Association between Dietary Habits and Type 2 Diabetes Mellitus in Yangon, Myanmar: A Case–Control Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participant Recruitment
2.1.1. Eligibility Criteria for the Case Participants
2.1.2. Eligibility Criteria for the Control Participants
2.1.3. Sample Size
2.2. Measurements
2.2.1. Definition of Dietary Habits
2.2.2. Dietary Habits Assessment
2.2.3. Other Assessments
2.3. Data Collection
2.4. Statistical Analysis
2.5. Ethical Approval
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, J.; Ren, Z.H.; Qiang, H.; Wu, J.; Shen, M.; Zhang, L.; Lyu, J. Trends in the incidence of diabetes mellitus: Results from the Global Burden of Disease Study 2017 and implications for diabetes mellitus prevention. BMC Public Health 2020, 20, 1415. [Google Scholar] [CrossRef]
- IDF Diabetes Atlas Ninth Edition. 2019. Available online: https://diabetesatlas.org/en/ (accessed on 18 July 2021).
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Magliano, D.J.; Zimmet, P.Z. The worldwide epidemiology of type 2 diabetes mellitus—Present and future perspectives. Nat. Rev. Endocrinol. 2011, 8, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Guariguata, L.; Whiting, D.R.; Hambleton, I.; Beagley, J.; Linnenkamp, U.; Shaw, J.E. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res. Clin. Pract. 2014, 103, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Shaw, J.E.; Sicree, R.A.; Zimmet, P.Z. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res. Clin. Pract. 2010, 87, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Aung, W.P.; Htet, A.S.; Bjertness, E.; Stigum, H.; Chongsuvivatwong, V.; Kjollesdal, M.K.R. Urban-rural differences in the prevalence of diabetes mellitus among 25–74 year-old adults of the Yangon Region, Myanmar: Two cross-sectional studies. BMJ Open 2018, 8, e020406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aung, W.P.; Bjertness, E.; Htet, A.S.; Stigum, H.; Kjollesdal, M.K.R. Trends in Diabetes Prevalence, Awareness, Treatment and Control in Yangon Region, Myanmar, Between 2004 and 2014, Two Cross-Sectional Studies. Int. J. Environ. Res. Public Health 2019, 16, 3461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Latt, T.S.; Zaw, K.K.; Ko, K.; Hlaing, M.M.; Ohnmar, M.; Oo, E.S.; Thein, K.M.; Yuasa, M. Measurement of diabetes, prediabetes and their associated risk factors in Myanmar 2014. Diabetes Metab. Syndr. Obes. 2019, 12, 291–298. [Google Scholar] [CrossRef] [Green Version]
- National Strategic Plan for Prevention and Control of NCDs (2017–2021). Available online: http://www.mohs.gov.mm/ckfinder/connector?command=Proxy&lang=en&type=Main¤tFolder=/Publications/NCD/&hash=a6a1c319429b7abc0a8e21dc137ab33930842cf5&fileName=National+Strategic+Plan+for+Prevention+and+Control+of+NCDs+(2017-2021),+Myanmar.pdf (accessed on 8 August 2021).
- Seino, Y.K.N.; Tajima, N.; Kadowaki, T.; Kashiwagi, A.; Araki, E.; Ito, C.; Inagaki, N.; Iwamoto, Y.; Kasuga, M.; Hanafusa, T.; et al. Report of the Committee on the Classification and Diagnostic Criteria of Diabetes Mellitus (Revision for International Harmonization of HbA1c in Japan). Diabetol Int. 2010, 1, 212–228. [Google Scholar] [CrossRef]
- DeFronzo, R.A.; Eldor, R.; Abdul-Ghani, M. Pathophysiologic approach to therapy in patients with newly diagnosed type 2 diabetes. Diabetes Care 2013, 36 (Suppl. S2), S127–S138. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, S.; Khunti, K.; Davies, M.J. Type 2 diabetes. Lancet 2017, 389, 2239–2251. [Google Scholar] [CrossRef]
- Kolb, H.; Martin, S. Environmental/lifestyle factors in the pathogenesis and prevention of type 2 diabetes. BMC Med. 2017, 15, 131. [Google Scholar] [CrossRef]
- Naja, F.; Hwalla, N.; Itani, L.; Salem, M.; Azar, S.T.; Zeidan, M.N.; Nasreddine, L. Dietary patterns and odds of Type 2 diabetes in Beirut, Lebanon: A case-control study. Nutr. Metab. 2012, 9, 111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frank, L.K.; Kroger, J.; Schulze, M.B.; Bedu-Addo, G.; Mockenhaupt, F.P.; Danquah, I. Dietary patterns in urban Ghana and risk of type 2 diabetes. Br. J. Nutr. 2014, 112, 89–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaroudi, M.; Yazdani Charati, J.; Mehrabi, S.; Ghorbani, E.; Norouzkhani, J.; Shirashiani, H.; Nikzad, B.; Seiedpour, M.; Izadi, M.; Mirzaei, M.; et al. Dietary Patterns Are Associated with Risk of Diabetes Type 2: A Population-Based Case-Control Study. Arch. Iran. Med. 2016, 19, 166–172. [Google Scholar]
- Cai, J.; Nuli, R.; Zhang, Y.; Zhang, Y.; Abudusemaiti, M.; Kadeer, A.; Tian, X.; Xiao, H. Association of Dietary Patterns with Type 2 Diabetes Mellitus among Middle-Aged Adults in Uygur Population of Xinjiang Region. J. Nutr. Sci. Vitaminol. 2019, 65, 362–374. [Google Scholar] [CrossRef] [Green Version]
- Bi, H.; Gan, Y.; Yang, C.; Chen, Y.; Tong, X.; Lu, Z. Breakfast skipping and the risk of type 2 diabetes: A meta-analysis of observational studies. Public Health Nutr. 2015, 18, 3013–3019. [Google Scholar] [CrossRef]
- Fujii, H.; Funakoshi, S.; Maeda, T.; Satoh, A.; Kawazoe, M.; Ishida, S.; Yoshimura, C.; Yokota, S.; Tada, K.; Takahashi, K.; et al. Eating Speed and Incidence of Diabetes in a Japanese General Population: ISSA-CKD. J. Clin. Med. 2021, 10, 1949. [Google Scholar] [CrossRef]
- Bahadoran, Z.; Mirmiran, P.; Azizi, F. Fast Food Pattern and Cardiometabolic Disorders: A Review of Current Studies. Health Promot. Perspect. 2015, 5, 231–240. [Google Scholar] [CrossRef]
- Jeong, T.W.; Jung, M.J.; Lee, J.W.; Kim, T.Y. Effects of Family Meal Frequency on Risk Factors for Cardiovascular Disease in Korean Elderly Males and Females. Iran. J. Public Health 2015, 44, 60–67. [Google Scholar]
- Htet, A.S.; Bjertness, M.B.; Sherpa, L.Y.; Kjøllesdal, M.K.; Oo, W.M.; Meyer, H.E.; Stigum, H.; Bjertness, E. Urban-rural differences in the prevalence of non-communicable diseases risk factors among 25–74 years old citizens in Yangon Region, Myanmar: A cross sectional study. BMC Public Health 2016, 16, 1225. [Google Scholar] [CrossRef] [Green Version]
- Kjøllesdal, M.; Htet, A.S.; Stigum, H.; Hla, N.Y.; Hlaing, H.H.; Khaine, E.K.; Khaing, W.; Khant, A.K.; Khin, N.O.; Mauk, K.K.; et al. Consumption of fruits and vegetables and associations with risk factors for non-communicable diseases in the Yangon region of Myanmar: A cross-sectional study. BMJ Open 2016, 6, e011649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hlaing, H.H.; Liabsuetrakul, T. Dietary intake, food pattern, and abnormal blood glucose status of middle-aged adults: A cross-sectional community-based study in Myanmar. Food Nutr. Res. 2016, 60, 28898. [Google Scholar] [CrossRef] [PubMed]
- WHO. World Health Organization: Classification of Diabetes Mellitus. 2019. Available online: https://www.who.int/publications/i/item/classification-of-diabetes-mellitus (accessed on 8 July 2021).
- Khin, E.T.; Aung, M.N.; Ueno, S.; Ahmad, I.; Latt, T.S.; Moolphate, S.; Yuasa, M. Social Support between Diabetes Patients and Non-Diabetes Persons in Yangon, Myanmar: A Study Applying ENRICHD Social Support Instrument. Int. J. Environ. Res. Public Health 2021, 18, 7302. [Google Scholar] [CrossRef] [PubMed]
- Charan, J.; Biswas, T. How to calculate sample size for different study designs in medical research? Indian J. Psychol. Med. 2013, 35, 121–126. [Google Scholar] [CrossRef] [Green Version]
- WHO. Report on National Survey of Diabetes Mellitus and Risk Factors for Non-Communicable Disease on in Myanmar (2014). STEPS Report 2014. Available online: https://www.who.int/ncds/surveillance/steps/Myanmar_2014_STEPS_Report.pdf (accessed on 18 August 2021).
- Dietary Habits. Available online: https://www.imedpub.com/scholarly/dietary-habits-journals-articles-ppts-list.php (accessed on 18 August 2021).
- Preedy, V.R.; Watson, R.R. (Eds.) Dietary Habits (Difinition). In Handbook of Disease Burdens and Quality of Life Measures & Journal of Childhood Obesity; Springer: New York, NY, USA, 2010; p. 4189. [Google Scholar]
- Cade, J.E.; Burley, V.J.; Warm, D.L.; Thompson, R.L.; Margetts, B.M. Food-frequency questionnaires: A review of their design, validation and utilisation. Nutr Res. Rev. 2004, 17, 5–22. [Google Scholar] [CrossRef] [Green Version]
- ASEAN Food Composition Database. Available online: http://www.inmu.mahidol.ac.th/aseanfoods/composition_data.html (accessed on 8 January 2021).
- Zong, G.; Eisenberg, D.M.; Hu, F.B.; Sun, Q. Consumption of Meals Prepared at Home and Risk of Type 2 Diabetes: An Analysis of Two Prospective Cohort Studies. PLoS Med. 2016, 13, e1002052. [Google Scholar] [CrossRef] [Green Version]
- Mekary, R.A.; Giovannucci, E.; Willett, W.C.; van Dam, R.M.; Hu, F.B. Eating patterns and type 2 diabetes risk in men: Breakfast omission, eating frequency, and snacking. Am. J. Clin. Nutr. 2012, 95, 1182–1189. [Google Scholar] [CrossRef] [Green Version]
- Mohan, V.; Sudha, V.; Radhika, G.; Radha, V.; Rema, M.; Deepa, R. Gene-environment interactions and the diabetes epidemic in India. Forum Nutr. 2007, 60, 118–126. [Google Scholar] [CrossRef]
- Knott, C.; Bell, S.; Britton, A. Alcohol Consumption and the Risk of Type 2 Diabetes: A Systematic Review and Dose-Response Meta-analysis of More Than 1.9 Million Individuals From 38 Observational Studies. Diabetes Care 2015, 38, 1804–1812. [Google Scholar] [CrossRef] [Green Version]
- Valdés-Ramos, R.; Guadarrama-López, A.L.; Martínez-Carrillo, B.E.; Benítez-Arciniega, A.D. Vitamins and type 2 diabetes mellitus. Endocr. Metab. Immune Disord. Drug Targets 2015, 15, 54–63. [Google Scholar] [CrossRef] [Green Version]
- Aye, T.-T.; Oo, E.S.; Aung, M.-W. Diabetes mellitus in Myanmar: Socio-cultural challenges and strength. J. Soc. Health Diabetes 2014, 2, 9. [Google Scholar] [CrossRef]
- WHO. World Health Organization: STEPS Manual. Available online: https://cdn.who.int/media/docs/default-source/ncds/ncd-surveillance/steps/part3-section5.pdf?sfvrsn=a46653c7_2 (accessed on 8 January 2021).
- Guidelines for Data Processing and Analysis of the International Physical Activity Questionnaire (IPAQ)—Short and Long Forms. Available online: www.ipaq.ki.se (accessed on 8 January 2021).
- Process of Translation and Adaptation of Instruments. Available online: https://www.who.int/substance_abuse/research_tools/translation/en/ (accessed on 8 January 2021).
- Radzeviciene, L.; Ostrauskas, R. Adding Salt to Meals as a Risk Factor of Type 2 Diabetes Mellitus: A Case-Control Study. Nutrients 2017, 9, 67. [Google Scholar] [CrossRef]
- Kolahdouz-Mohammadi, R.; Soltani, S.; Clayton, Z.S.; Salehi-Abargouei, A. Sodium status is associated with type 2 diabetes mellitus: A systematic review and meta-analysis of observational studies. Eur. J. Nutr. 2021, 60, 3543–3565. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Jousilahti, P.; Peltonen, M.; Lindström, J.; Tuomilehto, J. Urinary sodium and potassium excretion and the risk of type 2 diabetes: A prospective study in Finland. Diabetologia 2005, 48, 1477–1483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdulai, T.; Runqi, T.; Mao, Z.; Oppong, T.B.; Amponsem-Boateng, C.; Wang, Y.; Liu, X.; Zhang, H.; Wang, C. Preference for High Dietary Salt Intake Is Associated With Undiagnosed Type 2 Diabetes: The Henan Rural Cohort. Front. Nutr. 2020, 7, 537049. [Google Scholar] [CrossRef] [PubMed]
- Rasouli, B.A.; Andersson, E.; Carlsson, T.; Groop, P.O.; Hjort, L.; Lofvenborg, R.; Martinell, J.E.; Rosengren, M.; Tuomi, A.; Wolk, T.; et al. Sodium Intake and the Risk of Type 2 Diabetes and Latent Autoimmune Diabetes in Adults (LADA). Available online: https://www.easd.org/virtualmeeting/home.html#!resources/sodium-intake-and-the-risk-of-type-2-diabetes-and-latent-autoimmune-diabetes-in-adults-lada (accessed on 18 August 2021).
- Lanaspa, M.A.; Kuwabara, M.; Andres-Hernando, A.; Li, N.; Cicerchi, C.; Jensen, T.; Orlicky, D.J.; Roncal-Jimenez, C.A.; Ishimoto, T.; Nakagawa, T.; et al. High salt intake causes leptin resistance and obesity in mice by stimulating endogenous fructose production and metabolism. Proc. Natl. Acad. Sci. USA 2018, 115, 3138–3143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Facts and Details. Burmese Cuisine and Food in Myanmar. Classification of Diabetes Mellitus. 2019. Available online: https://factsanddetails.com/southeast-asia/Myanmar/sub5_5c/entry-3067.html (accessed on 28 August 2021).
- Suckling, R.J.; He, F.J.; Macgregor, G.A. Altered dietary salt intake for preventing and treating diabetic kidney disease. Cochrane Database Syst Rev. 2010, 12, Cd006763. [Google Scholar] [CrossRef]
- Kanauchi, N.; Ookawara, S.; Ito, K.; Mogi, S.; Yoshida, I.; Kakei, M.; Ishikawa, S.E.; Morishita, Y.; Tabei, K. Factors affecting the progression of renal dysfunction and the importance of salt restriction in patients with type 2 diabetic kidney disease. Clin. Exp. Nephrol. 2015, 19, 1120–1126. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.S.; Sharp, S.J.; Imamura, F.; Chowdhury, R.; Gundersen, T.E.; Steur, M.; Sluijs, I.; van der Schouw, Y.T.; Agudo, A.; Aune, D.; et al. Association of plasma biomarkers of fruit and vegetable intake with incident type 2 diabetes: EPIC-InterAct case-cohort study in eight European countries. BMJ 2020, 370, m2194. [Google Scholar] [CrossRef]
- Villegas, R.; Shu, X.O.; Gao, Y.T.; Yang, G.; Elasy, T.; Li, H.; Zheng, W. Vegetable but not fruit consumption reduces the risk of type 2 diabetes in Chinese women. J. Nutr. 2008, 138, 574–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, P.-Y.; Fang, J.-C.; Gao, Z.-H.; Zhang, C.; Xie, S.-Y. Higher intake of fruits, vegetables or their fiber reduces the risk of type 2 diabetes: A meta-analysis. J. Diabetes Investig. 2016, 7, 56–69. [Google Scholar] [CrossRef] [PubMed]
- Carter, P.; Gray, L.J.; Troughton, J.; Khunti, K.; Davies, M.J. Fruit and vegetable intake and incidence of type 2 diabetes mellitus: Systematic review and meta-analysis. BMJ 2010, 341, c4229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, J.; Ishihara, J.; Kotemori, A.; Yoshizaki, T.; Goto, A.; Mizoue, T.; Noda, M.; Sawada, N.; Tsugane, S. Association Between Okinawan Vegetables Consumption and Risk of Type 2 Diabetes in Japanese Communities: The JPHC Study. J. Epidemiol. 2020, 30, 227–235. [Google Scholar] [CrossRef]
- Hamer, M.; Chida, Y. Intake of fruit, vegetables, and antioxidants and risk of type 2 diabetes: Systematic review and meta-analysis. J. Hypertens. 2007, 25, 2361–2369. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. STEP Manual. The WHO Stepwise Approach to Chronic Disease Risk Factor Surveillance. Geneva, Switzerland. 2008. Available online: https://apps.who.int/iris/bitstream/handle/10665/43376/9241593830_eng.pdf?sequence=1&isAllowed=y (accessed on 15 August 2021).
- Grover, S.; Sinha, D.N.; Gupta, S.; Gupta, P.C.; Mehrotra, R. The changing face of risk factors for non-communicable disease in Myanmar: Findings from the 2009 and 2014 WHO STEP Surveys. J. Public Health 2019, 41, 750–756. [Google Scholar] [CrossRef]
- Simha, V. Management of hypertriglyceridemia. BMJ 2020, 371, m3109. [Google Scholar] [CrossRef]
- Hammons, A.J.; Fiese, B.H. Is frequency of shared family meals related to the nutritional health of children and adolescents? Pediatrics 2011, 127, e1565–e1574. [Google Scholar] [CrossRef] [Green Version]
- Do Amaral, E.M.G.R.; Silva, P.O.; Nakabayashi, J.; Bandeira, M.V.; Toral, N.; Monteiro, R. Family meal frequency and its association with food consumption and nutritional status in adolescents: A systematic review. PLoS ONE 2020, 15, e0239274. [Google Scholar] [CrossRef]
- Fulkerson, J.A.; Larson, N.; Horning, M.; Neumark-Sztainer, D. A review of associations between family or shared meal frequency and dietary and weight status outcomes across the lifespan. J. Nutr. Educ. Behav. 2014, 46, 2–19. [Google Scholar] [CrossRef]
- Berge, J.M.; Wickel, K.; Doherty, W.J. The individual and combined influence of the “quality” and “quantity” of family meals on adult body mass index. Fam. Syst. Health 2012, 30, 344–351. [Google Scholar] [CrossRef] [Green Version]
- Horikawa, C.; Hatta, M.; Morikawa, S.Y.; Takeda, Y.; Takeuchi, M.; Fujihara, K.; Kato, N.; Yokoyama, H.; Kurihara, Y.; Iwasaki, K.; et al. Family Support for Medical Nutritional Therapy and Dietary Intake among Japanese with Type 2 Diabetes (JDDM 56). Nutrients 2020, 12, 2649. [Google Scholar] [CrossRef] [PubMed]
- Gruss, S.M.; Nhim, K.; Gregg, E.; Bell, M.; Luman, E.; Albright, A. Public Health Approaches to Type 2 Diabetes Prevention: The US National Diabetes Prevention Program and Beyond. Curr. Diab. Rep. 2019, 19, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Case (n = 150) | Control (n = 150) | p-Value | |
---|---|---|---|
Gender, n(%) | 0.017 * | ||
Male | 47(31.3) | 67(44.7) | |
Female | 103(68.7) | 83(55.3) | |
Age, (mean ± SD) | 55.1 ± 10.9 | 43.3±14.8 | <0.001 *** |
BMI (kg/m2), (mean ± SD) | 26.8 ± 4.9 | 25.0±4.6 | 0.013 * |
WHR (male ≥ 0.9, female ≥ 0.85), n(%) | 114(76.0) | 64(42.7) | <0.001 *** |
High blood pressure (SBP ≥ 140, DBP ≥ 90), n(%) | 20(15.5) | 9(6.8) | 0.024 * |
Physical activity (≥420 mins/week), n(%) | 83(55.3) | 60(40.0) | 0.008 ** |
Marital status (currently married), n(%) | 99(66.0) | 72(48.0) | 0.002 ** |
Education status (primary school or lower), n(%) | 50(33.6) | 13(8.7) | <0.001 *** |
Employment status (employed), n(%) | 69(46.3) | 109(73.2) | <0.001 *** |
Personal monthly income (low: less than average), n(%) | 61(41.8) | 25(17.1) | <0.001 *** |
Current smokers, n(%) | 4(2.7) | 18(12.0) | 0.002 ** |
Current alcohol drinkers, n(%) | 6(4.0) | 38(25.7) | <0.001 *** |
Taking diabetes medication, n(%) | 129(86.0) | ― | ― |
Family history of diabetes, n(%) | 89(59.3) | 69(46.0) | 0.021 * |
Food Item | Case (n = 150) | Control (n = 150) | p-Value | |||
---|---|---|---|---|---|---|
Rice | n(%) | 139 | (93.9) | 138 | (92.0) | 0.518 |
Bread | 9 | (6.1) | 4 | (2.7) | 0.149 | |
Noodles | 15 | (10.1) | 5 | (3.36) | 0.021 * | |
Meat | 56 | (37.3) | 42 | (28.0) | 0.085 | |
Fish | 17 | (11.3) | 4 | (2.67) | 0.003 ** | |
Sausage | 0 | (0.0) | 0 | (0.0) | ― | |
Seafood | 0 | (0.0) | 3 | (2.0) | 0.082 | |
Beans | 13 | (8.8) | 4 | (2.7) | 0.023 * | |
Nuts | 4 | (2.7) | 1 | (0.7) | 0.176 | |
Stir-fried food | 33 | (22.2) | 28 | (18.8) | 0.473 | |
Deep-fried food | 8 | (5.3) | 3 | (2.0) | 0.127 | |
Fermented food and pickles | 9 | (6.0) | 1 | (0.7) | 0.010 * | |
Dried food | 6 | (4.0) | 0 | (0.0) | 0.014 * | |
Seasonings | 144 | (96.0) | 101 | (69.2) | <0.001 *** | |
Diary milk product | 17 | (11.4) | 13 | (8.7) | 0.430 | |
Non-diary milk product | 5 | (3.3) | 15 | (10.1) | 0.020 * | |
Dessert | 8 | (5.3) | 11 | (7.4) | 0.468 | |
Soft drink | 1 | (0.7) | 3 | (2.0) | 0.314 | |
Fresh fruit juice | 2 | (1.3) | 1 | (0.7) | 0.566 | |
Coffee and/or tea | 40 | (26.9) | 50 | (33.3) | 0.221 | |
Vegetables (≥3 servings/day) | 7 | (4.8) | 31 | (21.2) | <0.001 *** | |
Fruit (≥3 servings/day) | 2 | (1.8) | 12 | (10.0) | <0.01 * |
Association of Dietary Habits to T2DM | ||||
---|---|---|---|---|
Food Intake | OR | aOR | 95% CI | p-Value |
Seasonings | ||||
Crude | 10.65 | 3.57–31.84 | <0.001 *** | |
Model 1 | 13.46 | 5.11–35.42 | <0.001 *** | |
Model 2 | 11.05 | 3.93–31.10 | <0.001 *** | |
Model 3 | 11.23 | 3.08–40.90 | <0.001 *** | |
Vegetables | ||||
Crude | 0.16 | 0.05–0.48 | <0.001 *** | |
Model 1 | 0.24 | 0.09–0.59 | 0.002 ** | |
Model 2 | 0.21 | 0.08–0.56 | 0.002 ** | |
Model 3 | 0.18 | 0.05–0.67 | 0.011 * | |
Fruit | ||||
Crude | 0.39 | 0.07–2.16 | 0.280 | |
Model 1 | 0.21 | 0.04–1.02 | 0.053 | |
Model 2 | 0.15 | 0.03–0.84 | 0.031 * | |
Model 3 | 0.43 | 0.06–3.05 | 0.397 |
Dietary Behavior | Case (n = 150) | Control (n = 150) | p-Value | |||
---|---|---|---|---|---|---|
Having family meals | n (%) | 66 | (44.0) | 34 | (23.0) | <0.001 ** |
Skipping breakfast | 12 | (8.0) | 4 | (2.7) | 0.043 * | |
Eating out | 5 | (3.3) | 13 | (8.8) | 0.048 * | |
Eating prepared foods | 15 | (10.0) | 15 | (10.1) | 0.969 | |
Having snacks | 26 | (17.3) | 17 | (11.4) | 0.144 | |
Removing visible fat | 62 | (43.4) | 54 | (37.5) | 0.312 | |
Drinking alcohol | 1 | (0.7) | 0 | (0.0) | 0.323 |
Association of Dietary Habits to T2DM | ||||
---|---|---|---|---|
OR | aOR | 95% CI | p-Value | |
Having meals with family | ||||
Crude | 2.63 | 1.60–4.35 | <0.001 *** | |
Model 1 | 3.08 | 1.76–5.39 | <0.001 *** | |
Model 2 | 2.50 | 1.37–4.56 | 0.003 ** | |
Model 3 | 2.23 | 1.05–4.71 | 0.036 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ueno, S.; Aung, M.N.; Yuasa, M.; Ishtiaq, A.; Khin, E.T.; Latt, T.S.; Moolphate, S.; Sato, S.; Tanigawa, T. Association between Dietary Habits and Type 2 Diabetes Mellitus in Yangon, Myanmar: A Case–Control Study. Int. J. Environ. Res. Public Health 2021, 18, 11056. https://doi.org/10.3390/ijerph182111056
Ueno S, Aung MN, Yuasa M, Ishtiaq A, Khin ET, Latt TS, Moolphate S, Sato S, Tanigawa T. Association between Dietary Habits and Type 2 Diabetes Mellitus in Yangon, Myanmar: A Case–Control Study. International Journal of Environmental Research and Public Health. 2021; 18(21):11056. https://doi.org/10.3390/ijerph182111056
Chicago/Turabian StyleUeno, Satomi, Myo Nyein Aung, Motoyuki Yuasa, Ahmad Ishtiaq, Ei Thinzar Khin, Tint Swe Latt, Saiyud Moolphate, Setsuko Sato, and Takeshi Tanigawa. 2021. "Association between Dietary Habits and Type 2 Diabetes Mellitus in Yangon, Myanmar: A Case–Control Study" International Journal of Environmental Research and Public Health 18, no. 21: 11056. https://doi.org/10.3390/ijerph182111056
APA StyleUeno, S., Aung, M. N., Yuasa, M., Ishtiaq, A., Khin, E. T., Latt, T. S., Moolphate, S., Sato, S., & Tanigawa, T. (2021). Association between Dietary Habits and Type 2 Diabetes Mellitus in Yangon, Myanmar: A Case–Control Study. International Journal of Environmental Research and Public Health, 18(21), 11056. https://doi.org/10.3390/ijerph182111056