Dechlorane Plus and Related Compounds in Food—A Review
Abstract
:1. Introduction
2. Literature Search and Data Management
3. Reported Levels
3.1. Concentrations of ƩDP in Fish and Seafood
3.2. Concentrations of ƩDP in Other Food Categories
3.3. Profiles of DP Isomers
3.4. Concentration of Other DRCs in Fish and Seafood Products
3.5. Concentration of Other DRCs in Other Food Categories
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brasseur, C.; Pirard, C.; Scholl, G.; De Pauw, E.; Viel, J.F.; Shen, L.; Reiner, E.J.; Focant, J.F. Levels of dechloranes and polybrominated diphenyl ethers (PBDEs) in human serum from France. Environ. Int. 2014, 65, 33–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stapleton, H.M.; Misenheimer, J.; Hoffman, K.; Webster, T.F. Flame retardant associations between children’s handwipes and house dust. Chemosphere 2014, 116, 54–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaiser, K.L.E. The rise and fall of Mirex. Environ. Sci. Technol. 1978, 12, 520–528. [Google Scholar] [CrossRef]
- Bergman, Å.; Ryden, A.; Law, R.J.; de Boer, J.; Covaci, A.; Alaee, M.; Birnbaum, L.; Petreas, M.; Rose, M.; Sakai, S.; et al. A novel abbreviation standard for organobromine, organochlorine and organophosphorus flame retardants and some characteristics of the chemicals. Environ. Int. 2012, 49, 57–82. [Google Scholar] [CrossRef] [Green Version]
- Sverko, E.; Tomy, G.T.; Reiner, E.J.; Li, Y.F.; McCarry, B.E.; Arnot, J.A.; Law, R.J.; Hites, R.A. Dechlorane Plus and Related Compounds in the Environment: A Review. Environ. Sci. Technol. 2011, 45, 5088–5098. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, Q.; Zhang, H.; Wang, T.; Sun, H.; Zheng, S.; Li, Y.; Liang, Y.; Jiang, G. Sources and environmental behaviors of Dechlorane Plus and related compounds—A review. Environ. Int. 2016, 88, 206–220. [Google Scholar] [CrossRef]
- Möller, A.; Xie, Z.; Sturm, R.; Ebinghaus, R. Large-scale distribution of dechlorane plus in air and seawater from the Arctic to Antarctica. Environ. Sci. Technol. 2010, 44, 8977–8982. [Google Scholar] [CrossRef]
- Hoh, E.; Zhu, L.; Hites, R.A. Dechlorane plus, a chlorinated flame retardant, in the Great Lakes. Environ. Sci. Technol. 2006, 40, 1184–1189. [Google Scholar] [CrossRef]
- Tomy, G.T.; Pleskach, K.; Ismail, N.; Whittle, D.M.; Helm, P.A.; Sverko, E.; Zaruka, D.; Marvin, C.H. Isomers of Dechlorane Plus in Lake Winnipeg and Lake Ontario Food Webs. Environ. Sci. Technol. 2007, 41, 2249–2254. [Google Scholar] [CrossRef]
- Sverko, E.; Tomy, G.T.; Marvin, C.H.; Zaruk, D.; Reiner, E.; Helm, P.A.; Hill, B.; McCarry, B.E. Dechlorane Plus Levels in Sediment of the Lower Great Lakes. Environ. Sci. Technol. 2008, 42, 361–366. [Google Scholar] [CrossRef]
- De la Torre, A.; Pacepavicius, G.; Shen, L.; Reiner, E.; Jimenez, B.; Alaee, M.; Martinez, M. Dechlorane Plus and related compounds in Spanish air. Organohalogen Compd. 2010, 72, 929–932. [Google Scholar]
- Wu, J.P.; Zhang, Y.; Luo, X.J.; Wang, J.; Chen, S.J.; Guan, Y.T.; Mai, B.X. Isomer-specific bioaccumulation and trophic transfer of dechlorane plus in the freshwater food web from a highly contaminated site, South China. Environ. Sci. Technol. 2010, 44, 606–611. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.J.; Tian, M.; Wang, J.; Shi, T.; Luo, Y.; Luo, X.J.; Mai, B.X. Dechlorane Plus (DP) in air and plants at an electronic waste (e-waste) site in South China. Environ. Pollut. 2011, 159, 1290–1296. [Google Scholar] [CrossRef] [PubMed]
- Klosterhaus, S.L.; Stapleton, H.M.; La Guardia, M.J.; Greig, D.J. Brominated and chlorinated flame retardants in San Francisco Bay sediments and wildlife. Environ. Int. 2012, 47, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Na, G.; Yao, Y.; Li, R.; Gao, Y.; Zhang, Z.; Yao, Z. Distribution Characteristics and Source of Dechloranes in Soil and Lichen of the Fildes Peninsula (Antarctica). Int. J. Environ. Res. Public Health 2018, 15. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.H.; Kim, J.C.; Jin, G.Z.; Park, H.; Baek, S.Y.; Chang, Y.S. Detection of Dechlorane Plus in fish from urban-industrial rivers. Chemosphere 2010, 79, 850–854. [Google Scholar] [CrossRef]
- Sühring, R.; Möller, A.; Freese, M.; Pohlmann, J.D.; Wolschke, H.; Sturm, R.; Xie, Z.; Hanel, R.; Ebinghaus, R. Brominated flame retardants and dechloranes in eels from German Rivers. Chemosphere 2013, 90, 118–124. [Google Scholar] [CrossRef] [Green Version]
- Sühring, R.; Busch, F.; Nicolai, N.; Kötke, D.; Wolschke, H.; Ebinghaus, R. Distribution of brominated flame retardants and dechloranes between sediments and benthic fish—A comparison of a freshwater and marine habitat. Sci. Total Environ. 2016, 542, 578–585. [Google Scholar] [CrossRef]
- Rjabova, J.; Bartkevics, V.; Zacs, D. The occurrence of Dechlorane Plus and related norbornene-based flame retardants in Baltic wild salmon (Salmo salar). Chemosphere 2016, 147, 210–217. [Google Scholar] [CrossRef]
- Abdel Malak, I.; Cariou, R.; Vénisseau, A.; Dervilly-Pinel, G.; Jaber, F.; Babut, M.; Le Bizec, B. Occurrence of Dechlorane Plus and related compounds in catfish (Silurus spp.) from rivers in France. Chemosphere 2018, 207, 413–420. [Google Scholar] [CrossRef] [Green Version]
- Zacs, D.; Ikkere, L.E.; Bartkevics, V. Emerging brominated flame retardants and dechlorane-related compounds in European eels (Anguilla anguilla) from Latvian lakes. Chemosphere 2018, 197, 680–690. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, L.T.; Letcher, R.J. Isomers of Dechlorane Plus flame retardant in the eggs of herring gulls (Larus argentatus) from the Laurentian Great Lakes of North America: Temporal changes and spatial distribution. Chemosphere 2009, 75, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Guerra, P.; Fernie, K.; Jiménez, B.; Pacepavicius, G.; Shen, L.; Reiner, E.; Eljarrat, E.; Barceló, D.; Alaee, M. Dechlorane Plus and Related Compounds in Peregrine Falcon (Falco peregrinus) Eggs from Canada and Spain. Environ. Sci. Technol. 2011, 45, 1284–1290. [Google Scholar] [CrossRef] [PubMed]
- De la Torre, A.; Alonso, M.B.; Martínez, M.A.; Sanz, P.; Shen, L.; Reiner, E.J.; Lailson-Brito, J.; Torres, J.P.M.; Bertozzi, C.; Marigo, J.; et al. Dechlorane-related compounds in franciscana dolphin (Pontoporia blainvillei) from southeastern and southern coast of Brazil. Environ. Sci. Technol. 2012, 46, 12364–12372. [Google Scholar] [CrossRef]
- Vetter, W.; Gall, V.; Skírnisson, K. Polyhalogenated compounds (PCBs, chlordanes, HCB and BFRs) in four polar bears (Ursus maritimus) that swam malnourished from East Greenland to Iceland. Sci. Total Environ. 2015, 533, 290–296. [Google Scholar] [CrossRef]
- Siddique, S.; Xian, Q.; Abdelouahab, N.; Takser, L.; Phillips, S.P.; Feng, Y.L.; Wang, B.; Zhu, J. Levels of dechlorane plus and polybrominated diphenylethers in human milk in two Canadian cities. Environ. Int. 2012, 39, 50–55. [Google Scholar] [CrossRef]
- Ben, Y.J.; Li, X.H.; Yang, Y.L.; Li, L.; Di, J.P.; Wang, W.Y.; Zhou, R.F.; Xiao, K.; Zheng, M.Y.; Tian, Y.; et al. Dechlorane Plus and its dechlorinated analogs from an e-waste recycling center in maternal serum and breast milk of women in Wenling, China. Environ. Pollut. 2013, 173, 176–181. [Google Scholar] [CrossRef]
- Qiao, L.; Zheng, X.B.; Yan, X.; Wang, M.H.; Zheng, J.; Chen, S.-J.; Yang, Z.-Y.; Mai, B.-X. Brominated flame retardant (BFRs) and Dechlorane Plus (DP) in paired human serum and segmented hair. Ecotoxicol. Environ. Saf. 2018, 147, 803–808. [Google Scholar] [CrossRef]
- Yin, J.F.; Li, J.F.T.; Li, X.H.; Yang, Y.L.; Qin, Z.-F. Bioaccumulation and transfer characteristics of dechlorane plus in human adipose tissue and blood stream and the underlying mechanisms. Sci. Total Environ. 2020, 700. [Google Scholar] [CrossRef]
- Wu, B.; Liu, S.; Guo, X.; Zhang, Y.; Zhang, X.; Li, M.; Cheng, S. Responses of mouse liver to dechlorane plus exposure by integrative transcriptomic and metabonomic studies. Environ. Sci. Technol. 2012, 46, 10758–10764. [Google Scholar] [CrossRef]
- Barón, E.; Dissanayake, A.; Vilà-Cano, J.; Crowther, C.; Readman, J.W.; Jha, A.N.; Eljarrat, E.; Barceló, D. Evaluation of the Genotoxic and Physiological Effects of Decabromodiphenyl Ether (BDE-209) and Dechlorane Plus (DP) Flame Retardants in Marine Mussels (Mytilus galloprovincialis). Environ. Sci. Technol. 2016, 50, 2700–2708. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Chen, Y.; Huang, C.; Dong, Q.; Roper, C.; Tanguay, R.L.; Zhu, Y.; Zhang, Y. Neurodevelopmental toxicity assessments of alkyl phenanthrene and Dechlorane Plus co-exposure in zebrafish. Ecotoxicol. Environ. Saf. 2019, 180, 762–769. [Google Scholar] [CrossRef] [PubMed]
- POPs Review Committee 15th Meeting. Report of the Persistent Organic Pollutants Review Committee on the Work of Its Fifteenth Meeting. 2019. Available online: http://chm.pops.int/TheConvention/POPsReviewCommittee/Meetings/POPRC15/MeetingDocuments/tabid/8059/Default.aspx (accessed on 12 December 2020).
- ECHA (European Chemicals Agencies. Dechlorane). Plus and Its Syn- and Anti-Isomers. Draft Risk Profile. Available online: https://echa.europa.eu/documents/10162/28991553/draft_risk_profile_dechlorane-plus_en.pdf/df683e4a-06d5-676f-8180-106bac9bbdf4 (accessed on 12 December 2020).
- Hou, M.; Wang, Y.; Zhao, H.; Zhang, Q.; Xie, Q.; Zhang, X.; Chen, R.; Chen, J. Halogenated flame retardants in building and decoration materials in China: Implications for human exposure via inhalation and dust ingestion. Chemosphere 2018, 203, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Xu, Y.; Zhou, H.; Zhang, A.; Qi, H. Levels, occurrence and human exposure to novel brominated flame retardants (NBFRs) and Dechlorane Plus (DP) in dust from different indoor environments in Hangzhou, China. Sci. Total Environ. 2018, 631–632, 1212–1220. [Google Scholar] [CrossRef]
- Kakimoto, K.; Nagayoshi, H.; Takagi, S.; Akutsu, K.; Konishi, Y.; Kajimura, K.; Hayakawa, K.; Toriba, A. Inhalation and dietary exposure to Dechlorane Plus and polybrominated diphenyl ethers in Osaka, Japan. Ecotoxicol. Environ. Saf. 2014, 99, 69–73. [Google Scholar] [CrossRef]
- Kim, J.; Son, M.; Kim, J.; Suh, J.; Kang, Y.; Chang, Y.-S. Assessment of Dechlorane compounds in foodstuffs obtained from retail markets and estimates of dietary intake in Korean population. J. Hazard. Mater. 2014, 275, 19–25. [Google Scholar] [CrossRef]
- L’Homme, B.; Calaprice, C.; Calvano, C.D.; Zambonin, C.; Leardi, R.; Focant, J.-F. Ultra-trace measurement of Dechloranes to investigate food as a route of human exposure. Chemosphere 2015, 139, 525–533. [Google Scholar] [CrossRef] [Green Version]
- Zacs, D.; Perkons, I.; Abdulajeva, E.; Pasecnaja, E.; Bartkiene, E.; Bartkiene, V. Polybrominated diphenyl ethers (PBDEs), hexabromocyclododecanes (HBCDD), dechlorane-related compounds (DRCs), and emerging brominated flame retardants (EBFRs) in foods: The levels, profiles, and dietary intake in Latvia. Sci. Total Environ. 2021, 752, 141996. [Google Scholar] [CrossRef]
- Domingo, J.L.; Bocio, A.; Falcó, G.; Llobet, J.M. Benefits and risks of fish consumption Part I. A quantitative analysis of the intake of omega-3 fatty acids and chemical contaminants. Toxicology 2007, 230, 219–226. [Google Scholar] [CrossRef]
- Guo, W.; Pan, B.; Sakkiah, S.; Yavas, G.; Ge, W.; Zou, W.; Tong, W.; Hong, H. Persistent Organic Pollutants in Food: Contamination Sources, Health Effects and Detection Methods. Int. J. Environ. Res. Public Health 2019, 16, 4361. [Google Scholar] [CrossRef] [Green Version]
- Ren, G.; Wang, Z.; Yu, Z.; Wang, Y.; Ma, S.; Wu, M.; Sheng, G.; Fu, J. Primary investigation on contamination pattern of legacy and emerging halogenated organic pollutions in freshwater fish from Liaohe River, Northeast China. Environ. Pollut. 2013, 172, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Santín, G.; Barón, E.; Eljarrat, E.; Barceló, D. Emerging and historical halogenated flame retardants in fish samples from Iberian rivers. J. Hazard. Mater. 2013, 263, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Houde, M.; Berryman, D.; de Lafontaine, Y.; Verreault, J. Novel brominated flame retardants and dechloranes in three fish species from the St. Lawrence River, Canada. Sci. Total Environ. 2014, 479–480, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Giulivo, M.; Capri, E.; Kalogianni, E.; Milacic, R.; Majone, B.; Ferrari, F.; Eljarrat, E.; Barceló, D. Occurrence of halogenated and organophosphate flame retardants in sediment and fish samples from three European river basins. Sci. Total Environ. 2017, 586, 782–791. [Google Scholar] [CrossRef] [Green Version]
- Kakimoto, K.; Nagayoshi, H.; Yoshida, J.; Akutsu, K.; Konishi, Y.; Toriba, A.; Hayakawa, K. Detection of Dechlorane Plus and brominated flame retardants in marketed fish in Japan. Chemosphere 2012, 89, 416–419. [Google Scholar] [CrossRef] [PubMed]
- Aznar-Alemany, Ò.; Trabalón, L.; Jacobs, S.; Barbosa, V.L.; Tejedor, M.F.; Granby, K.; Kwadijk, C.; Cunha, S.C.; Ferrari, F.; Vandermeersch, G.; et al. Occurrence of halogenated flame retardants in commercial seafood species available in European markets. Food Chem. Toxicol. 2017, 104, 35–47. [Google Scholar] [CrossRef]
- Abdel Malak, I.; Cariou, R.; Guiffard, I.; Vénisseau, A.; Dervilly-Pinel, G.; Jaber, F.; Le Bizec, B. Assessment of Dechlorane Plus and related compounds in foodstuffs and estimates of daily intake from Lebanese population. Chemosphere 2019, 235, 492–497. [Google Scholar] [CrossRef]
- Poma, G.; Malysheva, S.V.; Goscinny, S.; Malarvannan, G.; Voorspoels, S.; Covaci, A.; Van Loco, J. Occurrence of selected halogenated flame retardants in Belgian foodstuff. Chemosphere 2018, 194, 256–265. [Google Scholar] [CrossRef]
- Vaccher, V.; Ingenbleek, L.; Adegboye, A.; Hossou, S.E.; Kone, A.Z.; Oyedele, A.D.; Kisito, C.S.; Dembélé, Y.K.; Hu, R.; Abdel Malak, I.; et al. Levels of persistent organic pollutants (POPs) in foods from the first Regional Sub-Saharan Africa Total Diet Study. Environ. Int. 2020, 135, 492–497. [Google Scholar] [CrossRef]
- Tao, F.; Matsukami, H.; Suzuki, G.; Tue, N.M.; Viet, P.H.; Takigami, H.; Harrad, S. Emerging halogenated flame retardants and hexabromocyclododecanes in food samples from an e-waste processing area in Vietnam. Environ. Sci. Process. Impacts 2016, 18, 361–370. [Google Scholar] [CrossRef]
- Zheng, X.B.; Wu, J.P.; Luo, X.J.; Zeng, Y.H.; She, Y.Z.; Mai, B.X. Halogenated flame retardants in home-produced eggs from an electronic waste recycling region in South China: Levels, composition profiles, and human dietary exposure assessment. Environ. Int. 2012, 45, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Poma, G.; Malarvannan, G.; Voorspoels, S.; Symons, N.; Malysheva, S.V.; Van Loco, J.; Covaci, A. Determination of halogenated flame retardants in food: Optimization and validation of a method based on a two-step clean-up and gas chromatography-mass spectrometry. Food Control 2016, 65, 168–176. [Google Scholar] [CrossRef]
Compounds | Abbreviations | Molecular Formula | Chemical Structure |
---|---|---|---|
Mirex | C10Cl12 | ||
Dechlorane Plus | DP or DDC-CO | C18H12Cl12 | |
Dechlorane 601 | Dec-601 or DDC-ID | C20H12Cl12 | |
Dechlorane 602 | Dec-602 or DDC-DBF | C14H4Cl12O | |
Dechlorane 603 | Dec-603 or DDC-Ant | C17H8Cl12 | |
Dechlorane 604 | Dec-604 or HCTBPH | C13H4Br4Cl6 | |
Chlordene Plus | CP or DDC-PDD | C15H6Cl12 |
Authors, Year, [Reference] | Country | Unit | Scenario | Fish | Mirex | Dec-601 | Dec-602 | Dec-603 | Dec-604 | CP | syn-DP | anti-DP | ƩDP | fanti |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Abdel Malak et al., 2018 [20] | France | ww (lw) | LB-UB | Catfish (n = 102) | - | ND | 11.8–11.8 (555–555) | 11.9–11.9 (499–501) | - | 2.24–2.25 (100–102) | 2.60–4.60 (189–506) | 5.45–7.04 (370–637) | 8.05–11.64 (559–1143) | 0.67–0.60 (ww) |
Abdel Malak et al., 2019 [36] | Lebanon | ww | LB-UB | Fish (n = 21) | - | 0.0–0.3 | 7.0–7.8 | 0.2–0.3 | - | 0.4–0.5 | 2.0–4.2 | 3.0–3.9 | 5.0–8.0 | 0.60–0.48 |
Aznar-Alemany et al., 2017 [48] | Europe | lw | UB | Fish and seafood (n = 42) | - | - | 70 | 11.35 × 10³ | 90 | - | 63.78 × 10³ | 159.43 × 10³ | 223.21 × 10³ | 0.71 |
Giulivo et al., 2017 [46] | Greece | lw | UB | Freshwater fish (n = 4) | - | - | ND | ND | ND | - | ND | ND | - | - |
Slovenia Croatia Bosnia-Herzegovina Serbia | Freshwater fish (n = 10) | - | - | ND | ND | ND | - | 510 | 770 | 1.28 × 10³ | 0.60 | |||
Italy | Freshwater fish (n = 13) | - | - | 2.60 × 10³ | ND | 2.07 × 10³ | - | ND | ND | - | - | |||
Houde et al., 2014 [45] | Canada | lw | - | Yellow perch (n = 29) | - | - | ND | ND | ND | ND | ND | ND | ND | - |
Kakimoto et al., 2012 [47] | Japan | ww | LB | Saltwater fish (n = 20) | - | - | - | - | - | - | 0.83 | 1.39 | 2.22 | 0.62 |
Kakimoto et al., 2014 [37] | Japan | ww | - | Fish, shellfish, their products (n = 17) | - | - | - | - | - | - | 1.0 | 0.9 | 1.9 | 0.49 |
Kang et al., 2010 [16] | Korea | lw | - | Freshwater fish (n = 22) | - | - | - | - | - | - | 8.1 × 10³ | 16.9 × 10³ | 25.0 × 10³ | 0.68 |
Kim et al., 2014 [38] | Korea | ww (lw) | LB | Fish and shellfish (n = 70) | 26.33 (460.44) | - | 3.99 (166.04) | ND (0.55) | - | - | 8.25 (316.33) | 28.09 (1031.95) | 36.34 (1348.28) | 0.77 (ww) |
Klosterhaus et al., 2012 [14] | USA | lw | Fish (n = 14) | - | - | - | - | - | - | ND | 957 | 957 | 1.00 | |
L’Homme et al., 2015 [39] | Belgium | lw | UB | Salmon (n = 8) | 15.53 | - | 1.75 | 3.72 | - | 4.24 | 4.24 | 1.89 | 6.13 | 0.30 |
Poma et al., 2016 [54] | Belgium | ww | LB | Fish and fish products (n= 11) | - | - | - | - | - | - | ND | ND | ND | - |
Poma et al., 2018 [50] | Belgium | ww | LB | Fish and fish products (n= 61) | - | - | - | - | - | - | ND | ND | ND | - |
Ren et al., 2013 [43] | China | lw | - | River fish (n = 149) | - | - | - | - | - | - | 82 | 141 | 223 | 0.63 |
Rjabova et al., 2016 [19] | Latvia | lw | - | Baltic salmon (n = 25) | 11.10 × 10³ | - | 370.0 | 36.4 | ND | - | 85.6 | 159.0 | 244.6 | 0.65 |
Santín et al., 2013 [44] | Spain | lw | - | Freshwater fish (n = 48) | - | - | 52.2 × 10³ | 2.6 × 10³ | - | - | 520 | 620 | 1.14 × 10³ | 0.54 |
Sühring et al., 2013 [17] | Germany | ww (lw) | - | European eel (n = 45) | - | - | 600 (1.17 × 10³) | ND (10) | ND | - | 20 (590) | 10 (180) | 30 (770) | 0.23 (0.29) |
Sühring et al., 2016 [18] | Germany | ww | - | Freshwater fish (n = 44) | - | - | 77 | ND | ND | ND | 20 | 3 | 23 | 0.13 |
Tao et al., 2016 [52] | Vietnam | lw | - | River fish (n = 5) | - | - | - | - | - | - | ND | ND | ND | - |
Tomy et al., 2007 [9] | Canada | lw | Freshwater fish (n = 44) | - | - | - | - | - | - | 183 | 259 | 442 | 0.59 | |
Vaccher et al., 2020 [51] | Cameroon | ww | LB-UB | Fish (n = 4) | - | 0.00–0.37 | 6.34–6.64 | 0.21–0.64 | - | 0.51–0.52 | 0.89–1.59 | 1.00–1.31 | 1.89–2.90 | 0.52–0.45 |
Mali | Fish (n = 2) | - | 0.00–0.80 | 27.55–27.55 | 1.32–1.33 | - | 1.15–1.16 | 5.68–7.87 | 10.19–11.26 | 15.87–19.13 | 0.64–0.58 | |||
Benin | Fish (n = 2) | - | 0.00–1.03 | 4.37–4.38 | 0.71–0.88 | - | 0.69–0.71 | 3.68–5.55 | 5.88–7.25 | 9.56–12.80 | 0.61–0.57 | |||
Nigeria | Fish (n = 1) | - | 0.00–0.10 | 11.07–11.07 | 0.00–0.38 | - | 0.46–0.46 | 0.69–0.87 | 1.23–1.31 | 1.92–2.18 | 0.64–0.60 | |||
Wu et al., 2010 [12] | China | lw | Freshwater fish (n = 86) | - | - | - | - | - | - | 119.9 × 10³ | 219.8 × 10³ | 339.7 × 10³ | 0.65 | |
Control freshwater fish (n = 5) | - | - | - | - | - | - | 1.4 × 10³ | 7.4 × 10³ | 8.8 × 10³ | 0.85 | ||||
Zacs et al., 2018 [14] | Latvia | lw | LB | European eel (n = 58) | 60 | - | 250 | 10 | ND | - | 60 | 200 | 260 | 0.76 |
Zacs et al., 2021 [40] | Latvia | ww | LB-UB | Fish (n = 8) | 20.63–20.64 | - | 15.94–16.16 | 18.24–18.78 | - | - | 5.01–5.01 | 9.45–9.45 | 14.46–14.46 | 0.65–0.65 |
Authors, Year [Reference] | Country | Unit | Scenario | Food | Mirex | Dec-601 | Dec-602 | Dec-603 | CP | syn-DP | anti-DP | ƩDP | fanti |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Milk and dairy products | |||||||||||||
Abdel Malak et al., 2019 [49] | Lebanon | ww | LB-UB | Milk and dairy products (n = 13) | - | 0.0–0.1 | 2.9–3.3 | 0.05–0.1 | 0.01–0.03 | 1.0–2.0 | 0.7–1.1 | 1.7–3.1 | 0.41–0.35 |
Kakimoto et al., 2014 [37] | Japan | ww | - | Milk and dairy products (n = 5) | - | - | - | - | - | ND | ND | ND | - |
Kim et al., 2014 [38] | Korea | ww (lw) | LB | Milk and dairy products (n = 15) | 0.82 (36.68) | - | ND | ND | - | 4.42 (173.78) | 19.45 (754.74) | 23.87 (928.52) | 0.81 |
L’Homme et al., 2015 [39] | Belgium | lw | UB | Milk (n = 16) | 0.50 | - | 0.89 | 1.06 | 0.26 | 12.50 | 5.11 | 17.61 | 0.30 |
Poma et al., 2016 [54] | Belgium | ww | LB | Milk (n = 1) | - | - | - | - | - | ND | ND | ND | - |
Poma et al., 2018 [50] | Belgium | ww | LB | Milk and dairy products (n = 38) | - | - | - | - | - | 2 | 7 | 9 | 0.78 |
Vaccher et al., 2020 [51] | Cameroon | ww | LB-UB | Milk and dairy products (n = 1) | - | 0.00–0.84 | 0.28–0.57 | 0.00–1.24 | 0.00–0.09 | 0.00–1.30 | 0.25–0.89 | 0.25–2.19 | 1–0.40 |
Mali | Milk and dairy products (n = 2) | - | 0.00–0.18 | 0.31–0.31 | 0.00–0.16 | 0.02–0.04 | 0.21–0.98 | 0.39–0.90 | 0.60–1.88 | 0.65–0.48 | |||
Benin | Milk and dairy products (n = 3) | - | 0.00–0.39 | 0.17–0.17 | 0.00–0.31 | 0.00–0.02 | 0.07–0.75 | 0.06–0.69 | 0.13–1.44 | 0.46–0.48 | |||
Nigeria | Milk and dairy products (n = 1) | - | 0.00–0.94 | 0.66- 0.66 | 0.00–0.66 | 0.00–0.13 | 0.66–1.29 | 2.18–2.46 | 2.84–3.75 | 0.76–0.66 | |||
Zacs et al., 2021 [40] | Latvia | ww | LB-UB | Milk and dairy products (n = 8) | 0.88–0.88 | - | 3.44–3.60 | 2.39–2.80 | - | 5.60–5.60 | 10.81–10.81 | 16.41–16.41 | 0.66–0.66 |
Egg and egg products | |||||||||||||
Abdel Malak et al., 2019 [49] | Lebanon | ww | LB-UB | Egg (n = 5) | - | 0.0–0.3 | 1.2–1.7 | 0.2–0.4 | 1.36–1.41 | 1.7–3.1 | 5.2–5.8 | 6.9–8.9 | 0.75–0.65 |
Kakimoto et al., 2014 [37] | Japan | ww | - | Meat and eggs (n = 13) | - | - | - | - | - | 0.6 | 0.9 | 1.5 | 0.60 |
Kim et al., 2014 [38] | Korea | ww (lw) | LB | Egg (n = 5) | ND | - | ND | ND | - | 3.19 (17.64) | 12.12 (67.32) | 15.31 (84.96) | 0.79 |
L’Homme et al., 2015 [39] | Belgium | lw | UB | Egg (n = 8) | 0.21 | - | 1.28 | 2.76 | 0.94 | 20.00 | 6.27 | 26.27 | 0.24 |
Poma et al., 2016 [54] | Belgium | ww | LB | Egg (n = 2) | - | - | - | - | - | ND | ND | ND | - |
Poma et al., 2018 [50] | Belgium | ww | LB | Egg and egg products (n = 4) | - | - | - | - | 32 | 127 | 159 | 0.80 | |
Tao et al., 2016 [52] | Vietnam | lw | - | Chicken egg (n = 15) | - | - | - | - | - | 140 × 10³ | 450 × 10³ | 590 × 10³ | 0.76 |
Vietnam Japan | lw | - | Control chicken egg (n = 2) | - | - | - | - | - | ND | ND | ND | - | |
Vaccher et al., 2020 [51] | Cameroon | ww | LB-UB | Eggs (n = 1) | - | 0.00–0.06 | 0.57–0.65 | 1.80–1.80 | 0.00–0.01 | 2.02–2.45 | 6.46–6.64 | 8.48–9.09 | 0.76–0.73 |
Mali | Eggs (n = 1) | - | 0.00–0.26 | 0.79–0.79 | 0.00–0.31 | 0.00–0.05 | 0.00–0.93 | 1.27–1.74 | 1.27–2.67 | 1.00–0.65 | |||
Benin | Eggs (n = 1) | - | 0.00–0.06 | 0.00–0.01 | 0.29–0.29 | 0.00–0.02 | 1.28–1.67 | 3.50–3.78 | 4.78–5.45 | 0.73–0.69 | |||
Nigeria | Eggs (n = 1) | - | 0.00–0.38 | 1.15–1.15 | 0.00–0.50 | 0.00–0.08 | 1.82–2.00 | 4.24–4.32 | 6.06–6.32 | 0.70–0.68 | |||
Zacs et al., 2021 [40] | Latvia | ww | LB-UB | Eggs (n = 8) | 0.00–1.27 | - | 0.71–0.59 | 0.39–0.60 | - | 8.03–8.03 | 22.31–22.31 | 30.33–30.33 | 0.74–0.74 |
Zheng et al., 2012 [53] | China | lw | Chicken egg (n = 33) | - | - | - | - | - | 407 × 10³ | 1192 × 10³ | 1599 × 10³ | 0.75 | |
Control chicken egg (n = 8) | - | - | - | - | - | 28 × 10³ | 95.6 × 10³ | 123.6 × 10³ | 0.77 | ||||
Meat and meat products | |||||||||||||
Abdel Malak et al., 2019 [49] | Lebanon | ww | LB-UB | Meat and poultry (n = 12) | - | 0.0–0.2 | 0.0–0.7 | 0.1–0.3 | 0.0–0.05 | 10.1–1.8 | 7.4–8.1 | 17.4–19.9 | 0.43–0.41 |
Kakimoto et al., 2014 [37] | Japan | ww | - | Meat and eggs (n = 13) | - | - | - | - | - | 0.6 | 0.9 | 1.5 | 0.60 |
Kim et al., 2014 [38] | Korea | ww (lw) | LB | Meat and meat products (n = 35) | 1.71 (11.12) | - | 3.54 (21.55) | ND | - | 11.61 (234.74) | 40.25 (724.62) | 51.86 (959.36) | 0.78 (ww) |
L’Homme et al., 2015 [39] | Belgium | lw | UB | Meat and poultry (n = 16) | 0.16 | - | 0.43 | 0.20 | 0.08 | 7.14 | 2.88 | 10.02 | 0.28 |
Poma et al., 2016 [54] | Belgium | ww | LB | Meat and meat products (n = 1) | - | - | - | - | - | ND | ND | ND | - |
Poma et al., 2018 [50] | Belgium | ww | LB | Meat and poultry (n = 3) | - | - | - | - | - | 2 | 8 | 10 | 0.80 |
Tao et al., 2016 [52] | Vietnam | lw | - | Chicken (n = 15) | - | - | - | - | 693 × 10³ | 1683 × 10³ | 2376 × 10³ | 0.71 | |
Vietnam | lw | - | Pork (n = 2) | ND | ND | ND | - | ||||||
Vietnam Japan | lw | - | Control chicken (n = 4) | ND | ND | ND | - | ||||||
Vietnam | lw | - | Control pork (n = 1) | ND | ND | ND | - | ||||||
Vaccher et al., 2020 [51] | Cameroon | ww | LB-UB | Meat (n = 2) | - | 0.00–0.20 | 0.80–0.93 | 0.00–0.75 | 0.11–0.12 | 6.09–6.73 | 14.04–14.72 | 20.13–21.45 | 0.70–0.69 |
Mali | Meat (n = 1) | - | 0.00–0.12 | 1.80–1.80 | 0.00–0.42 | 0.00–0.01 | 1.66–3.16 | 2.10–2.83 | 3.76–5.99 | 0.56–0.47 | |||
Benin | Meat (n = 2) | - | 0.00–0.15 | 1.56–1.56 | 0.00–0.24 | 0.00–0.02 | 0.57–1.19 | 1.61–2.07 | 2.18–3.26 | 0.74–0.63 | |||
Nigeria | Meat (n = 2) | - | 0.00–0.25 | 1.41–1.41 | 0.00–0.88 | 0.00–0.04 | 2.02–2.26 | 4.29–4.39 | 6.31–6.65 | 0.70–0.66 | |||
Zacs et al., 2021 [40] | Latvia | ww | LB-UB | Meat (n = 8) | 0.03–0.58 | - | 0.67–1.38 | 0.59–1.43 | - | 2.64–2.64 | 5.88–5.88 | 8.52–8.52 | 0.69–0.69 |
Authors, Year [Reference] | Country | Unit | Scenario | Food | Mirex | Dec-601 | Dec-602 | Dec-603 | CP | syn-DP | anti-DP | ƩDP | fanti |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Animal and Vegetable fat | |||||||||||||
Abdel Malak et al., 2019 [49] | Lebanon | ww | LB-UB | Vegetable oil (n = 7) | - | 0.0–4.6 | 3.0–11.8 | 2.3–3.9 | 3.2–3.7 | 2.4–25.0 | 18.7–27.9 | 21.1–52.8 | 0.89–0.53 |
Kakimoto et al., 2014 [37] | Japan | ww | - | Oils and fats (n = 4) | - | - | - | - | - | ND | ND | ND | - |
Kim et al., 2014 [38] | Korea | ww | LB | Soy oil (n = 5) | ND | - | ND | ND | - | 3.19 | 12.12 | 15.31 | 0.79 |
L’Homme et al., 2015 [39] | Belgium | lw | UB | Animal fat (n = 18) | 0.43 | 0.75 | 0.57 | 0.16 | 12.50 | 6.60 | 19.10 | 0.35 | |
Vegetable oil (n = 2) | 0.13 | 0.75 | 0.50 | 0.20 | 12.50 | 6.61 | 19.11 | 0.35 | |||||
Poma et al., 2016 [54] | Belgium | ww | LB | Vegetable fat (n = 1) | ND | ND | ND | - | |||||
Poma et al., 2018 [50] | Belgium | ww | LB | Animal and Vegetable fat (n = 9) | ND | ND | ND | - | |||||
Vaccher et al., 2020 [51] | Cameroon | ww | LB-UB | Oil and fat (n = 3) | - | 0.00–2.08 | 1.66–3.00 | 0.00–6.03 | 0.67–0.84 | 0.00–4.53 | 5.2–6.03 | 5.2–10.65 | 1.00–0.57 |
Mali | Oil and fat (n = 2) | - | 0.00–3.62 | 1.56–1.56 | 0.00–2.56 | 0.00–0.54 | 0.00–3.21 | 1.97–7.46 | 1.97–10.67 | 1.00–0.70 | |||
Benin | Oil and fat (n = 2) | - | 0.00–5.89 | 1.88–1.88 | 4.5–6.60 | 0.00–0.19 | 0.00–2.95 | 1.53–8.18 | 1.53–11.13 | 1.00–0.73 | |||
Nigeria | Oil and fat (n = 2) | - | 0.00–2.99 | 2..44–2.44 | 0.00–1.99 | 0.21–0.58 | 4.21–5.80 | 12.23–12.94 | 16.44–18.74 | 0.74–0.69 | |||
Zacs et al., 2021 [40] | Latvia | ww | LB-UB | Vegetable oil (n = 4) | 0.00–0.79 | - | 0.31–2.02 | 0.00–5.76 | - | 2.00–4.40 | 5.57–10.00 | 7.57–14.40 | 0.74–0.69 |
Other foods | |||||||||||||
Kakimoto et al., 2014 [37] | Japan | ww | - | Legumes and their products (n = 7) | - | - | - | - | - | 0.9 | 1.9 | 2.8 | 0.68 |
- | Sugar and confectionary (n = 7) | - | - | - | - | - | 1.0 | 2.3 | 3.3 | 0.70 | |||
Kim et al., 2014 [38] | Korea | ww | LB | Vegetables (n = 15) | ND | - | ND | ND | - | 0.42 | 1.86 | 2.28 | 0.82 |
Grain (n = 5) | ND | - | ND | ND | - | 2.95 | 18.73 | 21.68 | 0.86 | ||||
Fruit (n = 5) | ND | - | ND | ND | - | 0.99 | 1.23 | 2.22 | 0.55 | ||||
Noodle (n = 5) | ND | - | ND | ND | - | 9.33 | 40.83 | 50.16 | 0.81 | ||||
Seaweed (n = 5) | ND | - | ND | ND | - | 2.82 | 7.11 | 9.94 | 0.72 | ||||
Legume (n = 5) | ND | - | ND | ND | - | 3.59 | 21.05 | 24.65 | 0.85 | ||||
Condiment (n = 5) | ND | - | ND | ND | - | 4.81 | 27.81 | 32.62 | 0.85 | ||||
Vaccher et al., 2020 [51] | Nigeria | ww | LB-UB | Miscellaneous (n = 2) | - | 0.00–1.94 | 0.37–0.57 | 0.00–4.49 | 0.00–0.28 | 7.51–8.14 | 21.83–22.11 | 29.43–30.25 | 0.74–0.73 |
Cameroon | ww | LB-UB | Nuts and seeds (n = 1) | - | 0.00–2.67 | 0.35–0.85 | 0.00–2.26 | 0.00–0.31 | 3.21–5.73 | 9.97–11.05 | 13.18–16.78 | 0.76–0.66 | |
Mali | Nuts and seeds (n = 1) | - | 0.00–1.11 | 1.82–1.82 | 0.00–0.62 | 0.72–0.72 | 2.11–4.18 | 8.14–9.15 | 10.25–13.33 | 0.79–0.69 | |||
Benin | Nuts and seeds (n = 1) | - | 0.00–0.41 | 0.11–0.11 | 0.00–0.40 | 0.00–0.05 | 6.65–7.54 | 3.34–4.00 | 9.99–11.54 | 0.33–0.35 | |||
Nigeria | Nuts and seeds (n = 1) | - | 0.00–0.17 | 0.05–0.05 | 0.00–0.29 | 0.00–0.02 | 0.89–1.06 | 0.89–0.97 | 1.78–2.03 | 0.50–0.52 | |||
Zacs et al., 2021 [40] | Latvia | ww | LB-UB | Bread and cereals (n = 4) | 0.96–1.00 | - | 3.83–3.86 | 3.18–3.26 | - | 5.97–5.97 | 8.35–8.50 | 14.32–14.40 | 0.58–0.59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghelli, E.; Cariou, R.; Dervilly, G.; Pagliuca, G.; Gazzotti, T. Dechlorane Plus and Related Compounds in Food—A Review. Int. J. Environ. Res. Public Health 2021, 18, 690. https://doi.org/10.3390/ijerph18020690
Ghelli E, Cariou R, Dervilly G, Pagliuca G, Gazzotti T. Dechlorane Plus and Related Compounds in Food—A Review. International Journal of Environmental Research and Public Health. 2021; 18(2):690. https://doi.org/10.3390/ijerph18020690
Chicago/Turabian StyleGhelli, Elisa, Ronan Cariou, Gaud Dervilly, Giampiero Pagliuca, and Teresa Gazzotti. 2021. "Dechlorane Plus and Related Compounds in Food—A Review" International Journal of Environmental Research and Public Health 18, no. 2: 690. https://doi.org/10.3390/ijerph18020690
APA StyleGhelli, E., Cariou, R., Dervilly, G., Pagliuca, G., & Gazzotti, T. (2021). Dechlorane Plus and Related Compounds in Food—A Review. International Journal of Environmental Research and Public Health, 18(2), 690. https://doi.org/10.3390/ijerph18020690