Cortisol on Circadian Rhythm and Its Effect on Cardiovascular System
Abstract
:1. Introduction
2. Methodology
3. Discussion
3.1. Circadian Rhythm and Cardiovascular Functions
3.1.1. The Biological Clock that Controls the Cardiovascular System (CVS)
3.1.2. Circadian Changes in Pathophysiological Mechanisms of Cardiovascular Events
3.2. Cortisol and Its Physiology
3.2.1. Synthesis and Metabolism of Cortisol
3.2.2. Regulation and Implication of Cortisol Circadian Rhythm
3.3. Effect of Cortisol on the Cardiovascular System
3.3.1. Acute Coronary Syndromes
3.3.2. Atrial and Ventricular Arrhythmias
3.3.3. Sudden Cardiac Death
3.3.4. Stroke
3.4. Drug Delivery
The Association between the Role of Cortisol and Potential Cardioprotective Agents
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Selfridge, J.M.; Moyer, K.; Capelluto, D.G.S.; Finkielstein, C.V. Opening the debate: How to fulfill the need for physicians’ training in circadian-related topics in a full medical school curriculum. J. Circadian Rhythm. 2015, 13, 1–10. [Google Scholar]
- Mohd Azmi, N.A.S.; Juliana, N.; Mohd Fahmi Teng, N.I.; Azmani, S.; Das, S.; Effendy, N. Consequences of circadian disruption in shift workers on chrononutrition and their psychosocial well-being. Int. J. Environ. Res. Public Health 2020, 17, 2043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evanson, N.K.; Herman, J.P.; Sakai, R.R.; Krause, E.G. Nongenomic actions of adrenal steroids in the central nervous system. J. Neuroendocr. 2010, 22, 846–861. [Google Scholar] [CrossRef] [PubMed]
- Eismann, E.A.; Lush, E.; Sephton, S.E. Circadian effects in cancer-relevant psychoneuroendocrine and immune pathways. Psychoneuroendocrinology 2010, 35, 963–976. [Google Scholar] [CrossRef] [PubMed]
- Scher, A.; Hall, W.A.; Zaidman-Zait, A.; Weinberg, J. Sleep quality, cortisol levels, and behavioural regulation in toddlers. Dev. Psychobiol. 2010, 52, 44–53. [Google Scholar]
- Dahlgren, A.; Kecklund, G.; Theorell, T.; Akerstedt, T. Day-to-day variation in saliva cortisol—Relation with sleep, stress and self-rated health. Biol. Psychol. 2009, 82, 149–155. [Google Scholar] [CrossRef]
- Benarroch, E.E. Suprachiasmatic nucleus and melatonin: Reciprocal interactions and clinical correlations. Neurology 2008, 71, 594–598. [Google Scholar] [CrossRef]
- Ice, G.H.; Katz-Stein, A.; Himes, J.; Kane, R.L. Diurnal cycles of salivary cortisol in older adults. Psychoneuroendocrinology 2004, 29, 355–370. [Google Scholar] [CrossRef]
- Singh, R.B.; Isaza, A.; Wilczynska, A.; Kartikey, K.; Kareem, Z.; Alshihaby, W.; Almansory, A.; Hadi, N.R.; Bassm, M. View Point. Cortisol and the heart. World Heart J. 2019, 11, 73–77. [Google Scholar]
- Manfredini, R.; Boari, B.; Salmi, R.; Fabbian, F.; Pala, M.; Tiseo, R.; Portaluppi, F. Twenty-four-hour patterns in occurrence and pathophysiology of acute cardiovascular events and ischemic heart disease. Chronobiol. Int. 2013, 30, 6–16. [Google Scholar] [CrossRef]
- Cagnacci, A.; Cannoletta, M.; Caretto, S.; Zanin, R.; Xholli, A.; Volpe, A. Increased cortisol level: A possible link between climacteric symptoms and cardiovascular risk factors. Menopause 2011, 18, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Jokinen, J.; Nordstrom, P. HPA axis hyperactivity and cardiovascular mortality in mood disorder inpatients. J. Affect. Disord. 2009, 116, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Yang, G. Recent advances in circadian rhythms in cardiovascular system. Front. Pharmacol. 2015, 6, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Douma, L.G.; Gumz, M.L. Circadian clock-mediated regulation of blood pressure. Free Radic. Biol. Med. 2018, 119, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Kario, K.; Weber, M.A.; Mahfoud, F.; Kandzari, D.E.; Schmieder, R.E.; Kirtane, A.J.; Böhm, M.; Hettrick, D.A.; Townsend, R.R.; Tsioufis, K.P. Changes in 24-Hour Patterns of blood pressure in hypertension following renal denervation therapy. Hypertension 2019, 74, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Reule, S.; Drawz, P.E. Heart rate and blood pressure: Any possible implications for management of hypertension? Curr. Hypertens. Rep. 2012, 14, 478–484. [Google Scholar] [CrossRef] [Green Version]
- Barceló, A.; Piérola, J.; de la Peña, M.; Frontera, G.; Yañez, A.; Alonso-Fernández, A.; Ayllon, O.; Agusti, A.G.N. Impaired circadian variation of platelet activity in patients with sleep apnea. Sleep Breath. 2012, 16, 355–360. [Google Scholar] [CrossRef]
- Durgan, D.J.; Young, M.E. The cardiomyocyte circadian clock: Emerging roles in health and disease. Circ. Res. 2010, 106, 647–658. [Google Scholar] [CrossRef] [Green Version]
- Takeda, N.; Maemura, K. Circadian clock and cardiovascular disease. J. Cardiol. 2011, 57, 249–256. [Google Scholar] [CrossRef] [Green Version]
- Gamble, K.L.; Berry, R.; Frank, S.J.; Young, M.E. Circadian clock control of endocrine factors. Nat. Rev. Endocrinol. 2014, 10, 466–475. [Google Scholar] [CrossRef] [Green Version]
- Young, M. The circadian clock within the heart: Potential influence on myocardial gene expression; metabolism; and function. Am. J. Physiol. Heart Circ. Physiol. 2006, 290, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berry, R.B.; Brooks, R.; Gamaldo, C.E.; Harding, S.M.; Lloyd, R.M.; Marcus, C.L.; Vaughn, B.V. The AASM manual for the scoring of sleep and associated events: Rules, terminology and technical specifications. In American Academy of Sleep Medicine, version 2.2; American Academy of Sleep Medicine: Darien, IL, USA, 2015. [Google Scholar]
- Carskadon, M.A.; Dement, W.C. Normal human sleep: An overview. Princ. Pract. Sleep Med. 2005, 4, 13–23. [Google Scholar]
- Calandra-Buonaura, G.; Provini, F.; Guaraldi, P.; Plazzi, G.; Cortelli, P. Cardiovascular autonomic dysfunctions and sleep disorders. Sleep Med. Rev. 2016, 26, 43–56. [Google Scholar] [CrossRef] [PubMed]
- Somers, V.K.; Dyken, M.E.; Mark, A.L.; Abboud, F.M. Sympathetic-nerve activity during sleep in normal subjects. N. Engl. J. Med. 1993, 328, 303–307. [Google Scholar] [CrossRef] [PubMed]
- Hanak, V.; Somers, V.K. Cardiovascular and cerebrovascular physiology in sleep. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2011; Volume 98, pp. 315–325. [Google Scholar]
- Chan, S.; Debono, M. Replication of cortisol circadian rhythm: New advances in hydrocortisone replacement therapy. Ther. Adv. Endocrinol. Metab. 2010, 1, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Boudreau, P.; Yeh, W.H.; Dumont, G.A.; Boivin, D.B. Circadian variation of heart rate variability across sleep stages. Sleep 2013, 36, 1919–1928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laugsand, L.E.; Strand, L.B.; Platou, C.; Vatten, L.J.; Janszky, I. Insomnia and the risk of incident heart failure: A population study. Eur. Heart J. 2014, 35, 1382–1393. [Google Scholar] [CrossRef] [Green Version]
- Paul, T.; Lemmer, B. Disturbance of circadian rhythms in analgosedated intensive care unit patients with and without craniocerebral injury. Chronobiol. Int. 2007, 24, 45–61. [Google Scholar] [CrossRef]
- Dessap, A.M.; Roche-Campo, F.; Launay, J.M.; Charles-Nelson, A.; Katsahian, S.; Brun-Buisson, C.; Brochard, L. Delirium and circadian rhythm of melatonin during weaning from mechanical ventilation an ancillary study of a weaning trial. Chest 2015, 148, 1231–1241. [Google Scholar] [CrossRef]
- Juliana, N.; Nadia, M.E.; Roslan, N.A.; Ghazali, A.R.; Fauzi, N.F.M.; Sahar, M.A.; Sulaiman, A.H.; Hayati, A.R.; Mohamed, A.L. Comparison of heart rate variability among young malay male adult with different BMI and level of adiposity. IIUM Med. J. Malays. 2019, 18, 73–79. [Google Scholar]
- Crnko, S.; Du Pre, B.C.; Sluijter, J.P.; Van Laake, L.W. Circadian rhythms and the molecular clock in cardiovascular biology and disease. Nat. Rev. Cardiol. 2019, 16, 437–447. [Google Scholar] [CrossRef] [PubMed]
- Muller, J.E.; Stone, P.H.; Turi, Z.G.; Rutherford, J.D.; Czeisler, C.A.; Parker, C.; Poole, W.K.; Passamani, E.; Roberts, R.; Robertson, T.; et al. Circadian variation in the frequency of onset of acute myocardial infarction. N. Engl. J. Med. 1985, 313, 1315–1322. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.J.; Zipes, D.P. Role of the autonomic nervous system in modulating cardiac arrhythmias. Circ. Res. 2014, 114, 1004–1021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manfredini, R.; Gallerani, M.; Portaluppi, F.; Fersini, C. Relationships of the circadian rhythms of thrombotic, ischemic, hemorrhagic, and arrhythmic events to blood pressure rhythms. Ann. N. Y. Acad. Sci. 1996, 783, 141–158. [Google Scholar] [CrossRef]
- Jeyaraj, D.; Haldar, S.M.; Wan, X.; McCauley, M.D.; Ripperger, J.A.; Hu, K.; Lu, Y.; Eapen, B.L.; Sharma, N.; Ficker, E.; et al. Circadian rhythms govern cardiac repolarization and arrhythmogenesis. Nature 2012, 483, 96–99. [Google Scholar] [CrossRef]
- Ammirati, E.; Maseri, A.; Cannistraci, C.V. Still need for compelling evidence to support the circadian dependence of infarct size after ST-elevation myocardial infarction. Circ. Res. 2013, 113, 43–44. [Google Scholar] [CrossRef] [Green Version]
- Martino, T.A.; Tata, N.; Belsham, D.D.; Chalmers, J.; Straume, M.; Lee, P.; Pribiag, H.; Khaper, N.; Liu, P.P.; Dawood, F.; et al. Disturbed diurnal rhythm alters gene expression and exacerbates cardiovascular disease with rescue by resynchronization. Hypertension 2007, 49, 1104–1113. [Google Scholar] [CrossRef]
- Nicolaides, N.C.; Charmandari, E.; Chrousos, G.P.; Kino, T. Circadian endocrine rhythms: The hypothalamic–pituitary– adrenal axis and its actions. Ann. N. Y. Acad. Sci. 2014, 1318, 71–80. [Google Scholar] [CrossRef]
- Huang, Y.; Xu, C.; He, M.; Huang, W.; Wu, K. Saliva cortisol, melatonin levels and circadian rhythm alterations in Chinese primary school children with dyslexia. Medicine 2020, 99, e19098. [Google Scholar] [CrossRef]
- Qin, D.D.; Rizak, J.; Feng, X.L.; Yang, S.C.; Lü, L.B.; Pan, L.; Yin, Y.; Hu, X.T. Prolonged secretion of cortisol as a possible mechanism underlying stress and depressive behaviour. Sci. Rep. 2016, 6, 30187. [Google Scholar] [CrossRef]
- Tomas, C.; Newton, J.; Watson, S. A Review of hypothalamic-pituitary-adrenal axis function in chronic fatigue syndrome. ISRN Neurosci. 2013, 784520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timmermans, S.; Souffriau, J.; Libert, C. A general introduction to glucocorticoid biology. Front. Immunol. 2019, 10, 1545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, G.E.; Chen, E.; Fok, A.K.; Walker, H.; Lim, A.; Nicholls, E.F.; Cole, S.; Kobor, M.S. Low early-life social class leaves a biological residue manifested by decreased glucocorticoid and increased proinflammatory signaling. Proc. Natl. Acad. Sci. USA 2009, 106, 14716–14721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katsu, Y.; Iguchi, T. Cortisol. In Handbook of Hormones: Comparative Endocrinology for Basic and Clinical Research; Takei, Y., Ando, H., Tsutsui, K., Eds.; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Perry, L.; Medbak, S. The Adrenal Cortex. In The Immunoassay Handbook: Theory and Applications of Ligand Binding, ELISA and Related Techniques; Wild, D., Ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Dickmeis, T. Glucocorticoids and the circadian clock. J. Endocrinol. 2009, 200, 3–22. [Google Scholar] [CrossRef]
- Spiga, F.; Walker, J.J.; Terry, J.R.; Lightman, S.L. HPA axis-rhythms. Compr. Physiol. 2014, 4, 1273–1298. [Google Scholar]
- Wright, K.P., Jr.; McHill, A.W.; Birks, B.R.; Griffin, B.R.; Rusterholz, T.; Chinoy, E.D. Entrainment of the human circadian clock to the natural light-dark cycle. Curr. Boil. 2013, 23, 1554–1558. [Google Scholar] [CrossRef] [Green Version]
- Teclemariam-Mesbah, R.; Ter Horst, G.J.; Postema, F.; Wortel, J.; Buijs, R.M. Anatomical demonstration of the suprachiasmatic nucleus-pineal pathway. J. Comp. Neurol. 1999, 406, 171–182. [Google Scholar] [CrossRef]
- Frey, R.; Decker, K.; Reinfried, L.; Kloosch, G.; Saletu, B.; Anderer, P. Effect of rest on physicians’ performance in an emergency department, objectified by electroencephalographic analyses and psychometric tests. Crit. Care Med. 2002, 30, 2322–2329. [Google Scholar] [CrossRef]
- Kudielka, B.M.; Buchtal, J.; Uhde, A.; Wust, S. Circadian cortisol profiles and psychological self-reports in shift workers with and without recent change in the shift rotation system. Biol. Psychol. 2007, 74, 92–103. [Google Scholar] [CrossRef]
- Hennig, J.; Kieferdorf, P.; Moritz, C.; Huwe, S.; Netter, P. Changes in cortisol secretion during shiftwork: Implications for tolerance to shiftwork? Ergonomics 1998, 41, 610–621. [Google Scholar] [CrossRef]
- Putignano, P.; Dubini, A.; Toja, P.; Invitti, C.; Bonfanti, S.; Redaelli, G. Salivary cortisol measurement in normal-weight, obese and anorexic women: Comparison with plasma cortisol. Eur. J. Endocrinol. 2001, 145, 165–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranjit, N.; Young, E.A.; Raghunathan, T.E.; Kaplan, G.A. Modelling cortisol rhythms in a population-based study. Psychoneuroendocrinology 2005, 30, 615–624. [Google Scholar] [CrossRef] [PubMed]
- Mustoe, A.C.; Birnie, A.K.; Korgan, A.C.; Santo, J.B.; French, J.A. Natural variation in gestational cortisol is associated with patterns of growth in marmoset monkeys (Callithrix geoffroyi). Gen. Comp. Endocrinol. 2012, 175, 519–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van West, D.; Claes, S.; Deboutte, D. Differences in hypothalamic-pituitaryadrenal axis functioning among children with ADHD predominantly inattentive and combined types. Eur. Child Adolesc. Psychiatry 2009, 18, 543–553. [Google Scholar] [CrossRef] [Green Version]
- Angeli, E.; Korpa, T.; Johnson, E.O.; Apostolakou, F.; Papassotiriou, I.; Chrousos, G.P.; Pervanidou, P. Salivary cortisol and alpha-amylase diurnal profiles and stress reactivity in children with attention deficit hyperactivity disorder. Psychoneuroendocrinology 2018, 90, 174–181. [Google Scholar] [CrossRef]
- Kamradt, J.M.; Momany, A.M.; Nikolas, M.A. A meta-analytic review of the association between cortisol reactivity in response to a stressor and attention-deficit hyperactivity disorder. Atten. Defic. Hyperact. Disord. 2018, 10, 99–111. [Google Scholar] [CrossRef]
- Schloss, S.; Ruhl, I.; Muller, V.; Becker, K.; Skoluda, N.; Nater, U.M.; Pauli-Pott, U. Low hair cortisol concentration and emerging attention-deficit/hyperactivity symptoms in preschool age. Dev. Psychobiol. 2018, 60, 722–729. [Google Scholar] [CrossRef]
- Clauss, J.A.; Avery, S.N.; Blackford, J.U. The nature of individual differences in inhibited temperament and risk for psychiatric disease: A review and meta-analysis. Prog. Neurobiol. 2015, 127–128, 23–45. [Google Scholar] [CrossRef] [Green Version]
- Tordjman, S.; Anderson, G.M.; Kermarrec, S.; Bonnot, O.; Geoffray, M.M.; Brailly-Tabard, S.; Chaouch, A.; Colliot, I.; Trabado, S.; Bronsard, G.; et al. Altered circadian patterns of salivary cortisol in low-functioning children and adolescents with autism. Psychoneuroendocrinology 2014, 50, 227–245. [Google Scholar] [CrossRef]
- Mühlen, K.; Ockenfels, H. Morphological alterations in the diencephalon and telencephalon following disturbances to the feedback mechanism adenohypophysis-adrenal cortex. 3. Studies on the guinea pig after administration of cortisone and hydrocortisone. Z. Zellforsch. Mikrosk. Anat. 1969, 93, 126–141. [Google Scholar] [CrossRef]
- Lee, A.; Ogle, W.; Sapolsky, R. Stress and depression: Possible links to neuron death in the hippocampus. Bipolar Disord. 2002, 4, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Kuo, T.; McQueen, A.; Chen, T.-C.; Wang, J.-C. Regulation of Glucose Homeostasis by Glucocorticoids. Adv. Exp. Med. Biol. 2015, 872, 99–126. [Google Scholar] [PubMed]
- Sheridan, P.J.; Crossman, D.C. Critical review of unstable angina and non-ST elevation myocardial infarction. Postgrad. Med. J. 2002, 78, 717–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jutla, S.K.; Yuyun, M.F.; Quinn, P.A.; Ng, L.L. Plasma cortisol and prognosis of patients with acute myocardial infarction. J. Cardiovasc. Med. 2014, 15, 33–41. [Google Scholar] [CrossRef]
- Nito, I.; Waspadji, S.; Harun, S.; Markum, H.M. Correlation between cortisol levels and myocardial infarction mortality among intensive coronary care unit patients during first seven days in hospital. Acta Med. Indones. 2004, 36, 8–14. [Google Scholar]
- Adair, R.; Kasahara, M. Serum cortisol response to acute myocardial infarction in the aged. J. Am. Geriatr. Soc. 1980, 28, 472–474. [Google Scholar] [CrossRef]
- Zouaghi, H.; Savu, L.; Guerot, C.; Gryman, R.; Coulon, A.; Nunez, E.A. Total and unbound cortisol-, progesterone-, oestrone-, and transcortin-binding activities in sera from patients with myocardial infarction: Evidence for differential responses of good and bad prognostic cases. Eur. J. Clin. Investig. 1985, 15, 365–370. [Google Scholar] [CrossRef]
- Reynolds, R.M.; Walker, B.R.; Haw, S.; Newby, D.E.; Mackay, D.F.; Cobbe, S.M.; Pell, A.C.; Fischbacher, C.; Pringle, S.; Murdoch, D.; et al. Low serum cortisol predicts early death after acute myocardial infarction. Crit. Care Med. 2010, 38, 973–975. [Google Scholar] [CrossRef] [Green Version]
- Bain, R.J.; Fox, J.P.; Jagger, J.; Davies, M.K.; Littler, W.A.; Murray, R.G. Serum cortisol levels predict infarct size and patient mortality. Int. J. Cardiol. 1992, 37, 145–150. [Google Scholar] [CrossRef]
- Weir, R.A.; Tsorlalis, I.K.; Steedman, T.; Dargie, H.J.; Fraser, R.; McMurray, J.J.; Connell, J.M. Aldosterone and cortisol predict medium-term left ventricular remodelling following myocardial infarction. Eur. J. Heart Fail. 2011, 13, 1305–1313. [Google Scholar] [CrossRef] [Green Version]
- Gueder, G.; Bauersachs, J.; Frantz, S.; Weismann, D.; Allolio, B.; Ertl, G.; Angermann, C.E.; Stork, S. Complementary and incremental mortality risk prediction by cortisol and aldosterone in chronic heart failure. Circulation 2007, 115, 1754–1761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clauss, S.; Bleyer, C.; Schuttler, D.; Tomsits, P.; Renner, S.; Klymiuk, N.; Wakili, R.; Massberg, S.; Wolf, E.; Kaab, S. Animal models of arrhythmia: Classic electrophysiology to genetically modified large animals. Nat. Rev. Cardiol. 2019, 16, 457–475. [Google Scholar] [CrossRef] [PubMed]
- Elkilany, G.; Singh, R.B.; Adeghate, E.; Singh, J.; Bidasee, K.; Fedacko, J.; Hristova, K. Sudden cardiac death, mini review. World Heart J. 2017, 9, 51–62. [Google Scholar]
- Fuster, V.; Ryden, L.E.; Cannom, D.S. ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Revise the 2001 Guidelines for the Management of Patients with Atrial Fibrillation). J. Am. Coll. Cardiol. 2006, 48, 149–246. [Google Scholar]
- Hollander, J.E. Acute coronary syndromes: Acute myocardial infarction and unstable angina. In Emergency Medicine a Comprehensive Study Guide, 6th ed.; Tintinalli, J.E., Kelen, G.D., Stapczynski, J.S., Eds.; McGraw-Hill: New York, NY, USA, 2004; pp. 343–351. [Google Scholar]
- Marik, P.E.; Zaloga, G.P. Adrenal insufficiency in the critically ill: A new look to an old problem. Chest 2002, 122, 1784–1796. [Google Scholar] [CrossRef] [Green Version]
- Akseli, A.; Topacoglu, H.; Ucku, R. The comparison of the serum steroid levels of the patients with or without atrial fibrillation: Case control study. Int. Med. J. 2013, 20, 1–3. [Google Scholar]
- Mittnacht, A.J.; Dukkipati, S.; Mahajan, A. Ventricular tachycardia ablation: A comprehensive review for anesthesiologists. Anesth. Analg. 2015, 120, 737–748. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.B.; Cornelissen, G.; Chibisov, S.; Fedacko, J. Atherosclerosis? A disease of the brain. World Heart J. 2017, 9, 99–106. [Google Scholar]
- Horckmans, M.; Ring, L.; Duchene, J.; Santovito, D.; Schloss, M.J.; Drechsler, M.; Weber, C.; Soehnlein, O.; Steffens, S. Neutrophils orchestrate post-myocardial infarction healing by polarizing macrophages towards a reparative phenotype. Eur. Heart J. 2017, 38, 187–197. [Google Scholar] [CrossRef] [Green Version]
- Vargova, V.; Singh, R.B.; Chibisov, S.; Bawareed, A.O.; Isaza, A. Molecular mechanisms in relation to cortisol and leucocytes in the pathogenesis of ventricular arrhythmias. World Heart J. 2019, 11, 131–140. [Google Scholar]
- Mahmoud, K.D.; de Smet, B.J.; Zijlstra, F.; Rihal, C.S.; Holmes, D.R., Jr. Sudden cardiac death: Epidemiology, circadian variation, and triggers. Curr. Probl. Cardiol. 2011, 36, 56–80. [Google Scholar] [CrossRef] [PubMed]
- Wanner, C.; Krane, V.; Marz, W.; Olschewski, M.; Mann, J.F.; Ruf, G.; Ritz, E. Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis. N. Engl. J. Med. 2005, 353, 238–248. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. International Classification of Disease 10 (ICD-10). 2010. Available online: https://www.who.int/classifications/icd/ICD10Volume2_en_2010.pdf (accessed on 29 March 2020).
- Alankus, G.; Lazar, A.; May, M.; Kelleher, C. Towards customizable games for stroke rehabilitation. In Proceedings of the CHI ’10: Proceedings of the 28th SIGCHI International Conference on Human Factors in Computing Systems, Atlanta, GA, USA, 10–15 April 2010; pp. 2113–2122. [Google Scholar]
- Fassbender, K.; Schmidt, R.; Mossner, R.; Daffertshofer, M.; Hennerici, M. Pattern of activation of the hypothalamic–pituitary–adrenal axis in acute stroke. Relation to acute confusional state, extent of brain damage, and clinical outcome. Stroke 1994, 25, 1105–1108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barugh, A.J.; Gray, P.; Shenkin, S.D.; MacLullich, A.M.J.; Mead, G.E. Cortisol levels and the severity and outcomes of acute stroke: A systematic review. J. Neurol. 2014, 261, 533–545. [Google Scholar] [CrossRef] [Green Version]
- Zi, W.J.; Shuai, J. Cortisol as a Prognostic marker of short-term outcome in Chinese patients with acute ischemic stroke. PLoS ONE 2013, 8, e72758. [Google Scholar] [CrossRef] [Green Version]
- Olsson, T.; Marklund, N.; Gustafson, Y.; Näsman, B. Abnormalities at different levels of the hypothalamic–pituitary–adrenocortical axis early after stroke. Stroke 1992, 23, 1573–1576. [Google Scholar] [CrossRef] [Green Version]
- Slowik, A.; Turaj, W.; Pankiewicz, J.; Dziedzic, T.; Szermer, P.; Szczudlik, A. Hypercortisolemia in acute stroke is related to the inflammatory response. J. Neurol. Sci. 2002, 196, 27–32. [Google Scholar] [CrossRef]
- Katan, M.; Elkind, M.S. Inflammatory and neuroendocrine biomarkers of prognosis after ischemic stroke. Expert. Rev. Neurother. 2011, 11, 225–239. [Google Scholar] [CrossRef]
- Neidert, S.; Katan, M.; Schuetz, P.; Fluri, F.; Ernst, A.; Bingisser, R.; Kappos, L.; Engelter, S.T.; Steck, A.; Muller, B.; et al. Anterior pituitary axis hormones and outcome in acute ischaemic stroke. J. Intern. Med. 2011, 269, 420–432. [Google Scholar] [CrossRef]
- Schoorlemmer, R.M.; Peeters, G.M.; van Schoor, N.M.; Lips, P. Relationships between cortisol level, mortality and chronic diseases in older persons. Clin. Endocrinol. 2009, 71, 779–786. [Google Scholar] [CrossRef]
- Richardson, R.V.; Batchen, E.J.; Denvir, M.A.; Gray, G.A.; Chapman, K.E. Cardiac GR and MR: From Development to Pathology. Trends Endocrinol. Metab. 2016, 27, 35–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veniant, M.M.; Hale, C.; Komorowski, R.; Chen, M.M.; St Jean, D.J.; Fotsch, C.; Wang, M. Time of the day for 11β-HSD1 inhibition plays a role in improving glucose homeostasis in DIO mice. Diabetes Obes. Metab. 2009, 11, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Wyrwoll, C.S.; Holmes, M.C.; Seckl, J.R. 11β-hydroxysteroid dehydrogenases and the brain: From zero to hero, a decade of progress. Front. Neuroenndocrinology 2011, 32, 265–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bisschop, P.H.; Dekker, M.J.; Osterthun, W.; Kwakkel, J.; Anink, J.J.; Boelen, A.; Unmehopa, U.A.; Koper, J.W.; Lamberts, S.W.; Stewart, P.M.; et al. Expression of 11β-hydroxysteroid dehydrogenase type 1 in the human hypothalamus. J. Neuroendocrinol. 2013, 25, 425–432. [Google Scholar] [CrossRef]
- Souverein, P.C.; Berard, A.; Van Staa, T.P.; Cooper, C.; Egberts, A.C.; Leufkens, H.G.; Walker, B.R. Use of oral glucocorticoids and risk of cardiovascular and cerebrovascular disease in a population based case-control study. Heart 2004, 90, 859–865. [Google Scholar] [CrossRef] [Green Version]
- McSweeney, S.J.; Hadoke, P.W.; Kozak, A.M.; Small, G.R.; Khaled, H.; Walker, B.R.; Gray, G.A. Improved heart function follows enhanced inflammatory cell recruitment and angiogenesis in 11betaHSD1-deficient mice post-MI. Cardiovasc. Res. 2010, 88, 159–167. [Google Scholar] [CrossRef] [Green Version]
- Kipari, T.; Hadoke, P.W.; Iqbal, J.; Man, T.Y.; Miller, E.; Coutinho, A.E.; Zhang, Z.; Sullivan, K.M.; Mitic, T.; Livingstone, D.E.; et al. 11β-hydroxysteroid dehydrogenase type 1 deficiency in bone marrow-derived cells reduces atherosclerosis. FASEB J. 2013, 27, 1519–1531. [Google Scholar] [CrossRef] [Green Version]
- Lipson, V.V.; Zamigajlo, L.L.; Petrova, O.N. Development of 11β-HSD1 inhibitors for the treatment of metabolic syndrome. Ukr. Bioorganica Acta 2011, 2, 3–13. [Google Scholar]
- Masuzaki, H.; Paterson, J.; Shinyama, H.; Morton, N.M.; Mullins, J.J.; Seckl, J.R.; Flier, J.S. A transgenic model of visceral obesity and the metabolic syndrome. Science 2001, 294, 2166–2170. [Google Scholar] [CrossRef] [Green Version]
- Wake, D.J.; Rask, E.; Livingstone, D.E.; Söderberg, S.; Olsson, T.; Walker, B.R. Local and systemic impact of transcriptional up-regulation of 11beta-hydroxysteroid dehydrogenase type 1 in adipose tissue in human obesity. J. Clin. Endocrinol. Metab. 2003, 88, 3983–3988. [Google Scholar] [CrossRef]
- Peng, K.; Pan, Y.; Li, J. 11β-Hydroxysteroid Dehydrogenase Type 1(11β-HSD1) mediates insulin resistance through JNK activation in adipocytes. Sci. Rep. 2016, 6, 37160. [Google Scholar] [CrossRef] [PubMed]
- Chapman, K.; Holmes, M.; Seckl, J. 11β-hydroxysteroid dehydrogenases: Intracellular gate-keepers of tissue glucocorticoid action. Physiol. Rev. 2013, 93, 1139–1206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeager, M.P.; Guyre, P.M.; Munck, A.U. Glucocorticoid regulation of the inflammatory response to injury. Acta Anaesthesiol. Scand. 2004, 48, 799–813. [Google Scholar] [CrossRef] [PubMed]
- Ait-Oufella, H.; Libby, P.; Tedgui, A. Anticytokine immune therapy and atherothrombotic cardiovascular risk. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 1510–1519. [Google Scholar] [CrossRef]
- Solomon, D.H.; Glynn, R.J.; MacFadyen, J.G.; Libby, P.; Thuren, T.; Everett, B.M.; Ridker, P.M. Relationship of interleukin-1β blockade with incident gout and serum uric acid levels: Exploratory analysis of a randomized controlled trial. Ann. Intern. Med. 2018, 169, 535–542. [Google Scholar] [CrossRef]
- Everett, B.M.; Cornel, J.H.; Lainscak, M.; Anker, S.D.; Abbate, A.; Thuren, T.; Libby, P.; Glynn, R.J.; Ridker, P.M. Anti-inflammatory therapy with canakinumab for the prevention of hospitalization for heart failure. Circulation 2019, 139, 1289–1299. [Google Scholar] [CrossRef]
- Antonopoulos, A.S.; Margaritis, M.; Lee, R.; Channon, K.; Antoniades, C. Statins as anti-inflammatory agents in atherogenesis: Molecular mechanisms and lessons from the recent clinical trials. Curr. Pharm. Des. 2012, 18, 1519–1530. [Google Scholar] [CrossRef] [Green Version]
- Fuster, V.; Sweeny, J.M. Aspirin, a historical and contemporary therapeutic overview. Circulation 2011, 123, 768–778. [Google Scholar] [CrossRef] [Green Version]
- De Caterina, R.; Husted, S.; Wallentin, L.; Andreotti, F.; Arnesen, H.; Bachmann, F.; Baigent, C.; Huber, K.; Jespersen, J.; Kristensen, S.D.; et al. New oral anticoagulants in atrial fibrillation and acute coronary syndromes. J. Am. Coll. Cardiol. 2012, 59, 1413–1425. [Google Scholar] [CrossRef]
- Rienstra, M.; Damman, K.; Mulder, B.A.; Van Gelder, I.C.; McMurray, J.J.; Van Veldhuisen, D.J. Beta-blockers and outcome in heart failure and atrial fibrillation: A meta-analysis. J. Am. Coll. Cardiol. 2013, 1, 21–28. [Google Scholar]
- Van Vark, L.C.; Bertrand, M.; Akkerhuis, K.M.; Brugts, J.J.; Fox, K.; Mourad, J.; Boersma, E. Angiotensin-converting enzyme inhibitors reduce mortality in hypertension: A meta-analysis of randomized clinical trials of renin-angiotensin-aldosterone system inhibitors involving 158988 patients. Eur. Heart J. 2012, 33, 2088–2097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elliott, W.J.; Ram, C.V. Calcium channel blockers. J. Clin. Hypertens. 2011, 13, 687–689. [Google Scholar] [CrossRef] [PubMed]
- Gray, G.A.; White, C.I.; Castellan, R.F.; McSweeney, S.J.; Chapman, K.E. Getting to the heart of intracellular glucocorticoid regeneration: 11β-HSD1 in the myocardium. J. Mol. Endocrinol. 2017, 58, R1–R13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Study & Country | Drugs | Description of the Drugs | Example of Drugs |
---|---|---|---|
Antonopoulos et al. 2012, United Kingdom [114] | Statins or HMG-CoA reductase inhibitors | Potent lipid-lowering medication that inhibits biosynthesis of cholesterol. The anti-inflammatory properties of statins play important roles because of their protective effects on patients with coronary heart disease. | Atorvastatin, Simvastatin, Lovastatin |
Fuster and Sweeny 2011, United States [115] | Aspirin | Efficacious anti-inflammatory, antiplatelet, and antithrombotic agent. Immediate treatment that is used in the management of patients with acute coronary syndromes and as a secondary preventive method. | Aspirin |
De Caterina et al. 2012, Italy [116] | Anticoagulants | Therapy for prevention of stroke in atrial fibrillation, as well as secondary prevention after acute coronary syndromes. | Dabigatran Etexilate, Rivaroxaban, Apixaban |
Rienstra et al. 2012, Netherlands [117] | Beta-blockers | Recommended drug in managing heart failure and atrial fibrillation, specifically for different indications. | Bisoprolol, Metoprolol, Carvedilol |
Van Vark et al. 2012, Netherlands [118] | Angiotensin-converting enzyme inhibitors | The most commonly prescribed class of drugs for hypertension control, reducing cardiovascular morbidity and mortality. | Enalapril, Perindopril, Lisinopril |
Elliott and Ram 2011, United States [119] | Calcium channel blockers | Drugs that result in vasodilation by productively lowering blood pressure across all patient populations. | Verapamil, Diltiazem, Nifedipine, Amlodipine |
Ait-Oufella et al. 2019, France [111] | Anticytokine therapy | Reduces recurrent cardiovascular events in patients with stable coronary artery disease. CANTOS presented the first piece of evidence that targeting inflammation in humans with atherosclerosis could enhance clinical outcomes. | Anti-IL-1β antibody Canakinumab |
Gray et al. 2017, United Kingdom [120] | 11β-HSD1 inhibitors | As a therapeutic target for improving repair after myocardial infarction and preventing cardiac remodeling and heart failure from emerging. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohd Azmi, N.A.S.; Juliana, N.; Azmani, S.; Mohd Effendy, N.; Abu, I.F.; Mohd Fahmi Teng, N.I.; Das, S. Cortisol on Circadian Rhythm and Its Effect on Cardiovascular System. Int. J. Environ. Res. Public Health 2021, 18, 676. https://doi.org/10.3390/ijerph18020676
Mohd Azmi NAS, Juliana N, Azmani S, Mohd Effendy N, Abu IF, Mohd Fahmi Teng NI, Das S. Cortisol on Circadian Rhythm and Its Effect on Cardiovascular System. International Journal of Environmental Research and Public Health. 2021; 18(2):676. https://doi.org/10.3390/ijerph18020676
Chicago/Turabian StyleMohd Azmi, Nor Amira Syahira, Norsham Juliana, Sahar Azmani, Nadia Mohd Effendy, Izuddin Fahmy Abu, Nur Islami Mohd Fahmi Teng, and Srijit Das. 2021. "Cortisol on Circadian Rhythm and Its Effect on Cardiovascular System" International Journal of Environmental Research and Public Health 18, no. 2: 676. https://doi.org/10.3390/ijerph18020676
APA StyleMohd Azmi, N. A. S., Juliana, N., Azmani, S., Mohd Effendy, N., Abu, I. F., Mohd Fahmi Teng, N. I., & Das, S. (2021). Cortisol on Circadian Rhythm and Its Effect on Cardiovascular System. International Journal of Environmental Research and Public Health, 18(2), 676. https://doi.org/10.3390/ijerph18020676