
- Halson, S.; Martin, D.T.; Gardner, A.S.; Fallon, K.; Gulbin, J. Persistent fatigue in a female sprint cyclist after a talent-transfer initiative. Int. J. Sports Physiol. Perform. 2006, 1, 65–69. [Google Scholar] [CrossRef]
- Fry, R.W.; Grove, J.R.; Morton, A.R.; Zeroni, P.M.; Gaudieri, S.; Keast, D. Psychological and immunological correlates of acute overtraining. Br. J. Sports Med. 1994, 28, 241–246. [Google Scholar] [CrossRef] [Green Version]
- Gradisar, M.; Gardner, G.; Dohnt, H. Recent worldwide sleep patterns and problems during adolescence: A review and meta-analysis of age, region, and sleep. Sleep Med. 2011, 12, 110–118. [Google Scholar] [CrossRef]
- Olds, T.; Maher, C.; Blunden, S.; Matricciani, L. Normative data on the sleep habits of Australian children and adolescents. Sleep 2010, 33, 1381–1388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suh, S.; Kim, S.H.; Ryu, H.; Choi, S.J.; Joo, E.Y. Validation of the Korean Munich Chronotype Questionnaire. Sleep Breath 2018, 22, 773–779. [Google Scholar] [CrossRef] [PubMed]
- Short, M.A.; Gradisar, M.; Lack, L.C.; Wright, H.R.; Dewald, J.F.; Wolfson, A.R.; Carskadon, M.A. A cross-cultural comparison of sleep duration between US And Australian adolescents: The effect of school start time, parent-set bedtimes, and extracurricular load. Health Educ. Behav. 2013, 40, 323–330. [Google Scholar] [CrossRef] [Green Version]
- Roenneberg, T.; Kuehnle, T.; Pramstaller, P.P.; Ricken, J.; Havel, M.; Guth, A.; Merrow, M. A marker for the end of adolescence. Curr. Biol. 2004, 14, R1038–R1039. [Google Scholar] [CrossRef] [Green Version]
- Vitale, J.A.; Weydahl, A. Chronotype, physical activity, and sport performance: A systematic review. Sports Med. 2017, 47, 1859–1868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burgoon, P.W.; Holland, G.J.; Loy, S.F.; Vincent, W.J. A comparison of morning and evening “types” during maximum exercise. J. Strength Cond. Res. 1992, 6, 115–119. [Google Scholar]
- Kunorozva, L.; Roden, L.C.; Rae, D.E. Perception of effort in morning-type cyclists is lower when exercising in the morning. J. Sports Sci. 2014, 32, 917–925. [Google Scholar] [CrossRef]
- Rae, D.E.; Stephenson, K.J.; Roden, L.C. Factors to consider when assessing diurnal variation in sports performance: The influence of chronotype and habitual training time-of-day. Eur. J. Appl. Physiol. 2015, 115, 1339–1349. [Google Scholar] [CrossRef] [PubMed]
- Wright, K.P., Jr.; Hull, J.T.; Czeisler, C.A. Relationship between alertness, performance, and body temperature in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002, 283, R1370–R1377. [Google Scholar] [CrossRef] [Green Version]
- Drust, B.; Waterhouse, J.; Atkinson, G.; Edwards, B.; Reilly, T. Circadian rhythms in sports performance—An update. Chronobiol. Int. 2005, 22, 21–44. [Google Scholar] [CrossRef]
- Bonnar, D.; Gradisar, M.; Moseley, L.; Coughlin, A.M.; Cain, N.; Short, M.A. Evaluation of novel school-based interventions for adolescent sleep problems: Does parental involvement and bright light improve outcomes? Sleep Health 2015, 1, 66–74. [Google Scholar] [CrossRef]
- Fullagar, H.; Skorski, S.; Duffield, R.; Meyer, T. The effect of an acute sleep hygiene strategy following a late-night soccer match on recovery of players. Chronobiol. Int. 2016, 33, 490–505. [Google Scholar] [CrossRef] [PubMed]
- Micic, G.; Richardson, C.; Cain, N.; Reynolds, C.; Bartel, K.; Maddock, B.; Gradisar, M. Readiness to change and commitment as predictors of therapy compliance in adolescents with Delayed Sleep-Wake Phase Disorder. Sleep Med. 2019, 55, 48–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasseville, A.; Benhaberou-Brun, D.; Fontaine, C.; Charon, M.C.; Hebert, M. Wearing blue-blockers in the morning could improve sleep of workers on a permanent night schedule: A pilot study. Chronobiol. Int. 2009, 26, 913–925. [Google Scholar] [CrossRef] [PubMed]
- Lack, L.; Bramwell, T.; Wright, H.; Kemp, K. Morning blue light can advance the melatonin rhythm in mild delayed sleep phase syndrome. Sleep Biol. Rhythm. 2007, 5, 78–80. [Google Scholar] [CrossRef]
- McKenna, H.; Wilkes, M. Optimising sleep for night shifts. BMJ 2018, 360, j5637. [Google Scholar] [CrossRef]
- Blake, M.J.; Snoep, L.; Raniti, M.; Schwartz, O.; Waloszek, J.M.; Simmons, J.G.; Murray, G.; Blake, L.; Landau, E.R.; Dahl, R.E.; et al. A cognitive-behavioral and mindfulness-based group sleep intervention improves behavior problems in at-risk adolescents by improving perceived sleep quality. Behav. Res. Ther. 2017, 99, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Bartel, K.; Huang, C.; Maddock, B.; Williamson, P.; Gradisar, M. Brief school-based interventions to assist adolescents’ sleep-onset latency: Comparing mindfulness and constructive worry versus controls. J. Sleep Res. 2018, 27, e12668. [Google Scholar] [CrossRef] [Green Version]
- Staunton, C.; Gordon, B.; Custovic, E.; Stanger, J.; Kingsley, M. Sleep patterns and match performance in elite Australian basketball athletes. J. Sci. Med. Sport 2017, 20, 786–789. [Google Scholar] [CrossRef]
- Short, M.A.; Gradisar, M.; Lack, L.C.; Wright, H.; Carskadon, M.A. The discrepancy between actigraphic and sleep diary measures of sleep in adolescents. Sleep Med. 2012, 13, 378–384. [Google Scholar] [CrossRef]
- de Zambotti, M.; Godino, J.G.; Baker, F.C.; Cheung, J.; Patrick, K.; Colrain, I.M. The Boom in Wearable Technology: Cause for Alarm or Just What is Needed to Better Understand Sleep? Sleep 2016, 39, 1761–1762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ong, J.L.; Tandi, J.; Patanaik, A.; Lo, J.C.; Chee, M.W.L. Large-scale data from wearables reveal regional disparities in sleep patterns that persist across age and sex. Sci. Rep. 2019, 9, 3415. [Google Scholar] [CrossRef] [PubMed]
Group | Total (n = 17) | South Korea (n = 8) | Australia (n = 4) | United States (n = 5) | p |
---|---|---|---|---|---|
Measure | |||||
Age a | 20.0 ± 3.5 | 19.0 ± 3.3 | 19.4 ± 2.9 | 22.1 ± 3.8 | 0.284 |
% of male b | 100.0% | 100.0% | 100.0% | 100.0% | |
BMI a | 24.7 ± 16.8 | 25.2 ± 16.8 | 24.6 ± 15.8 | 23.9 ± 23.3 | 0.742 |
Years as a professional esports athlete a | 2.44 ± 1.32 | 1.74 ± 1.06 | 2.50 ± 1.00 | 3.50 ± 1.41 | 0.052 |
Training Hours per day a | 9.21 ± 4.36 | 13.38 ± 2.00 | 4.75 ± 0.96 | 6.10 ± 1.34 | 0.002 ** |
Sleep disturbance before competition b | 9 (52.9%) | 4 (50.0%) | 3 (75.0%) | 2 (40.0%) | 0.564 |
Attempts to improve sleep (n) b | 4 (23.5%) | 2 (25.0%) | 1 (25.0%) | 1 (20.0%) | 0.976 |
Caffeine dose (mg) a,c | 114.7 ± 118.3 | 150 ± 162.6 | 100 ± 57.7 | 70 ± 44.7 | 0.648 |
Sleep medication use (n) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) |
Measure | Group | p-Value | |||
---|---|---|---|---|---|
Total | South Korea | Australia | United States | ||
TST (min) | 408.4 (386.4–444.1) | 410.4 (400.1–444.6) | 413.6 (382.3–422.9) | 404.3 (345.0–454.2) | 0.975 |
SOL (min) | 20.4 (13.5–31.9) | 16.3 (12.5–35.7) | 21.4 (13.4–27.6) | 26.6 (15.9–46.3) | 0.573 |
NWAK (n) | 4.4 (3.4–6.4) | 5.1 (3.3–6.8) | 3.6 (3.2–5.8) | 5.1 (2.9–7.8) | 0.663 |
WASO (min) | 47.9 (27.6–65.3) | 50.5 (26.9–67.2) | 31.8 (26.2–68.7) | 55.0 (30.0–90.0) | 0.770 |
TIB (min) | 505.5 (480.4–542.1) | 513.2 (476.9–552.2) | 493.9 (477.9–509.4) | 510.0 (480.0–553.8) | 0.594 |
SE (%) | 86.4 (86.3–87.5) | 87.5 (86.7–87.9) | 86.3 (86.1–86.8) | 86.2 (86.0–86.7) | 0.019 * |
SO (hh:mm) | 03:43 (02:28–05:06) | 04:50 (03:58–05:18) | 03:40 (03:23–05:06) | 02:00 (01:09–02:28) | 0.005 ** |
WT (hh:mm) | 11:24 (10:19–12:14) | 12:08 (11:56–12:29) | 10:51 (10:31–12:38) | 09:51 (08:29–10:19) | 0.004 ** |
Group | Group | p-Value | Post-Hoc | |||
---|---|---|---|---|---|---|
Total | 1. South Korea | 2. Australia | 3. United States | |||
CES-D | 22.0 (12.5–27.5) | 27.5 (24.5–34.8) | 10.5 (6.5–19.0) | 13.0 (11.0–23.5) | 0.006 ** | 1 > 2, 3 |
STAI | 39.0 (35.5–42.5) | 39.0 (34.5–40.0) | 37.5 (30.3–44.8) | 39.0 (36.5–52.0) | 0.443 | |
ISI | 10.0 (6.0–15.0) | 10.5 (7.3–15.5) | 10.5 (3.0–14.3) | 9.0 (3.5–16.5) | 0.866 | |
PDSS | 15.0 (10.5–17.5) | 16.5 (11.3–21.0) | 14.5 (9.3–17.5) | 13.0 (10.5–15.0) | 0.109 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1. ISI | |||||||||
2. CES-D | 0.58 * | ||||||||
3. STAI | 0.48 | 0.32 | |||||||
4. PDSS | 0.54 * | 0.67 ** | 0.15 | ||||||
5. SOL | −0.07 | 0.02 | 0.19 | −0.26 | |||||
6. WASO | 0.79 ** | 0.52 * | 0.46 | 0.42 | 0.12 | ||||
7. TST | −0.21 | 0.01 | −0.12 | 0.17 | −0.20 | −0.30 | |||
8. SO | −0.10 | 0.27 | −0.14 | 0.43 | −0.24 | −0.26 | −0.01 | ||
9. WT | 0.21 | 0.47 * | −0.04 | 0.68 ** | −0.39 | −0.01 | 0.23 | 0.85 ** | |
10. Training time | 0.16 | 0.66 ** | 0.09 | 0.29 | −0.23 | −0.02 | −0.15 | 0.50 * | 0.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Bonnar, D.; Roane, B.; Gradisar, M.; Dunican, I.C.; Lastella, M.; Maisey, G.; Suh, S. Sleep Characteristics and Mood of Professional Esports Athletes: A Multi-National Study. Int. J. Environ. Res. Public Health 2021, 18, 664. https://doi.org/10.3390/ijerph18020664
Lee S, Bonnar D, Roane B, Gradisar M, Dunican IC, Lastella M, Maisey G, Suh S. Sleep Characteristics and Mood of Professional Esports Athletes: A Multi-National Study. International Journal of Environmental Research and Public Health. 2021; 18(2):664. https://doi.org/10.3390/ijerph18020664
Chicago/Turabian StyleLee, Sangha, Daniel Bonnar, Brandy Roane, Michael Gradisar, Ian C. Dunican, Michele Lastella, Gemma Maisey, and Sooyeon Suh. 2021. "Sleep Characteristics and Mood of Professional Esports Athletes: A Multi-National Study" International Journal of Environmental Research and Public Health 18, no. 2: 664. https://doi.org/10.3390/ijerph18020664
APA StyleLee, S., Bonnar, D., Roane, B., Gradisar, M., Dunican, I. C., Lastella, M., Maisey, G., & Suh, S. (2021). Sleep Characteristics and Mood of Professional Esports Athletes: A Multi-National Study. International Journal of Environmental Research and Public Health, 18(2), 664. https://doi.org/10.3390/ijerph18020664