Effects of the Spatial Structure Conditions of Urban Underpass Tunnels’ Longitudinal Section on Drivers’ Physiological and Behavioral Comfort
Abstract
:1. Introduction
2. Literature Review
2.1. Drivers’ Physiological and Behavioral Characteristics and Tunnel Safety
2.2. Longitudinal Slope and Drivers’ Physiological and Behavioral Characteristics
2.3. Slope Length and Drivers’ Physiological and Behavioral Characteristics
2.4. Tunnel Height and Safety
- Exploring the effects of various tunnel structural parameters on drivers’ physiological and behavioral characteristics.
- Quantifying the relationship between slope, slope length, and tunnel height and driver physiology (HR, RR gap) and behavior (speed, lane centerline offset)
- The optimal combination of structural parameters for urban underpass tunnels was determined by using the comfort thresholds of drivers’ physiological and behavioral indexes.
3. Methodology
3.1. Simulation Scenario
3.1.1. Apparatus
3.1.2. Selection of the Structural Parameters of the Simulated Urban Underpass Tunnels
3.1.3. Experimental Road
3.2. Participants
3.3. Procedure
3.4. Data Collection
4. Results
4.1. Partial Correlation Analysis
4.2. Spatial Structure Model for Urban Underpass Tunnels
4.2.1. Model of Drivers’ HR and Structural Parameters of Urban Underpass Tunnels
4.2.2. Model of the RR Interval and Structural Parameters of Urban Underpass Tunnels
4.2.3. Model of the Speed and Structural Parameters of Urban Underpass Tunnels
4.2.4. Model of Lane Centerline Offsets and Structural Parameters of Urban Underpass Tunnels
4.3. Optimization of the Structural Parameters of Urban Underpass Tunnels
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Amundsen, F.H.; Engelbrektsen, A. Studies on Norwegian Road Tunnels II. An Analysis on Traffic Accidents in Road Tunnels 2001–2006; Vegdirektoratet, Roads and Traffic Department, Traffic Safety Section: Oslo, Norway, 2009. [Google Scholar]
- Amundsen, F.H.; Ranes, G. Studies on traffic accidents in Norwegian road tunnels. Tunn. Undergr. Space Technol. 2000, 15, 3–11. [Google Scholar] [CrossRef]
- Robatsch, K.; Nussbaumer, C. Comparative analysis of safety in tunnels. In Proceedings of the Young Researchers Seminar 2007, Brno, Czech Republic, 27–30 May 2007. [Google Scholar]
- Ma, Z.L.; Shao, C.F.; Zhang, S.R. Characteristics of traffic accidents in Chinese freeway tunnels. Tunn. Undergr. Space Technol. Inc. Trenchless Technol. Res. 2009, 24, 350–355. [Google Scholar] [CrossRef]
- Carvel, R.; Marlair, G. A history of fire incidents in tunnels. In The Handbook of Tunnel Fire Safety; Beard, A.N., Marlair, G., Eds.; Thomas Telford Limited: London, UK, 2005; pp. 3–41. [Google Scholar]
- Katja, K.; Christer, A. The impact of tunnel design and lighting on the performance of attentive and visually distracted drivers. Accid. Anal. Prev. 2012, 47, 153–161. [Google Scholar]
- Yin, R.; Zhu, G. Safety design of highway tunnel alignment. Highway 2003, 140–142. [Google Scholar]
- Huang, X. Traffic Safety Analysis on Urban Underpass Tunnels. Master’s Thesis, Southwest Jiaotong University, Chengdu, China, 2013. [Google Scholar]
- Wei, J.; Bian, X. Optimization analysis of longitudinal slope of Nanjing Yangtze River Tunnel Based on traffic safety. Railw. Surv. Des. 2007, 66–70. [Google Scholar]
- Zhang, L.; Liu, T.; Pan, F.; Guo, T.; Liu, R. Analysis of effects of driver factors on road traffic accident indexes. China Saf. Sci. J. 2014, 24, 79–84. [Google Scholar]
- Zhang, W.; Dai, J.; Pei, Y.; Li, P.; Yan, Y.; Chen, X. Drivers’ visual search patterns during overtaking maneuvers on freeway. Int. J. Environ. Res. Public Health 2016, 13, 1159. [Google Scholar] [CrossRef] [Green Version]
- Ren, F.T. Traffic Engineering Psychology; Peking University Press: Beijing, China, 1993. [Google Scholar]
- Huvarinen, Y.; Svatkova, E.; Oleshchenko, E.; Pushchina, S. Road Safety Audit. Transp. Res. Procedia 2017, 20, 236–241. [Google Scholar] [CrossRef]
- Du, C. Research on the application of behavioral psychology in architectural space design. Res. Urban Constr. Theory 2011, 1–4. [Google Scholar]
- Shang, T.; Lu, H.; Wu, P.; Wei, Y. Eye-tracking evaluation of exit advance guide signs in highway tunnels in familiar and unfamiliar drivers. Int. J. Environ. Res. Public Health 2021, 18, 6820. [Google Scholar] [CrossRef]
- Zhou, Z.; Ma, J.; Lu, T.; Li, G.; Tan, T. An Evaluation Method for Visual Search Stability in Urban Tunnel Entrance and Exit Sections Based on Markov Chain. IEEE Access 2020, 8, 68559–68569. [Google Scholar] [CrossRef]
- He, S.; Liang, B.; Thkm, L.; Maksimainen, M.; Halonen, L. The Influences of Tunnel Lighting Environment on Drivers’ Peripheral Visual Performance during Transient Adaptation. Displays 2020, 64, 101964. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Q. Simulating Human Visual Perception in Tunnel Portals. Sustainability 2021, 13, 3741. [Google Scholar] [CrossRef]
- Chen, F.; Yang, Y. Influence of Tunnel Entrance Environment on Driver’s Vision and Physiology in Mountainous Expressway. IOP Conf. Ser. Earth Environ. Sci. 2019, 295, 042138. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Chen, F.; Hu, F.; Zhu, J. Study on Lighting Optimization of Tunnel Entrance Section Based on Driver’s Visual Adaptation Model. In Proceedings of the 19th COTA International Conference of Transportation Professionals, Nanjing, China, 6–8 July 2019. [Google Scholar]
- Mao, Y.; Di, S.; Zhang, W.; Wang, M.; Guo, D. Effect of Tunnel Environment on Driver Acceleration and Deceleration Behavior. In Proceedings of the 20th COTA International Conference of Transportation Professionals, Xi’an, China, 14–16 August 2020. [Google Scholar]
- Hu, Y.; Liu, H.; Zhu, T. Influence of spatial visual conditions in tunnel on driver behavior: Considering the route familiarity of drivers. Adv. Mech. Eng. 2019, 11, 168781401985366. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhuo, X.; Guo, W.; Wang, X.; Zhao, Z. Lighting environment optimization of highway tunnel entrance based on simulation research. Int. J. Environ. Res. Public Health 2019, 16, 2195. [Google Scholar] [CrossRef] [Green Version]
- Qin, L.; Dong, L.; Xu, W.; Zhang, L. Influence of vehicle speed on the characteristics of driver’s eye movement at a highway tunnel entrance during day and night conditions: A pilot study. Int. J. Environ. Res. Public Health 2018, 15, 656. [Google Scholar] [CrossRef] [Green Version]
- Ye, F. Study on Driver’s Light and Dark Adaptation Change Law in Section of Expressway Tunnel Group; Chang’an University: Xi’an, China, 2014. [Google Scholar]
- Guo, Z.Y.; Su, D.L.; Lu, H. Tunnel entrance and exit safety design based on driving speed. Highw. Eng. 2013, 38, 146–150. [Google Scholar]
- Verwey, W.B. Effects of Tunnel Entrances on Drivers’ Physiological Condition and Performance: An Exploratory Study. Drivers 1995. [Google Scholar]
- Qi, W.; Shen, B.; Wang, L. Model of Driver’s Eye Movement and ECG Index under Tunnel Environment Based on Spatiotemporal Data. J. Adv. Transp. 2020, 2020, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Miller, E.E.; Boyle, L.N. Driver behavior in road tunnels: Association with driver stress and performance. Transp. Res. Rec. 2015, 2518, 60–67. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, X.; Liu, H.; Yang, K.; Sun, Y. Physiological indices and driving performance of drivers at tunnel entrances and exits: A simulated driving study. PLoS ONE 2020, 15, e0243931. [Google Scholar] [CrossRef]
- Qin, X.; Zhang, N.; Zhang, W.; Meitner, M. How does tunnel interior color environment influence driving behavior? Quantitative analysis and assessment experiment. Tunn. Undergr. Space Technol. 2020, 98, 103320. [Google Scholar] [CrossRef]
- Zhao, W.; Liu, H.; Ding, G.; Shi, L. Influence of long tunnel entrance on driver’s psychology and speed. Highw. Automot. Appl. 2011, 48–51. [Google Scholar]
- Liu, Y.; Li, X.; Zhu, S.; Qi, C. Preliminary experimental study on physiological response of tunnel light environment to drivers. Highway Tunnel 2014, 10–14. [Google Scholar]
- Nilsson, D.; Johansson, M.; Frantzich, H. Evacuation experiment in a road tunnel: A study of human behaviour and technical installations. Fire Saf. J. 2009, 44, 458–468. [Google Scholar] [CrossRef]
- Ronchi, E.; Colonna, P.; Capote, J.; Alvear, D.; Berloco, N. The evaluation of different evacuation models for assessing road tunnel safety analysis. Tunn. Undergr. Space Technol. 2012, 30, 74–84. [Google Scholar] [CrossRef]
- Capote, J.A.; Alvear, D.; Abreu, O.; Cuesta, A.; Alonso, V. A real-time stochastic evacuation model for road tunnels. Saf. Sci. 2013, 52, 73–80. [Google Scholar] [CrossRef]
- Alvear, D.; Abreu, O.; Cuesta, A.; Alonso, V. Decision support system for emergency management: Road tunnels. Tunn. Undergr. Space Technol. 2013, 34, 13–21. [Google Scholar] [CrossRef]
- Wang, S.; Du, Z.; Jiao, F.; Yang, L.; Ni, Y. Impact of Urban Undersea Tunnel Longitudinal Slope on the Visual Characteristics of Drivers. J. Adv. Transp. 2020, 2020, 1–11. [Google Scholar]
- Wu, S.; Chen, X.; Guo, T. A study on differences of physiological characteristics of drivers driving through urban tunnels. J. Transp. Inf. Saf. 2016, 34, 38–45. [Google Scholar]
- Yang, Y.; Chen, F.; Zhang, Y. Study on visual behavior characteristics of drivers in long and downhill sections of mountainous highways. Highway 2018, 63, 132–137. [Google Scholar]
- Gu, Q. Research on the Effect of Thruway Alignment on Driver’s Visual Character; Chang’an University: Xi’an, China, 2008. [Google Scholar]
- Chen, X.; Deng, W. Influence of road alignment design on traffic safety. Sci. Technol. Inf. Sci. Teach. Res. 2007, 28, 164–165. [Google Scholar]
- Qiao, J.; Wen, Y.; Zhou, R. Grade Compensation of Highway in Plateau Area Based on Driving Behavior. J. Highw. Transp. Res. Dev. 2012, 01, 128–133. [Google Scholar]
- Xu, J.; Wang, X.; Wang, C.; Shao, Y.M.; Ma, Z.Y. Foot Manoeuvres and Workload of Driver on Mountainous Roads with Longitudinal Slopes. China J. Highw. Transp. 2018, 31, 91–100. [Google Scholar]
- Song, P. Study on Heart Rate Variation of Highway Drivers in Mountainous Areas; Jilin University: Jilin, China, 2012. [Google Scholar]
- Wang, X. Experimental Research on the Driving Load of Longitudinal Section Road in Complex Mountain Highway Based on the Growth Rate of Heart. Master’s Thesis, Chongqing Jiaotong University, Chongqing, China, 2016. [Google Scholar]
- Zhang, Y. Collision between Over-High Trucks and Bridge Superstructures: Mechanism and Loads; Tsinghua University: Beijing, China, 2009. [Google Scholar]
- Xiong, C. Vehicle superelevation monitoring and early warning system. Technol. Market. 2009, 16, 71. [Google Scholar]
- Gao, K.; Li-Ming, L.I. Study on the influence of tunnel height and width ratio on critical wind velocity. Fire Sci. Technol. 2017, 036, 624–628. [Google Scholar]
- Berry, M.J.; Koves, T.R.; Benedetto, J.J. The influence of speed, grade and mass during simulated off road bicycling. Appl. Ergon. 2003, 31, 531–536. [Google Scholar] [CrossRef]
- Waard, D.D.; Kruizinga, A.; Brookhuis, K.A. The consequences of an increase in heavy goods vehicles for passenger car drivers’ mental workload and behaviour: A simulator study. Accid. Anal. Prev. 2008, 40, 818–828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charlton, S.G.; Starkey, N.J. Risk in our Midst: Centrelines, perceived risk, and speed choice. Accid. Anal. Prev. 2016, 95, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Oktal Sydac. Simulation in Motion. Available online: https://www.oktalsydac.com/en/ (accessed on 20 September 2017).
- Bella, F. Validation of a driving simulator for work zone design. Transp. Res. Rec. J. Transp. Res. Board 2005, 1937, 136–144. [Google Scholar] [CrossRef]
- Available online: https://www.biopac.com; https://www.biopac.com/product/mp150-data-acquisition-systems/?attribute_pa_size=mp150-data-acquisition-system-win (accessed on 19 August 2017).
- CJJ211-2015. Design Standard of Urban Underground Road Engineering. Available online: http://www.mohurd.gov.cn/wjfb/201508/t20150827_224025.html (accessed on 16 May 2017).
- JTG D70-2004. Chinese Highway Tunnel Design Specification. Available online: https://xxgk.mot.gov.cn/2020/jigou/glj/202006/t20200623_3312406.html (accessed on 20 May 2017).
- Tobore, I.; Kandwal, A.; Li, J.; Yan, Y.; Nie, Z. Towards adequate prediction of prediabetes using spatiotemporal ECG and EEG feature analysis and weight-based multi-model approach. Knowl.-Based Syst. 2020, 209, 106464. [Google Scholar] [CrossRef]
- Akhanda, M.; Islam, S.; Rahman, M.M. Monitoring the Performance of Computer User by Analyzing Physiological Signals; IEEE: Piscataway, NJ, USA, 2014. [Google Scholar]
- Criteria Committee of the New York Heart Association. Nomenclature and Criteria for Diagnosis of Diseases of the Heart, 5th ed.; New York Heart Association: New York, NY, USA, 1953. [Google Scholar]
- Kossmann, C.E. The normal electrocardiogram. Circulation 1953, 8, 920–936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spodick, D.H.; Raju, P.; Bishop, R.L.; Rifkin, R.D. Operational definition of normal sinus heart rate. Am. J. Cardiol. 1992, 69, 1245–1246. [Google Scholar] [CrossRef]
- Guo, F.; Xiong, J.; Qin, Y.; Wan, H. 85% speed prediction model based on driving simulation experiment. Technol. Econ. Area Commun. 2010, 3, 110–113. [Google Scholar]
- Yao, Y.H.; Zhu, S.Y.; Du, Z.G. Driver’s visual lobe feature and application in urban tunnel. J. Highw. Transp. Res. Dev. 2010, 27, 106–109. [Google Scholar] [CrossRef]
- Zhuo, Y.C.; Shao, F. Analysis of driver’s psychological characteristics in urban tunnel. Sci. Technol. Inf. 2014, 11, 101–102. [Google Scholar]
- Calvi, A.; D’Amico, F.; Ferrante, C.; Ciampoli, L.B. A driving simulator validation study for evaluating the driving performance on deceleration and acceleration lanes. Adv. Transp. Stud. 2020, 50, 67–80. [Google Scholar]
- Ala, E.; Iliopoulosa, F.; Forschack, N.; Nierhaus, T.; Grund, M.; Motyka, P.; Gaebler, M.; Nikulin, V.V.; Villringer, A. Heart-brain interactions shape somatosensory perception and evoked potentials. Proc. Natl. Acad. Sci. 2020, 117, 201915629. [Google Scholar] [CrossRef]
- Vanderhaegen, F.; Wolff, M.; Mollard, R. Non-conscious errors in the control of dynamic events synchronized with heartbeats: A new challenge for human reliability study. Safety Sci. 2020, 129, 104814. [Google Scholar] [CrossRef]
- Domenichini, L.; Torre, F.L.; Vangi, D.; Virga, A.; Branzi, V. Influence of the lighting system on the driver’s behavior in road tunnels. A Driv. Simulator Study. J. Transp. Saf. Secur. 2016, 9, 216–238. [Google Scholar]
- Chatzimichailidou, M.M.; Dokas, I.M. RiskSOAP: Introducing and applying a methodology of risk self-awareness in road tunnel safety. Accid. Anal. Prev. 2016, 90, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Waard, D.D. The Measurement of Drivers’ Mental Workload; University of Groningen: Groningen, The Netherlands, 1996. [Google Scholar]
- Wilson, G.F.; Russell, C.A. Performance enhancement in an uninhabited air vehicle task using psychophysiologically determined adaptive aiding. Hum. Factors 2007, 49, 1005–1018. [Google Scholar] [CrossRef] [PubMed]
- Figueroa Medina, A.M. Subjective and Objective Risks Consideration in Modeling Highway Safety; Purdue University: West Lafayette, IN, USA, 2005. [Google Scholar]
- Reid, G.B.; Nygren, T.E. The Subjective Workload Assessment Technique: A Scaling Procedure for Measuring Mental Workload. Adv. Psychol. 1988, 52, 185–218. [Google Scholar]
- Luximon, A.; Goonetilleke, R.S. Simplified subjective workload assessment technique. Ergonomics 2001, 44, 229–243. [Google Scholar] [CrossRef] [PubMed]
- Rubio, S.; Díaz, E.; Martín, J.; Puente, J.M. Evaluation of Subjective Mental Workload: A Comparison of SWAT, NASA-TLX, and Workload Profile Methods. Appl. Psychol. 2004, 53, 61–86. [Google Scholar] [CrossRef]
- Engstroem, J.; Johansson, E.; Oestlund, J. Effects of visual and cognitive load in real and simulated motorway driving. Transp. Res. F Traffic Psychol. Behaviour. 2005, 8f, 97–120. [Google Scholar] [CrossRef]
- Burns, P.C.; Trbovich, P.L.; Mccurdie, T.; Harbluk, J.L. Measuring Distraction: Task Duration and the Lane-Change Test (LCT). Hum. Factors Ergon. Soc. Annu. Meet. Proc. 2005, 49, 1980–1983. [Google Scholar] [CrossRef]
- Bradley, M.M.; Lang, P.J. Measuring emotion: The Self-Assessment Manikin and the Semantic Differential. J. Behav. Ther. Exp. Psychiatry 1994, 25, 49–59. [Google Scholar] [CrossRef]
- Vanderhaegen, F. Weak Signal-Oriented Investigation of Ethical Dissonance Applied to Unsuccessful Mobility Experiences Linked to Human–Machine Interactions. Sci. Eng. Ethics 2021, 27, 2. [Google Scholar] [CrossRef]
- Lee, T.; Chalmers, T.; Burton, D.; Zilberg, E. Electrophysiological brain-cardiac coupling in train drivers during monotonous driving. Int. J. Environ. Res. Public Health 2021, 18, 3741. [Google Scholar]
- Yang, Y.; Du, Z.; Jiao, F.; Pan, F. Analysis of EEG characteristics of drivers and driving safety in undersea tunnel. Int. J. Environ. Res. Public Health 2021, 18, 9810. [Google Scholar] [CrossRef]
- Guezennec, C.Y.; Philippe, M.; Jouanin, J.C.; Dussault, C. EEG and ECG changes during simulator operation reflect mental workload and vigilance. Aviat. Space Environ. Med. 2005, 76, 344–351. [Google Scholar]
- Orden, K.V.; Jung, T.; Makeig, S. Combined eye activity measures accurately estimate changes in sustained visual task performance. Biol. Psychol. 2000, 52, 221–240. [Google Scholar] [CrossRef]
- Zhao, J.Y.; He, C.; Zheng, M.M. Effect of longitudinal slope of tunnel of freeway on heart beat of divers. J. Chang. Univ. (Nat. Sci. Ed.) 2010, 30, 80–83. [Google Scholar]
- Yan, Y. Research of the Influence of the Highway Long Slop Alignment on Drivers’ Psychology and Physiology. Master’s Thesis, Chang’an University, Xi’an, China, 2006. [Google Scholar]
Slope (%) | Slope Length (m) | Tunnel Height (m) |
---|---|---|
3 | 80 | 3.6 |
4 | 90 | 3.8 |
5 | 100 | 4 |
6 | 110 | 4.2 |
7 | 120 | 4.4 |
Control Variables | Variables | HR | RR Interval | Uphill Speed | Downhill Speed | Uphill Lane Centerline Offsets | Downhill Lane Centerline Offsets |
---|---|---|---|---|---|---|---|
l | −0.095 * | −0.35 *** | −0.299 *** | 0.135 * | 0.276 ** | −0.018 * | |
i | 0.788 *** | −0.848 *** | −0.841 *** | −0.467 *** | 0.83 *** | 0.623 *** | |
h | −0.623 *** | 0.442 *** | 0.296 *** | 0.595 *** | 0.219 * | 0.183 * |
Model | Unstandardized Coefficients | t | Sig. | |
---|---|---|---|---|
B | Standard Error | |||
Constant | 100.02 | 1.574 | 63.555 | 0.000 |
−3.262 | 0.381 | −8.566 | 0.000 | |
107.4 | 0.076 | 14.107 | 0.000 |
Model | Unstandardized Coefficients | t | Sig. | |
---|---|---|---|---|
B | Standard Error | |||
Constant | 0.804 | 0.057 | 14.123 | 0.000 |
0.067 | 0.012 | 5.421 | 0.000 | |
−0.001 | 0.000 | −4.114 | 0.000 | |
−4.4 | 0.002 | −17.624 | 0.000 |
Model | Unstandardized Coefficients | t | Sig. | |
---|---|---|---|---|
B | Standard Error | |||
Downhill model | ||||
Constant | 69.400 | 1.426 | 48.651 | 0.000 |
2.666 | 0.345 | 7.724 | 0.000 | |
−40.2 | 0.060 | −5.824 | 0.000 | |
Uphill model | ||||
Constant | 79.344 | 2.083 | 38.089 | 0 |
1.525 | 0.454 | 3.416 | 0.001 | |
−0.030 | 0.009 | −3.263 | 0.001 | |
−155.0 | 0.091 | −16.800 | 0 |
Model | Unstandardized Coefficients | t | Sig. | |
---|---|---|---|---|
B | Standard Error | |||
Downhill model | ||||
Constant | 0.666 | 0.081 | 8.265 | 0 |
−0.031 | 0.018 | −2.052 | 0.042 | |
−0.001 | 0 | −2.028 | 0.045 | |
3.6 | 0.004 | 8.769 | 0 | |
Uphill model | ||||
Constant | 0.447 | 0.046 | 9.737 | 0 |
−0.025 | 0.01 | −2.469 | 0.015 | |
0.001 | 0 | 3.156 | 0.002 | |
3.3 | 0.002 | 16.375 | 0 |
Tunnel Height (m) | Slope Length (m) | Slope (%) |
---|---|---|
3.6 | 70 | 3.2 |
80 | 3–3.4 | |
90 | 2.8–3.6 | |
100 | 2.6–4 | |
110 | 2.4–4 | |
120 | 2.2–3.6 | |
130 | 2–3.4 | |
140 | 1.8–3 | |
150 | 1.6–2.4 | |
160 | 1.4–2.4 | |
170 | 1.2–2.2 | |
180 | 1–1.8 | |
190 | 0.8–1.6 | |
200 | 0.6–1.2 | |
210 | 0.4–1 | |
220 | 0.2–0.6 | |
230 | 0–0.2 | |
240 | 0 | |
3.8 | 80 | 3.2–3.6 |
90 | 3–3.8 | |
100 | 2.8–4.2 | |
110 | 2.6–4 | |
120 | 2.4–3.8 | |
130 | 2.2–3.4 | |
140 | 2–3.2 | |
150 | 1.8–2.8 | |
160 | 1.6–2.6 | |
170 | 1.4–2.2 | |
180 | 1.4–2 | |
190 | 1.4–1.6 | |
200 | 1.4 | |
4 | 80 | 3.4–3.8 |
90 | 3.2–4 | |
100 | 3–4.2 | |
110 | 2.8–4.2 | |
120 | 2.8–4 | |
130 | 2.8–3.6 | |
140 | 2.8–3.4 | |
150 | 2.8–3 | |
160 | 2.8 | |
4.2 | 80 | 4 |
90 | 4–4.2 | |
100 | 4–4.4 | |
110 | 4–4.4 | |
120 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Z.; Yang, M.; Du, Y.; Xu, J.; Huang, C.; Jiang, X. Effects of the Spatial Structure Conditions of Urban Underpass Tunnels’ Longitudinal Section on Drivers’ Physiological and Behavioral Comfort. Int. J. Environ. Res. Public Health 2021, 18, 10992. https://doi.org/10.3390/ijerph182010992
Feng Z, Yang M, Du Y, Xu J, Huang C, Jiang X. Effects of the Spatial Structure Conditions of Urban Underpass Tunnels’ Longitudinal Section on Drivers’ Physiological and Behavioral Comfort. International Journal of Environmental Research and Public Health. 2021; 18(20):10992. https://doi.org/10.3390/ijerph182010992
Chicago/Turabian StyleFeng, Zhongxiang, Miaomiao Yang, Yingjie Du, Jin Xu, Congjun Huang, and Xu Jiang. 2021. "Effects of the Spatial Structure Conditions of Urban Underpass Tunnels’ Longitudinal Section on Drivers’ Physiological and Behavioral Comfort" International Journal of Environmental Research and Public Health 18, no. 20: 10992. https://doi.org/10.3390/ijerph182010992
APA StyleFeng, Z., Yang, M., Du, Y., Xu, J., Huang, C., & Jiang, X. (2021). Effects of the Spatial Structure Conditions of Urban Underpass Tunnels’ Longitudinal Section on Drivers’ Physiological and Behavioral Comfort. International Journal of Environmental Research and Public Health, 18(20), 10992. https://doi.org/10.3390/ijerph182010992