Efficacy of Three Commercial Disinfectants in Reducing Microbial Surfaces’ Contaminations of Pharmaceuticals Hospital Facilities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microbial Species Required by USP 35 <1072> and In-House GMP Facility Strains
2.2. Microorganism Suspension Preparation and Titer Determination
2.3. Disinfectants
2.4. Preparation of Coupons
2.5. Analytical Method and Experimental Protocol to Evaluate Disinfectants’ Efficacy
2.6. Log10 Reduction Index and Acceptance Criteria
- -
- Na(Msusp) = Na × DF × V
- -
- Nv(Msusp) = Nv × DF × V
2.7. Microorganisms Identification
2.8. Robustness
2.9. Cleaning and Disinfection Standard Operating Procedure
- (1)
- Saturation of the wipes by immersion in the first disinfectant solution
- (2)
- Squeezing the wipes to remove excess liquid;
- (3)
- Passing the wipe over the surface, proceeding from top to bottom and from left to right, overlapping the passes and making sure that there were no areas where the wipe has not been passed;
- (4)
- Contact time of action of disinfectant was 10 min;
- (5)
- For the surfaces described above, repetition of the first 4 points with the Dec-ahol.
2.10. Validation of Cleaning and Disinfection Procedure
3. Results
3.1. Microorganisms Identification and Purity
3.2. Disinfectants’ Efficacy and Log10 Reduction Index
3.3. Validation of Cleaning and Disinfection Procedure
3.4. Robustness
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. WHO Report on the Burden of Endemic Health Care-Associated Infection Worldwide; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Montagna, M.T.; Triggiano, F.; Barbuti, G.; Bartolomeo, N.; De Giglio, O.; Diella, G.; Lopuzzo, M.; Rutigliano, S.; Serio, G.; Caggiano, G. Study on the In Vitro Activity of Five Disinfectants against Nosocomial Bacteria. Int. J. Environ. Res. Public Health 2019, 16, 1895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galvin, S.; Dolan, A.; Cahill, O.; Daniels, S.; Humphreys, H. Microbial monitoring of the hospital environment: Why and how? J. Hosp. Infect. 2012, 82, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Dettenkofer, M.; Spencer, R.C. Importance of environmental decontamination—A critical view. J. Hosp. Infect. 2007, 65 (Suppl. S2), 55–57. [Google Scholar] [CrossRef]
- Denyer, S.P.; Stewart, G.S.A.B. Mechanisms of action of disinfectants. Int. Biodeterior. Biodegrad. 1998, 41, 261–268. [Google Scholar] [CrossRef]
- McDonnell, G.; Russell, A.D. Antiseptics and disinfectants: Activity, action, and resistance. Clin. Microbiol. Rev. 1999, 12, 147–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The United States Pharmacopeial Convention. United States Pharmacopeia USP 35 <1072> Disinfectants and Antiseptics; United States Pharmacopeial Convention: North Bethesda, MD, USA, 2012. [Google Scholar]
- Rawlinson, S.; Ciric, L.; Cloutman-Green, E. How to carry out microbiological sampling of healthcare environment surfaces? A review of current evidence. J. Hosp. Infect. 2019, 103, 363–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willison-Parry, D.; Yang, S.; Forng, R.-Y.; Cirbo, T.; Mcmeel, A.; Kiler, B.; Phillion, C. Disinfectant Efficacy: Understanding the Expectations and How to Design Effective Studies That Include Leveraging Multi-Site Data to Drive an Efficient Program. PDA J. Pharm. Sci. Technol. 2020, 74, 249–263. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, Z.H.; Hasan, A.A.; Kerth, C.R.; Riley, D.G.; Taylor, T.M. Increased Effectiveness of Microbiological Verification by Concentration-Dependent Neutralization of Sanitizers Used in Poultry Slaughter and Fabrication Allowing Salmonella enterica Survival. Foods 2018, 7, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandle, T. A review of cleanroom microflora: Types, trends, and patterns. PDA J. Pharm. Sci. Technol. 2011, 65, 392–403. [Google Scholar] [CrossRef] [PubMed]
- Exner, M.; Vacata, V.; Hornei, B.; Dietlein, E.; Gebel, J. Household cleaning and surface disinfection: New insights and strategies. J. Hosp. Infect. 2004, 56 (Suppl. S2), S70–S75. [Google Scholar] [CrossRef] [PubMed]
- D’Apolito, D.; D’Aiello, L.; Pasqua, S.; Pecoraro, L.; Barbera, F.; Douradinha, B.; Di Martino, G.; Di Bartolo, C.; Conaldi, P.G. Strategy and validation of a consistent and reproducible nucleic acid technique for mycoplasma detection in advanced therapy medicinal products. Biologicals 2020, 64, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Loveday, H.P.; Wilson, J.A.; Pratt, R.J.; Golsorkhi, M.; Tingle, A.; Bak, A.; Browne, J.; Prieto, J.; Wilcox, M.; UK Department of Health. epic3: National evidence-based guidelines for preventing healthcare-associated infections in NHS hospitals in England. J. Hosp. Infect. 2014, 86 (Suppl. S1), S1–S70. [Google Scholar] [CrossRef]
- Song, X.; Vossebein, L.; Zille, A. Efficacy of disinfectant-impregnated wipes used for surface disinfection in hospitals: A review. Antimicrob. Resist. Infect. Control 2019, 8, 139. [Google Scholar] [CrossRef] [Green Version]
- Russell, A.D. Bacterial spores and chemical sporicidal agents. Clin. Microbiol. Rev. 1990, 3, 99–119. [Google Scholar] [CrossRef]
- Bounoure, F.; Fiquet, H.; Arnaud, P. Comparison of hydrogen peroxide and peracetic acid as isolator sterilization agents in a hospital pharmacy. Am. J. Health Syst. Pharm. 2006, 63, 451–455. [Google Scholar] [CrossRef]
- Spiller, H.A.; Quadrani-Kushner, D.A.; Cleveland, P. A five year evaluation of acute exposures to phenol disinfectant (26%). J. Toxicol. Clin. Toxicol. 1993, 31, 307–313. [Google Scholar] [CrossRef]
- Kusumaningrum, H.D.; Paltinaite, R.; Koomen, A.J.; Hazeleger, W.C.; Rombouts, F.M.; Beumer, R.R. Tolerance of Salmonella Enteritidis and Staphylococcus aureus to surface cleaning and household bleach. J. Food Prot. 2003, 66, 2289–2295. [Google Scholar] [CrossRef]
- Bloss, R.; Meyer, S.; Kampf, G. Adsorption of active ingredients of surface disinfectants depends on the type of fabric used for surface treatment. J. Hosp. Infect. 2010, 75, 56–61. [Google Scholar] [CrossRef]
- Cadnum, J.L.; Hurless, K.N.; Kundrapu, S.; Donskey, C.J. Transfer of Clostridium difficile spores by nonsporicidal wipes and improperly used hypochlorite wipes: Practice + product = perfection. Infect. Control Hosp. Epidemiol. 2013, 34, 441–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tyan, K.; Jin, K.; Kang, J. Novel colour additive for bleach disinfectant wipes reduces corrosive damage on stainless steel. J. Hosp. Infect. 2019, 103, 227–230. [Google Scholar] [CrossRef]
Reference Strains | In-House GMP Facility Strains |
---|---|
Candida albicans ATCC 10231 | Kocuria rosea |
Aspergillus brasiliensis ATCC 16404 | Staphyloccus epidermidis |
Staphylococcus aureus ATCC 6538 | Micrococcus luteus |
Pseudomonas aeruginosa ATCC 15442 | |
Escherichia coli ATCC 8739 | |
Bacillus subtilis ATCC 6633 | |
Bacillus subtilis spore ATCC 6633 |
6 Hydrogen Peroxide | Microorganisms | ||||||
---|---|---|---|---|---|---|---|
Surface | Log10 ± St. Dev. | ||||||
B. subtilis | S. aureus | Spores B. subtilis | P. aeruginosa | E. coli | C. albicans | A. brasiliensis | |
Glass | 4.46 ± 0.01 | 4.52 ± 0.01 | 2.64 ± 0.08 | 4.59 ± 0.01 | 4.64 ± 0.01 | 4.47 ± 0.01 | 4.11 ± 0.01 |
AISI 307 Steel | 4.49 ± 0.01 | 4.41 ± 0.01 | 2.66 ± 0.06 | 4.51 ± 0.01 | 4.58 ± 0.01 | 4.50 ± 0.01 | 4.09 ± 0.03 |
PVC | 4.50 ± 0.01 | 4.44 ± 0.01 | 2.62 ± 0.07 | 4.66 ± 0.01 | 4.58 ± 0.01 | 4.50 ± 0.01 | 4.07 ± 0.03 |
Melamine | 4.49 ± 0.01 | 4.44 ± 0.01 | 2.68 ± 0.05 | 4.58 ± 0.01 | 4.63 ± 0.01 | 4.49 ± 0.01 | 4.20 ± 0.02 |
Compact Policarbonate | 4.47 ± 0.01 | 4.44 ± 0.01 | 2.64 ± 0.04 | 4.63 ± 0.01 | 4.59 ± 0.01 | 4.45 ± 0.01 | 4.18 ± 0.02 |
Quaternary ammonium | Microorganisms | ||||||
Surface | Log10 ± St. Dev. | ||||||
B. subtilis | S. aureus | Spores B. subtilis | P. aeruginosa | E. coli | C. albicans | A. brasiliensis | |
Glass | 4.24 ± 0.02 | 4.38 ± 0.02 | - | 4.50 ± 0.01 | 4.50 ± 0.01 | 4.24 ± 0.02 | 3.87 ± 0.03 |
AISI 307 Steel | 4.28 ± 0.02 | 4.36 ± 0.02 | - | 4.49 ± 0.00 | 4.48 ± 0.01 | 4.36 ± 0.02 | 3.90 ± 0.01 |
PVC | 4.30 ± 0.02 | 4.41 ± 0.01 | - | 4.58 ± 0.01 | 4.49 ± 0.01 | 4.28 ± 0.02 | 3.97 ± 0.02 |
Melamine | 4.38 ± 0.02 | 4.40 ± 0.02 | - | 4.46 ± 0.01 | 4.49 ± 0.01 | 4.34 ± 0.02 | 3.91 ± 0.04 |
Compact Policarbonate | 4.23 ± 0.02 | 4.42 ± 0.00 | - | 4.60 ± 0.01 | 4.47 ± 0.01 | 4.36 ± 0.02 | 3.99 ± 0.04 |
70 Isopropanol | Microorganisms | ||||||
Surface | Log10 ± St. Dev. | ||||||
B. subtilis | S. aureus | Spores B. subtilis | P. aeruginosa | E. coli | C. albicans | A. brasiliensis | |
Glass | 4.18 ± 0.02 | 4.26 ± 0.01 | - | 4.35 ± 0.02 | 4.31 ± 0.02 | 4.20 ± 0.02 | 3.84 ± 0.05 |
AISI 307 Steel | 4.24 ± 0.02 | 4.33 ± 0.02 | - | 4.37 ± 0.02 | 4.36 ± 0.02 | 4.19 ± 0.02 | 3.82 ± 0.03 |
PVC | 4.25 ± 0.01 | 4.30 ± 0.02 | - | 4.52 ± 0.01 | 4.35 ± 0.02 | 4.20 ± 0.01 | 3.92 ± 0.04 |
Melamine | 4.36 ± 0.02 | 4.25 ± 0.02 | - | 4.40 ± 0.00 | 4.38 ± 0.02 | 4.25 ± 0.01 | 3.84 ± 0.05 |
Compact Policarbonate | 4.19 ± 0.03 | 4.39 ± 0.01 | - | 4.49 ± 0.01 | 4.45 ± 0.01 | 4.21 ± 0.02 | 3.83 ± 0.05 |
6% Hydrogen peroxide IPA 70% | Microorganisms | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Surface | Log10 ± St. Dev. | |||||||||
B. subtilis | S. aureus | Spores B. subtilis | P. aeruginosa | E. coli | C. albicans | A. brasiliensis | K. rosea | S. epidermidis | M. luteus | |
Glass | 7.40 ± 0.16 | 7.40 ± 0.22 | 6.74 ± 0.09 | 7.40 ± 0.13 | 7.40 ± 0.16 | 7.40 ± 0.16 | 7.70 ± 0.26 | 7.22 ± 0.11 | 7.22 ± 0.12 | 7.40 ± 0.15 |
AISI 307 Steel | 7.22 ± 0.19 | 7.70 ± 0.30 | 6.66 ± 0.08 | 7.40 ± 0.20 | 7.70 ± 0.32 | 7.70 ± 0.34 | 7.40 ± 0.13 | 7.40 ± 0.10 | 7.40 ± 0.15 | 7.22 ± 0.16 |
PVC | 7.40 ± 0.27 | 7.40 ± 0.23 | 6.70 ± 0.08 | 7.70 ± 0.30 | 7.70 ± 0.23 | 7.70 ± 0.30 | 7.70 ± 0.30 | 7.22 ± 0.09 | 7.40 ± 0.18 | 7.40 ± 0.20 |
Melamine | 7.22 ± 0.21 | 7.40 ± 0.20 | 6.66 ± 0.07 | 7.40 ± 0.26 | 7.70 ± 0.28 | 7.70 ± 0.20 | 7.70 ± 0.26 | 7.40 ± 0.10 | 7.22 ± 0.12 | 7.22 ± 0.16 |
Compact Policarbonate | 7.70 ± 0.30 | 7.22 ± 0.21 | 6.66 ± 0.07 | 7.70 ± 0.23 | 7.70 ± 0.28 | 7.70 ± 0.30 | 7.40 ± 0.15 | 7.22 ± 0.12 | 7.10 ± 0.11 | 7.40 ± 0.15 |
Quaternary ammonium IPA 70% | Microorganisms | |||||||||
Surface | Log10 ± St. Dev. | |||||||||
B. subtilis | S. aureus | Spores B. subtilis | P. aeruginosa | E. coli | C. albicans | A. brasiliensis | K. rosea | S. epidermidis | M. luteus | |
Glass | 6.80 ± 0.13 | 6.74 ± 0.14 | 6.52 ± 0.10 | 6.70 ± 0.16 | 6.70 ± 0.09 | 6.74 ± 0.11 | 6.74 ± 0.11 | 6.70 ± 0.10 | 6.70 ± 0.11 | 6.66 ± 0.08 |
AISI 307 Steel | 6.66 ± 0.09 | 6.74 ± 0.12 | 6.66 ± 0.09 | 7.22 ± 0.16 | 6.74 ± 0.10 | 6.80 ± 0.16 | 6.74 ± 0.11 | 6.70 ± 0.09 | 6.66 ± 0.07 | 6.70 ± 0.09 |
PVC | 6.80 ± 0.14 | 6.80 ± 0.16 | 6.49 ± 0.07 | 6.74 ± 0.07 | 6.80 ± 0.12 | 6.92 ± 0.17 | 6.80 ± 0.12 | 6.74 ± 0.12 | 6.74 ± 0.09 | 6.70 ± 0.08 |
Melamine | 6.74 ± 0.12 | 6.80 ± 0.14 | 6.62 ± 0.11 | 6.74 ± 0.09 | 6.74 ± 0.11 | 6.74 ± 0.14 | 6.74 ± 0.09 | 6.74 ± 0.10 | 6.74 ± 0.08 | 6.70 ± 0.07 |
Compact Policarbonate | 6.74 ± 0.09 | 6.74 ± 0.15 | 6.49 ± 0.11 | 6.74 ± 0.10 | 6.74 ± 0.11 | 6.80 ± 0.13 | 6.80 ± 0.09 | 6.70 ± 0.13 | 6.66 ± 0.07 | 6.70 ± 0.10 |
6% Hydrogen peroxide + IPA 70% | Microorganisms a | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Surface | B. subtilis | S. aureus | Spores B. subtilis | P. aeruginosa | E. coli | C. albicans | A. brasiliensis | K. rosea | S. epidermidis | M. luteus |
Glass | 2 ± 0.9 | 2 ± 1.3 | 9 ± 2.2 | 2 ± 0.7 | 2 ± 0.9 | 2 ± 0.9 | 1 ± 0.8 | 3 ± 0.9 | 3 ± 1 | 2 ± 0.8 |
AISI 307 Steel | 3 ± 1.6 | 1 ± 1 | 11 ± 2.1 | 2 ± 1.2 | 1 ± 1.1 | 1 ± 1.2 | 2 ± 0.7 | 2 ± 0.5 | 2 ± 0.8 | 3 ± 1.3 |
PVC | 2 ± 1.7 | 2 ± 1.4 | 10 ± 1.9 | 1 ± 1 | 1 ± 0.7 | 1 ± 1 | 1 ± 1 | 3 ± 0.7 | 2.4 ± 1 | 2 ± 1.2 |
Melamine | 3 ± 1.9 | 2 ± 1.2 | 11 ± 1.9 | 2 ± 1.6 | 1 ± 0.9 | 1 ± 0.6 | 1 ± 0.8 | 2 ± 0.5 | 2.7 ± 1 | 3 ± 1.3 |
Compact Policarbonate | 1 ± 1 | 3 ± 1.9 | 11 ± 2 | 1 ± 0.7 | 1 ± 0.9 | 1 ± 1 | 2 ± 0.8 | 3 ± 1 | 4 ± 1.2 | 2 ± 0.8 |
Quaternary ammonium + IPA 70% | Microorganisms a | |||||||||
Surface | B. subtilis | S. aureus | Spores B. subtilis | P. aeruginosa | E. coli | C. albicans | A. brasiliensis | K. rosea | S. epidermidis | M. luteus |
Glass | 8 ± 2.7 | 9 ± 3.4 | 15 ± 4 | 10 ± 4.5 | 10 ± 2.2 | 9 ± 2.5 | 9 ± 2.6 | 10 ± 2.6 | 10 ± 2.8 | 11 ± 2.2 |
AISI 307 Steel | 11 ± 2.5 | 9 ± 2.9 | 11 ± 2.5 | 3 ± 1.3 | 9 ± 2.3 | 8 ± 3.5 | 9 ± 2.6 | 10 ± 2.3 | 11 ± 2 | 10 ± 2.3 |
PVC | 8 ± 3.1 | 8 ± 3.6 | 16 ± 3 | 9 ± 1.6 | 8 ± 2.6 | 6 ± 2.8 | 8 ± 2.5 | 9 ± 3 | 9 ± 2.2 | 10 ± 2 |
Melamine | 9 ± 3 | 8 ± 3 | 12 ± 3.5 | 9 ± 2.1 | 9 ± 2.6 | 9 ± 3.4 | 9 ± 2.2 | 9 ± 2.3 | 9 ± 1.8 | 10 ± 1.7 |
Compact Policarbonate | 9 ± 2.1 | 9 ± 3.7 | 16 ± 4.5 | 9 ± 2.4 | 8 ± 2.5 | 8 ± 2.9 | 8 ± 1.8 | 10 ± 3.5 | 11 ± 2 | 10 ± 2.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Martino, G.; Pasqua, S.; Douradinha, B.; Monaco, F.; Di Bartolo, C.; Conaldi, P.G.; D’Apolito, D. Efficacy of Three Commercial Disinfectants in Reducing Microbial Surfaces’ Contaminations of Pharmaceuticals Hospital Facilities. Int. J. Environ. Res. Public Health 2021, 18, 779. https://doi.org/10.3390/ijerph18020779
Di Martino G, Pasqua S, Douradinha B, Monaco F, Di Bartolo C, Conaldi PG, D’Apolito D. Efficacy of Three Commercial Disinfectants in Reducing Microbial Surfaces’ Contaminations of Pharmaceuticals Hospital Facilities. International Journal of Environmental Research and Public Health. 2021; 18(2):779. https://doi.org/10.3390/ijerph18020779
Chicago/Turabian StyleDi Martino, Giuseppina, Salvatore Pasqua, Bruno Douradinha, Francesco Monaco, Chiara Di Bartolo, Pier Giulio Conaldi, and Danilo D’Apolito. 2021. "Efficacy of Three Commercial Disinfectants in Reducing Microbial Surfaces’ Contaminations of Pharmaceuticals Hospital Facilities" International Journal of Environmental Research and Public Health 18, no. 2: 779. https://doi.org/10.3390/ijerph18020779
APA StyleDi Martino, G., Pasqua, S., Douradinha, B., Monaco, F., Di Bartolo, C., Conaldi, P. G., & D’Apolito, D. (2021). Efficacy of Three Commercial Disinfectants in Reducing Microbial Surfaces’ Contaminations of Pharmaceuticals Hospital Facilities. International Journal of Environmental Research and Public Health, 18(2), 779. https://doi.org/10.3390/ijerph18020779