Fraction and Number of Unemployed Associated with Self-Reported Low Back Pain: A Nation-Wide Cross-Sectional Study in Japan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Study Participants
2.2. Measurements
2.2.1. Exposure: Self-Reported Low Back Pain (LBP)
2.2.2. Outcome: Employment Status
2.2.3. Covariates
2.3. Statistical Analysis
2.4. Additional Analyses
2.5. Ethics
3. Results
3.1. Characteristics of the Study Participants
3.2. Association between Self-Reported LBP and Unemployment by Gender
3.3. PAFs for Unemployment Associated with Self-Reported LBP by Gender
3.4. Relationship of Self-Reported LBP with Unemployed Looking for Work by Gender
3.5. Additional Analyses for Women
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1211–1259. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Health, Labour and Welfare, Japan. Estimates of National Medical Care Expenditure 2016. Available online: https://www.mhlw.go.jp/toukei/list/37-21.html (accessed on 15 September 2021).
- Dieleman, J.L.; Cao, J.; Chapin, A.; Chen, C.; Li, Z.; Liu, A.; Horst, C.; Kaldjian, A.; Matyasz, T.; Scott, K.W.; et al. US Health Care Spending by Payer and Health Condition, 1996–2016. JAMA 2020, 323, 863–884. [Google Scholar] [CrossRef]
- Dagenais, S.; Caro, J.; Haldeman, S. A systematic review of low back pain cost of illness studies in the United States and internationally. Spine J. 2008, 8, 8–20. [Google Scholar] [CrossRef]
- Punnett, L.; Prüss-Utün, A.; Nelson, D.I.; Fingerhut, M.A.; Leigh, J.; Tak, S.; Phillips, S. Estimating the global burden of low back pain attributable to combined occupational exposures. Am. J. Ind. Med. 2005, 48, 459–469. [Google Scholar] [CrossRef] [PubMed]
- Shiri, R.; Falah-Hassani, K.; Heliövaara, M.; Solovieva, S.; Amiri, S.; Lallukka, T.; Burdorf, A.; Husgafvel-Pursiainen, K.; Viikari-Juntura, E. Risk Factors for Low Back Pain: A Population-Based Longitudinal Study. Arthritis. Care. Res. 2019, 71, 290–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghilan, K.; Al-Taiar, A.; Yousfi, N.A.; Zubaidi, R.A.; Awadh, I.; Al-Obeyed, Z. Low back pain among female nurses in Yemen. Int. J. Occup. Med. Environ. Health 2013, 26, 605–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshimoto, T.; Oka, H.; Fujii, T.; Kawamata, K.; Kokaze, A.; Koyama, Y.; Matsudaira, K. Survey on chronic disabling low back pain among care workers at nursing care facilities: A multicenter collaborative cross-sectional study. J. Pain Res. 2019, 12, 1025–1032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joseph, L.; Standen, M.; Paungmali, A.; Kuisma, R.; Sitilertpisan, P.; Pirunsan, U. Prevalence of musculoskeletal pain among professional drivers: A systematic review. J. Occup. Health 2020, 62, e12150. [Google Scholar] [CrossRef]
- Umer, W.; Antwi-Afari, M.F.; Li, H.; Szeto, G.P.Y.; Wong, A.Y.L. The prevalence of musculoskeletal symptoms in the construction industry: A systematic review and meta-analysis. Int. Arch. Occup. Environ. Health 2018, 91, 125–144. [Google Scholar] [CrossRef]
- Inoue, G.; Uchida, K.; Miyagi, M.; Saito, W.; Nakazawa, T.; Imura, T.; Shirasawa, E.; Akazawa, T.; Orita, S.; Inage, K.; et al. Occupational Characteristics of Low Back Pain Among Standing Workers in a Japanese Manufacturing Company. Workplace Health Saf. 2020, 68, 13–23. [Google Scholar] [CrossRef]
- Shmagel, A.; Foley, R.; Ibrahim, H. Epidemiology of Chronic Low Back Pain in US Adults: Data from the 2009-2010 National Health and Nutrition Examination Survey. Arthritis. Care. Res. 2016, 68, 1688–1694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lallukka, T.; Mänty, M.; Cooper, C.; Fleischmann, M.; Kouvonen, A.; Walker-Bone, K.E.; Head, J.A.; Halonen, J.I. Recurrent back pain during working life and exit from paid employment: A 28-year follow-up of the Whitehall II Study. Occup. Environ. Med. 2018, 75, 786–791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morken, T.; Riise, T.; Moen, B.; Hauge, S.H.; Holien, S.; Langedrag, A.; Pedersen, S.; Saue, I.L.; Seljebø, G.M.; Thoppil, V. Low back pain and widespread pain predict sickness absence among industrial workers. BMC Musculoskelet. Disord. 2003, 4, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Gessa, G.; Corna, L.M.; Platts, L.G.; Worts, D.; McDonough, P.; Sacker, A.; Price, D.; Glaser, K. Is being in paid work beyond state pension age beneficial for health? Evidence from England using a life-course approach. J. Epidemiol. Community Health 2017, 71, 431–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ministry of Health, Labour and Welfare, Japan. Overview of the 2013 Comprehensive Survey of Living Conditions. Available online: https://www.mhlw.go.jp/toukei/saikin/hw/k-tyosa/k-tyosa13/index.html (accessed on 15 September 2021).
- Tomioka, K.; Shima, M.; Saeki, K. Association between heaviness of cigarette smoking and serious psychological distress is stronger in women than in men: A nationally representative cross-sectional survey in Japan. Harm. Reduct. J. 2021, 18, 27. [Google Scholar] [CrossRef]
- Bento, T.P.F.; Genebra, C.V.D.S.; Maciel, N.M.; Cornelio, G.P.; Simeão, S.F.A.P.; Vitta, A. Low back pain and some associated factors: Is there any difference between genders? Braz. J. Phys. Ther. 2020, 24, 79–87. [Google Scholar] [CrossRef]
- Garcia, J.B.; Hernandez-Castro, J.J.; Nunez, R.G.; Pazos, M.A.; Aguirre, J.O.; Jreige, A.; Delgado, W.; Serpentegui, M.; Berenguel, M.; Cantemir, C. Prevalence of low back pain in Latin America: A systematic literature review. Pain Physician 2014, 17, 379–391. [Google Scholar] [CrossRef]
- Tani, N.; Ohta, M.; Higuchi, Y.; Akatsu, J.; Kumashiro, M. Lifestyle and subjective musculoskeletal symptoms in young male Japanese workers: A 16-year retrospective cohort study. Prev. Med. Rep. 2020, 20, 101171. [Google Scholar] [CrossRef]
- Power, C.; Frank, J.; Hertzman, C.; Schierhout, G.; Li, L. Predictors of low back pain onset in a prospective British study. Am. J. Public Health 2001, 91, 1671–1678. [Google Scholar] [CrossRef]
- Mork, P.J.; Vik, K.L.; Moe, B.; Lier, R.; Bardal, E.M.; Nilsen, T.I.L. Sleep problems, exercise and obesity and risk of chronic musculoskeletal pain: The Norwegian HUNT study. Eur. J. Public Health 2014, 24, 924–929. [Google Scholar] [CrossRef] [PubMed]
- Cook, D.G.; Cummins, R.O.; Bartley, M.J.; Shaper, A.G. Health of unemployed middle-aged men in Great Britain. Lancet 1982, 1, 1290–1294. [Google Scholar] [CrossRef]
- Ministry of Education, Culture, Sports, Science and Technology, Japan. School Education Act. Available online: https://elaws.e-gov.go.jp/document?lawid=418AC0000000120 (accessed on 15 September 2021).
- Tamakoshi, A.; Ohno, Y.; JACC Study Group. Self-reported sleep duration as a predictor of all-cause mortality: Results from the JACC study, Japan. Sleep 2004, 27, 51–54. [Google Scholar]
- Jean-Louis, G.; Turner, A.D.; Seixas, A.; Jin, P.; Rosenthal, D.M.; Liu, M.; Avirappattu, G. Epidemiologic Methods to Estimate Insufficient Sleep in the US Population. Int. J. Environ. Res. Public Health 2020, 17, 9337. [Google Scholar] [CrossRef]
- White, I.R.; Thompson, S.G. Adjusting for partially missing baseline measurements in randomized trials. Stat. Med. 2005, 24, 993–1007. [Google Scholar] [CrossRef]
- Levin, M.L. The occurrence of lung cancer in man. Acta. Unio. Int. Contra. Cancrum. 1953, 9, 531–541. [Google Scholar] [PubMed]
- Daly, L.E. Confidence limits made easy: Interval estimation using a substitution method. Am. J. Epidemiol. 1998, 147, 783–790. [Google Scholar] [CrossRef] [Green Version]
- Statistics Bureau, Ministry of Internal Affairs and Communications, Japan. Population Estimation. Available online: http://www.stat.go.jp/data/jinsui/ (accessed on 15 September 2021).
- Nwaru, C.A.; Nygård, C.H.; Virtanen, P. Musculoskeletal pain and re-employment among unemployed job seekers: A three-year follow-up study. BMC Public Health 2016, 16, 531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.; Haldeman, S.; Lu, M.L.; Baker, D. Low Back Pain Prevalence and Related Workplace Psychosocial Risk Factors: A Study Using Data From the 2010 National Health Interview Survey. J. Manipulative Physiol. Ther. 2016, 39, 459–472. [Google Scholar] [CrossRef] [Green Version]
- Das, B. Gender differences in prevalence of musculoskeletal disorders and physiological stress among the brick field workers of West Bengal, India. Work 2019, 63, 389–403. [Google Scholar] [CrossRef] [PubMed]
- Ellermeier, W.; Westphal, W. Gender differences in pain ratings and pupil reactions to painful pressure stimuli. Pain 1995, 61, 435–439. [Google Scholar] [CrossRef]
- Bingefors, K.; Isacson, D. Epidemiology, co-morbidity, and impact on health-related quality of life of self-reported headache and musculoskeletal pain—A gender perspective. Eur. J. Pain 2004, 8, 435–450. [Google Scholar] [CrossRef] [PubMed]
- Mather, L.; Ropponen, A.; Mittendorfer-Rutz, E.; Narusyte, J.; Svedberg, P. Health, work and demographic factors associated with a lower risk of work disability and unemployment in employees with lower back, neck and shoulder pain. BMC Musculoskelet. Disord. 2019, 20, 622. [Google Scholar] [CrossRef] [PubMed]
- Hooftman, W.E.; van der Beek, A.J.; Bongers, P.M.; van Mechelen, W. Is there a gender difference in the effect of work-related physical and psychosocial risk factors on musculoskeletal symptoms and related sickness absence? Scand. J. Work Environ. Health 2009, 35, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health, Labour and Welfare, Japan. Report on Employment Service in 2013. Available online: https://www.mhlw.go.jp/toukei/youran/roudou-nenpou2013/02.html (accessed on 15 September 2021).
- Ministry of Internal Affairs and Communications, Japan. Labor Force Survey 2013. Available online: https://www.stat.go.jp/data/roudou/index2.html#kekka (accessed on 15 September 2021).
- Foster, N.E.; Anema, J.R.; Cherkin, D.; Chou, R.; Cohen, S.P.; Gross, D.P.; Ferreira, P.H.; Fritz, J.M.; Koes, B.W.; Peul, W.; et al. Prevention and treatment of low back pain: Evidence, challenges, and promising directions. Lancet 2018, 391, 2368–2383. [Google Scholar] [CrossRef]
- International Organization for Standardization (ISO). ISO/TR 12296:2012. Ergonomics—Manual Handling of People in the Healthcare Sector. 2012. Available online: https://www.iso.org/obp/ui/#iso:std:iso:tr:12296:ed-1:v1:en (accessed on 15 September 2021).
- Gross, D.P.; Russell, A.S.; Ferrari, R.; Battié, M.C.; Schopflocher, D.; Hu, R.; Waddell, G.; Buchbinder, R. Evaluation of a Canadian back pain mass media campaign. Spine 2010, 35, 906–913. [Google Scholar] [CrossRef] [PubMed]
- Goel, S. Non-spinal Causes of Back Pain: An “Undiagnosed” Diagnosis. J. Med. Res. Innov. 2019, 3, e000172. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Health, Labour and Welfare, Japan. Summary of Results of the Comprehensive Survey of Living Conditions. Available online: https://www.mhlw.go.jp/toukei/list/20-21kekka.html (accessed on 15 September 2021).
- Gender Equality Bureau Cabinet Office. Study Group Report on Impacts and Challenges for Women due to COVID-19 Pandemic. Available online: https://www.gender.go.jp/kaigi/kento/covid-19/index.html (accessed on 9 October 2021).
- Ministry of Health, Labour and Welfare, Japan. Information on Support for the Employment Ice Age Generation. Available online: https://www.mhlw.go.jp/shushoku_hyogaki_shien/ (accessed on 15 September 2021).
Men (n = 24,854) | Women (n = 26,549) | |||||
---|---|---|---|---|---|---|
Employed | Unemployed | p-Value * | Employed | Unemployed | p-Value * | |
(n = 22,531) | (n = 2323) | (n = 18,142) | (n = 8407) | |||
n (%) | n (%) | n (%) | n (%) | |||
Age: 45 years or older | 11,016 (48.9) | 1474 (63.5) | <0.001 | 8635 (47.6) | 4690 (55.8) | <0.001 |
Marital status: not married | 7101 (31.5) | 1420 (61.1) | <0.001 | 6975 (38.4) | 1526 (18.2) | <0.001 |
Family size: one (i.e., living alone) | 2605 (11.6) | 389 (16.7) | <0.001 | 1558 (8.6) | 372 (4.4) | <0.001 |
Housing tenure: renters | 7084 (31.4) | 682 (29.4) | 0.041 | 5267 (29.0) | 2599 (30.9) | 0.002 |
Household expenditures: low (<10.6) | 7045 (31.3) | 902 (38.8) | <0.001 | 5684 (31.3) | 2758 (32.8) | 0.017 |
Education: <10 years of schooling | 1324 (5.9) | 373 (16.1) | <0.001 | 780 (4.3) | 624 (7.4) | <0.001 |
Alcohol intake: ≥5 days a week | 8211 (36.4) | 588 (25.3) | <0.001 | 2524 (13.9) | 855 (10.2) | <0.001 |
Smoking status: current smokers | 9077 (40.3) | 832 (35.8) | <0.001 | 2683 (14.8) | 920 (10.9) | <0.001 |
Sleep duration: <6 h a day | 8950 (39.7) | 627 (27.0) | <0.001 | 7904 (43.6) | 3134 (37.3) | <0.001 |
Comorbidities: present | 2605 (11.6) | 471 (20.3) | <0.001 | 1309 (7.2) | 960 (11.4) | <0.001 |
Self-reported LBP: present | 1950 (8.7) | 292 (12.6) | <0.001 | 1996 (11.0) | 948 (11.3) | 0.515 |
LBP Status | n | % of the Unemployed | Model 1 | Model 2 | Model 3 | Model 4 | PAF (95% CI) | |
---|---|---|---|---|---|---|---|---|
PR (95% CI) | PR (95% CI) | PR (95% CI) | PR (95% CI) | |||||
Men (n = 24,854) | ||||||||
No LBP | 22,612 | 9.0% | 1.00 | 1.00 | 1.00 | 1.00 | ||
LBP | 2242 | 13.0% | 1.45 (1.29 to 1.63) | 1.33 (1.19 to 1.49) | 1.29 (1.16 to 1.44) | 1.32 (1.19 to 1.47) | 2.8% (1.6% to 4.2%) | |
Women (n = 26,549) | ||||||||
No LBP | 23,605 | 31.6% | 1.00 | 1.00 | 1.00 | 1.00 | ||
LBP | 2944 | 32.2% | 1.02 (0.96 to 1.08) | 0.98 (0.92 to 1.03) | 0.98 (0.93 to 1.04) | 1.01 (0.96 to 1.07) | 0.13% (−0.48% to 0.77%) |
LBP Status | n | % of Unemployed Looking for Work | Adjusted PR * (95% CI) | |
---|---|---|---|---|
Men (n = 24,854) | ||||
No LBP | 22,612 | 5.5% | 1.00 | |
LBP | 2242 | 8.0% | 1.49 (1.29 to 1.73) | |
Women (n = 26,549) | ||||
No LBP | 23,605 | 14.3% | 1.00 | |
LBP | 2944 | 16.4% | 1.22 (1.12 to 1.33) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomioka, K.; Kitahara, T.; Shima, M.; Saeki, K. Fraction and Number of Unemployed Associated with Self-Reported Low Back Pain: A Nation-Wide Cross-Sectional Study in Japan. Int. J. Environ. Res. Public Health 2021, 18, 10760. https://doi.org/10.3390/ijerph182010760
Tomioka K, Kitahara T, Shima M, Saeki K. Fraction and Number of Unemployed Associated with Self-Reported Low Back Pain: A Nation-Wide Cross-Sectional Study in Japan. International Journal of Environmental Research and Public Health. 2021; 18(20):10760. https://doi.org/10.3390/ijerph182010760
Chicago/Turabian StyleTomioka, Kimiko, Teruyo Kitahara, Midori Shima, and Keigo Saeki. 2021. "Fraction and Number of Unemployed Associated with Self-Reported Low Back Pain: A Nation-Wide Cross-Sectional Study in Japan" International Journal of Environmental Research and Public Health 18, no. 20: 10760. https://doi.org/10.3390/ijerph182010760
APA StyleTomioka, K., Kitahara, T., Shima, M., & Saeki, K. (2021). Fraction and Number of Unemployed Associated with Self-Reported Low Back Pain: A Nation-Wide Cross-Sectional Study in Japan. International Journal of Environmental Research and Public Health, 18(20), 10760. https://doi.org/10.3390/ijerph182010760