Evidence Map and Systematic Review of Disinfection Efficacy on Environmental Surfaces in Healthcare Facilities
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Disinfection Type
3.2. Outcomes
3.3. Disinfection Efficacy
3.4. Proposed Framework for Ideal Disinfection
3.5. Study Quality
4. Discussion
4.1. Strengths and Weaknesses
4.2. Disinfection Efficacy
4.3. Healthcare-Associated Infections
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Magill, S.S.; O’Leary, S.; Thompson, D.; Dumyati, G.; Nadle, J.; Wilson, L.; Kainer, M.; Lynfield, R.; Greissman, S.; Ray, S.; et al. Changes in Prevalence of Health Care–Associated Infections. N. Engl. J. Med. 2018, 380, 1085–1086. [Google Scholar]
- Cassini, A.; Plachouras, D.; Eckmanns, T.; Abu Sin, M.; Blank, H.-P.; Ducomble, T.; Haller, S.; Harder, T.; Klingeberg, A.; Sixtensson, M.; et al. Burden of Six Healthcare-Associated Infections on European Population Health: Estimating Incidence-Based Disability-Adjusted Life Years through a Population Prevalence-Based Modelling Study. PLoS Med. 2016, 13, e1002150. [Google Scholar] [CrossRef] [Green Version]
- Allegranzi, B.; Nejad, S.B.; Combescure, C.; Graafmans, W.; Attar, H.; Donaldson, L.; Pittet, D. Burden of endemic health-care-associated infection in developing countries: Systematic review and meta-analysis. Lancet 2011, 377, 228–241. [Google Scholar] [CrossRef]
- Curcio, D.; Cane, A.; Fernández, F.; Correa, J. Surgical site infection in elective clean and clean-contaminated surgeries in developing countries. Int. J. Infect. Dis. 2019, 80, 34–45. [Google Scholar] [CrossRef] [Green Version]
- Bonell, A.; Azarrafiy, R.; Huong, V.T.L.; Le Viet, T.; Phu, V.D.; Dat, V.Q.; Wertheim, H.; Van Doorn, H.R.; Lewycka, S.; Nadjm, B. A Systematic Review and Meta-analysis of Ventilator-associated Pneumonia in Adults in Asia: An Analysis of National Income Level on Incidence and Etiology. Clin. Infect. Dis. 2019, 68, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Vickery, K.; Deva, A.; Jacombs, A.; Allan, J.; Valente, P.; Gosbell, I.B. Presence of biofilm containing viable multiresistant organisms despite terminal cleaning on clinical surfaces in an intensive care unit. J. Hosp. Infect. 2012, 80, 52–55. [Google Scholar] [CrossRef]
- Weiner-Lastinger, L.M.; Abner, S.; Edwards, J.R.; Kallen, A.J.; Karlsson, M.; Magill, S.S.; Pollock, D.; See, I.; Soe, M.M.; Walters, M.S.; et al. Antimicrobial-resistant pathogens associated with adult healthcare-associated infections: Summary of data reported to the National Healthcare Safety Network, 2015–2017. Infect. Control Hosp. Epidemiol. 2020, 41, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lessa, F.C.; Mu, Y.; Bamberg, W.M.; Beldavs, Z.G.; Dumyati, G.K.; Dunn, J.R.; Farley, M.M.; Holzbauer, S.M.; Meek, J.I.; Phipps, E.C.; et al. Burden of Clostridium difficile Infection in the United States. N. Engl. J. Med. 2015, 372, 825–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donskey, C.J. Beyond high-touch surfaces: Portable equipment and floors as potential sources of transmission of health care–associated pathogens. Am. J. Infect. Control. 2019, 47, A90–A95. [Google Scholar] [CrossRef] [PubMed]
- Ansari, S.A.; Sattar, S.A.; Springthorpe, V.S.; Wells, G.A.; Tostowaryk, W. Rotavirus survival on human hands and transfer of infectious virus to animate and nonporous inanimate surfaces. J. Clin. Microbiol. 1988, 26, 1513–1518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ansari, S.A.; Springthorpe, V.S.; Sattar, S.A.; Rivard, S.; Rahman, M. Potential role of hands in the spread of respiratory viral infections: Studies with human parainfluenza virus 3 and rhinovirus 14. J. Clin. Microbiol. 1991, 29, 2115–2119. [Google Scholar] [CrossRef] [Green Version]
- Mbithi, J.N.; Springthorpe, V.S.; Boulet, J.R.; Sattar, S.A. Survival of hepatitis A virus on human hands and its transfer on contact with animate and inanimate surfaces. J. Clin. Microbiol. 1992, 30, 757–763. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.-L.; Yang, X.-Y.; Ding, X.-X.; Li, R.-J.; Pan, M.-S.; Zhao, X.; Hu, X.-Q.; Zhang, J.-J.; Yang, L.-Q.; Yang, X.-Y. Exposure to infected/colonized roommates and prior room occupants increases the risks of healthcare-associated infections with the same organism. J. Hosp. Infect. 2019, 101, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Cohen, B.; Cohen, C.C.; Løyland, B.; Larson, E.L. Transmission of health care-associated infections from roommates and prior room occupants: A systematic review. Clin. Epidemiol. 2017, 9, 297–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, S.S.; Datta, R.; Platt, R. Risk of acquiring antibiotic-resistant bacteria from prior room occupants. Arch. Intern. Med. 2006, 166, 1945–1951. [Google Scholar] [CrossRef] [Green Version]
- Shaughnessy, M.K.; Micielli, R.L.; DePestel, D.D.; Arndt, J.; Strachan, C.L.; Welch, K.B.; Chenoweth, C.E. Evaluation of Hospital Room Assignment and Acquisition of Clostridium difficile Infection. Infect. Control Hosp. Epidemiol. 2011, 32, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Nseir, S.; Blazejewski, C.; Lubret, R.; Wallet, F.; Courcol, R.; Durocher, A. Risk of acquiring multidrug-resistant Gram-negative bacilli from prior room occupants in the intensive care unit. Clin. Microbiol. Infect. 2011, 17, 1201–1208. [Google Scholar] [CrossRef] [Green Version]
- Carling, P.C.; Parry, M.M.; Rupp, M.E.; Po, J.L.; Dick, B.; Von Beheren, S. Improving Cleaning of the Environment Surrounding Patients in 36 Acute Care Hospitals. Infect. Control Hosp. Epidemiol. 2008, 29, 1035–1041. [Google Scholar] [CrossRef]
- Donskey, C.J. Does improving surface cleaning and disinfection reduce health care-associated infections? Am. J. Infect. Control 2013, 41, S12–S19. [Google Scholar] [CrossRef]
- Eckstein, B.C.; Adams, D.A.; Eckstein, E.C.; Rao, A.; Sethi, A.K.; Yadavalli, G.K.; Donskey, C.J. Reduction of Clostridium difficile and vancomycin-resistant Enterococcus contamination of environmental surfaces after an intervention to improve cleaning methods. BMC Infect. Dis. 2007, 7, 61. [Google Scholar] [CrossRef] [Green Version]
- Hota, B.; Blom, D.W.; Lyle, E.A.; Weinstein, R.A.; Hayden, M.K. Interventional evaluation of environmental contamination by vancomycin-resistant enterococci: Failure of personnel, product, or procedure? J. Hosp. Infect. 2009, 71, 123–131. [Google Scholar] [CrossRef]
- Po, J.L.; Burke, R.; Sulis, C.; Carling, P.C. Dangerous cows: An analysis of disinfection cleaning of computer keyboards on wheels. Am. J. Infect. Control. 2009, 37, 778–780. [Google Scholar] [CrossRef] [PubMed]
- Creamer, E.; Dorrian, S.; Dolan, A.; Sherlock, O.; Fitzgerald-Hughes, D.; Thomas, T.; Walsh, J.; Shore, A.; Sullivan, D.; Kinnevey, P.; et al. When are the hands of healthcare workers positive for meticillin-resistant Staphylococcus aureus? J. Hosp. Infect. 2010, 75, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Weber, D.J.; Anderson, D.; Rutala, W.A. The role of the surface environment in healthcare-associated infections. Curr. Opin. Infect. Dis. 2013, 26, 338–344. [Google Scholar] [CrossRef]
- Price, L.; MacDonald, J.; Melone, L.; Howe, T.; Flowers, P.; Currie, K.; Curran, E.; Ness, V.; Waddell, D.; Manoukian, S.; et al. Effectiveness of national and subnational infection prevention and control interventions in high-income and upper-middle-income countries: A systematic review. Lancet Infect. Dis. 2018, 18, e159–e171. [Google Scholar] [CrossRef] [Green Version]
- Louh, I.K.; Greendyke, W.G.; Hermann, E.A.; Davidson, K.W.; Falzon, L.; Vawdrey, D.K.; Shaffer, J.A.; Calfee, D.P.; Furuya, E.Y.; Ting, H.H.; et al. Clostridium Difficile Infection in Acute Care Hospitals: Systematic Review and Best Practices for Prevention. Infect. Control Hosp. Epidemiol. 2017, 38, 476–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonald, L.C.; Arduino, M. Editorial commentary: Climbing the evidentiary hierarchy for environmental infection control. Clin. Infect. Dis. 2013, 56, 36–39. [Google Scholar] [CrossRef]
- Han, J.H.; Sullivan, N.; Leas, B.F.; Pegues, D.A.; Kaczmarek, J.L.; Umscheid, C.A. Cleaning hospital room surfaces to prevent health care-associated infections: A technical brief. Ann. Intern. Med. 2015, 163, 598–607. [Google Scholar] [CrossRef] [Green Version]
- ASTM International. ASTM E2197—02 Standard Quantitative Disk Carrier Test Method for Determining the Bactericidal, Virucidal, Fungicidal, Mycobactericidal and Sporicidal Activities of Liquid Chemical Germicides; ASTM International: West Conshohocken, PA, USA, 2002. [Google Scholar]
- Sattar, S.A.; Springthorpe, V.S.; Adegbunrin, O.; Zafer, A.A.; Busa, M. A disc-based quantitative carrier test method to assess the virucidal activity of chemical germicides. J. Virol. Methods 2003, 112, 3–12. [Google Scholar] [CrossRef]
- Le Coutour, C.; Oblin, I. Disinfection of surfaces in hospital: Comparison between theoric and real efficiency of three commercial products. Tech. Hosp. Med.-Soc. Sanit. 1991, 46, 49–50. [Google Scholar]
- Neely, A.N.; Maley, M.P. Survival of enterococci and staphylococci on hospital fabrics and plastic. J. Clin. Microbiol. 2000, 38, 724–726. [Google Scholar] [CrossRef] [Green Version]
- Noskin, G.A.; Stosor, V.; Cooper, I.; Peterson, L.R. Recovery of Vancomycin-Resistant Enterococci on Fingertips and Environmental Surfaces. Infect. Control Hosp. Epidemiol. 1995, 16, 577–581. [Google Scholar] [CrossRef] [PubMed]
- Traoré, O.; Springthorpe, V.S.; Sattar, S.A. A quantitative study of the survival of two species of Candida on porous and non-porous environmental surfaces and hands. J. Appl. Microbiol. 2002, 92, 549–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, H.; Campbell, L.; Harvey, R.; Bischoff, K.; Alali, W.; Barling, K.; Anderson, R. Patterns of Antimicrobial Resistance among Commensal Escherichia coli Isolated from Integrated Multi-Site Housing and Worker Cohorts of Humans and Swine. Foodborne Pathog. Dis. 2005, 2, 24–37. [Google Scholar] [CrossRef]
- Leas, B.; Sullivan, N.; Han, J.; Pegues, D.; Kaczmarek, J.; Umscheid, C. Environmental Cleaning for the Prevention of Healthcare-Associated Infections. Agency Healthc. Res. Qual. 2015, 22, 121. [Google Scholar]
- Schreiber, P.W.; Sax, H.; Wolfensberger, A.; Clack, L.; Kuster, S.P. The preventable proportion of healthcare-associated infections 2005–2016: Systematic review and meta-analysis. Infect. Control Hosp. Epidemiol. 2018, 39, 1277–1295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doll, M.; Stevens, M.; Bearman, G. Environmental cleaning and disinfection of patient areas. Int. J. Infect. Dis. 2018, 67, 52–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rutala, W.A.; Weber, D.J. Selection of the Ideal Disinfectant. Hosp. Epidemiol. 2014, 35, 855–865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- U.S. Department of Health and Human Services Centers for Disease Control and Prevention (CDC). Guidelines for Environmental Infection Control in Health-Care Facilities Recommendations of CDC and the Healthcare Infection Control Practices Advisory Committee (HICPAC); CDC: Atlanta, GA, USA, 2019.
- Rutala, W.A.; Weber, D.J. Guideline for Disinfection and Sterilization in Healthcare Facilities, 2008. Available online: https://stacks.cdc.gov/view/cdc/47378 (accessed on 15 December 2019).
- World Health Organization. Prevention of Hospital-Acquired Infections: A Practical Guide, 2nd ed.; World Health Organization: Geneva, Switzerland, 2002. [Google Scholar]
- Varghese, A.; Cawley, M.; Hong, T. Supervised clustering for automated document classification and prioritization: A case study using toxicological abstracts. Environ. Syst. Decis. 2018, 38, 398–414. [Google Scholar] [CrossRef]
- Yuen, J.W.M.; Chung, T.W.K.; Loke, A.Y. Methicillin-Resistant Staphylococcus aureus (MRSA) contamination in bedside surfaces of a hospital ward and the potential effectiveness of enhanced disinfection with an antimicrobial polymer surfactant. Int. J. Environ. Res. Public Health. 2015, 12, 3026–3041. [Google Scholar] [CrossRef]
- World Bank. World Bank Country and Lending Groups—World Bank Data Help Desk. Available online: https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups (accessed on 11 January 2021).
- NIH Study Quality Assessment Tools. Available online: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools (accessed on 11 January 2021).
- McHugh, M.L. Interrater reliability: The kappa statistic. Biochem. Med. 2012, 22, 276–282. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. PLoS Med. 2021, 18, n71. [Google Scholar] [CrossRef]
- Fujii, M. Prevention of MRSA infection in neurosurgery: Examination from the patient environment. No Shinkei Geka. 1996, 24, 241–245. [Google Scholar]
- Fukada, T.; Tsuchiya, Y.; Iwakiri, H.; Ozaki, M. Adenosine triphosphate bioluminescence assay for monitoring contamination of the working environment of anaesthetists and cleanliness of the operating room. J. Infect. Prev. 2015, 16, 8–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukada, T.; Iwakiri, H.; Ozaki, M. Anaesthetists’ role in computer keyboard contamination in an operating room. J. Hosp. Infect. 2008, 70, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Evans, M.W.; Breshears, J.; Campbell, A.; Husbands, C.; Rupert, R. Assessment and risk reduction of infectious pathogens on chiropractic treatment tables. Chiropr. Osteopat. 2007, 15, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, A.M.; de Andrade, D.; Rigotti, M.A.; de Almeida, M.T.G.; Guerra, O.G.; dos Santos, A.G., Jr. Assessment of disinfection of hospital surfaces using different monitoring methods. Rev. Lat. Am. Enfermagem. 2015, 23, 466–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dramowski, A.; Whitelaw, A.; Cotton, M.F. Assessment of terminal cleaning in pediatric isolation rooms: Options for low-resource settings. Am. J. Infect. Control. 2016, 44, 1558–1564. [Google Scholar] [CrossRef] [PubMed]
- Oie, S.; Yanagi, C.; Matsui, H.; Nishida, T.; Tomita, M.; Kamiya, A. Contamination of environmental surfaces by Staphylococcus aureus in a dermatological ward and its preventive measures. Biol. Pharm. Bull. 2005, 28, 120–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doidge, M.; Allworth, A.M.; Woods, M.; Marshall, P.; Terry, M.; Brien, K.O.; Goh, H.M.; George, N.; Nimmo, G.R.; Schembri, M.A.; et al. Control of an Outbreak of Carbapenem—Resistant Acinetobacter baumannii in Australia after Introduction of Environmental Cleaning with a Commercial Oxidizing Disinfectant. Infect. Control Hosp. Epidemiol. 2010, 31, 17–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biswal, M.; Rudramurthy, S.; Jain, N.; Shamanth, A.; Sharma, D.; Jain, K.; Yaddanupudi, L.; Chakrabarti, A. Controlling a possible outbreak of Candida auris infection: Lessons learnt from multiple interventions. J. Hosp. Infect. 2017, 97, 363–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sui, Y.S.; Wan, G.H.; Chen, Y.W.; Ku, H.L.; Li, L.P.; Liu, C.H.; Mau, H.S. Effectiveness of bacterial disinfectants on surfaces of mechanical ventilator systems. Respir. Care 2012, 57, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Codish, S.; Toledano, R.; Novack, V.; Sherf, M.; Borer, A. Effectiveness of stringent decontamination of computer input devices in the era of electronic medical records and bedside computing: A randomized controlled trial. Am. J. Infect. Control. 2015, 43, 644–646. [Google Scholar] [CrossRef] [PubMed]
- Casini, B.; Selvi, C.; Cristina, M.L.; Totaro, M.; Costa, A.L.; Valentini, P.; Barnini, S.; Baggiani, A.; Tagliaferri, E.; Privitera, G. Evaluation of a modified cleaning procedure in the prevention of carbapenem-resistant Acinetobacter baumannii clonal spread in a burn intensive care unit using a high-sensitivity luminometer. J. Hosp. Infect. 2017, 95, 46–52. [Google Scholar] [CrossRef] [Green Version]
- Alhmidi, H.; Koganti, S.; Cadnum, J.L.; Rai, H.; Jencson, A.L.; Donskey, C.J. Evaluation of a novel alcohol-based surface disinfectant for disinfection of hard and soft surfaces in healthcare facilities. Open Forum Infect. Dis. 2017, 4, 8–10. [Google Scholar] [CrossRef]
- Andersen, B.M.; Rasch, M.; Kvist, J.; Tollefsen, T.; Lukkassen, R.; Sandvik, L.; Welo, A. Floor cleaning: Effect on bacteria and organic materials in hospital rooms. J. Hosp. Infect. 2008, 71, 57–65. [Google Scholar] [CrossRef]
- Schmidt, M.G.; Fairey, S.E.; Attaway, H.H. In situ evaluation of a persistent disinfectant provides continuous decontamination within the clinical environment. Am. J. Infect. Control 2019, 47, 732–734. [Google Scholar] [CrossRef] [Green Version]
- Attaway, H.H.; Fairey, S.; Steed, L.L.; Salgado, C.D.; Michels, H.T.; Schmidt, M.G. Intrinsic bacterial burden associated with intensive care unit hospital beds: Effects of disinfection on population recovery and mitigation of potential infection risk. Am. J. Infect. Control. 2012, 40, 907–912. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.; Hutton, A.; Mariyaselvam, M.; Hodges, E.; Wong, K.; Blunt, M.; Young, P. Keyboard cleanliness: A controlled study of the residual effect of chlorhexidine gluconate. Am. J. Infect. Control. 2015, 43, 289–291. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, K.A.; Sexton, J.D.; Pivo, T.; Humphrey, K.; Leslie, R.A.; Gerba, C.P. Microbial transmission in an outpatient clinic and impact of an intervention with an ethanol-based disinfectant. Am. J. Infect. Control. 2019, 47, 128–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zubair, M.; Imtiaz, S.; Zafar, A.; Javed, H.; Atif, M.; Abosalif, K.O.A.A.; Ejaz, H. Role of hospital surfaces in transmission of infectious diseases. Pak. J. Med. Health Sci. 2018, 12, 857–859. [Google Scholar]
- Bokulich, N.A.; Mills, D.A.; Underwood, M.A. Surface microbes in the neonatal intensive care unit: Changes with routine cleaning and over time. J. Clin. Microbiol. 2013, 51, 2617–2624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saha, A.; Botha, S.L.; Weaving, P.; Satta, G. A pilot study to assess the effectiveness and cost of routine universal use of peracetic acid sporicidal wipes in a real clinical environment. Am. J. Infect. Control 2016, 44, 1247–1251. [Google Scholar] [CrossRef] [PubMed]
- Doan, L.; Forrest, H.; Fakis, A.; Craig, J.; Claxton, L.; Khare, M. Clinical and cost effectiveness of eight disinfection methods for terminal disinfection of hospital isolation rooms contaminated with Clostridium difficile 027. J. Hosp. Infect. 2012, 82, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Armellino, D.; Goldstein, K.; Thomas, L.; Walsh, T.J.; Petraitis, V. Comparative evaluation of operating room terminal cleaning by two methods: Focused multivector ultraviolet (FMUV) versus manual-chemical disinfection. Am. J. Infect. Control. 2020, 48, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, B.G.; Digney, W.; Locket, P.; Dancer, S.J. Controlling methicillin-resistant Staphylococcus aureus (MRSA) in a hospital and the role of hydrogen peroxide decontamination: An interrupted time series analysis. BMJ Open 2014, 4, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Carling, P.C.; Perkins, J.; Ferguson, J.; Thomasser, A. Evaluating a New Paradigm for Comparing Surface Disinfection in Clinical Practice. Infect. Control Hosp. Epidemiol. 2014, 35, 1349–1355. [Google Scholar] [CrossRef] [PubMed]
- Boyce, J.M.; Havill, N.L. Evaluation of a New Hydrogen Peroxide Wipe Disinfectant. Infect. Control Hosp. Epidemiol. 2013, 34, 521–523. [Google Scholar] [CrossRef]
- Deshpande, A.; Mana, T.S.; Cadnum, J.L.; Jencson, A.C.; Sitzlar, B.; Fertelli, D.; Hurless, K.; Kundrapu, S.; Sunkesula, V.C.; Donskey, C.J.; et al. Evaluation of a Sporicidal Peracetic Acid/Hydrogen Peroxide—Based Daily Disinfectant Cleaner. Soc. Healthc. Epidemiol. Am. 2014, 35, 5–8. [Google Scholar] [CrossRef]
- Wiemken, T.L.; Curran, D.R.; Kelley, R.R.; Pacholski, E.B.; Carrico, R.M.; Peyrani, P.; Khan, M.S.S.; Ramirez, J.A. Evaluation of the effectiveness of improved hydrogen peroxide in the operating room. Am. J. Infect. Control 2014, 42, 1004–1005. [Google Scholar] [CrossRef]
- Yui, S.; Ali, S.; Muzslay, M.; Jeanes, A.; Wilson, A.P.R. Identification of Clostridium difficile Reservoirs in the Patient Environment and Efficacy of Aerial Hydrogen Peroxide Decontamination. Infect. Control Hosp. Epidemiol. 2017, 38, 1487–1492. [Google Scholar] [CrossRef] [PubMed]
- Siani, H.; Wesgate, R.; Maillard, J.Y. Impact of antimicrobial wipes compared with hypochlorite solution on environmental surface contamination in a health care setting: A double-crossover study. Am. J. Infect. Control 2018, 46, 1180–1187. [Google Scholar] [CrossRef] [PubMed]
- Boyce, J.M.; Guercia, K.A.; Sullivan, L.; Havill, N.L.; Fekieta, R.; Kozakiewicz, J.; Goffman, D. Prospective cluster controlled crossover trial to compare the impact of an improved hydrogen peroxide disinfectant and a quaternary ammonium-based disinfectant on surface contamination and health care outcomes. Am. J. Infect. Control 2017, 45, 1006–1010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dharan, S.; Mourouga, P.; Copin, P.; Bessmer, G.; Tschanz, B.; Pittet, D. Routine disinfection of patients’ environmental surfaces. Myth or reality? J. Hosp. Infect. 1999, 42, 113–117. [Google Scholar] [CrossRef] [Green Version]
- Sjöberg, M.; Eriksson, M.; Andersson, J.; Norén, T. Transmission of Clostridium difficile spores in isolation room environments and through hospital beds. Apmis 2014, 122, 800–803. [Google Scholar] [CrossRef]
- Alfa, M.J.; Lo, E.; Olson, N.; Macrae, M.; Buelow-Smith, L. Use of a daily disinfectant cleaner instead of a daily cleaner reduced hospital—Acquired infection rates. Am. J. Infect. Control 2015, 43, 141–146. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, S.; Illescas, A.; Escarzaga, E. Reduction of Bacterial Contamination of the Environment of a General Hospital, by the Use of a new Germicide Biomet 66. Rev. Med. del Hosp. Gen. 1963, 26, 873–878. [Google Scholar]
- Strat, E. Research on the effectiveness of disinfectants in the surfactant group o the degeneration of the hospital environment. Rev. Med. Chir. Soc. Med. Nat. Iasi. 1971, 75, 957–966. [Google Scholar]
- Passaretti, C.L.; Otter, J.A.; Reich, N.G.; Myers, J.; Shepard, J.; Ross, T.; Carroll, K.C.; Lipsett, P.; Perl, T.M. An evaluation of environmental decontamination with hydrogen peroxide vapor for reducing the risk of patient acquisition of multidrug-resistant organisms. Clin. Infect. Dis. 2013, 56, 27–35. [Google Scholar] [CrossRef]
- Otter, J.A.; Cummins, M.; Ahmad, F.; van Tonder, C.; Drabu, Y.J. Assessing the biological efficacy and rate of recontamination following hydrogen peroxide vapour decontamination. J. Hosp. Infect. 2007, 67, 182–188. [Google Scholar] [CrossRef]
- Lewis, B.D.; Spencer, M.; Rossi, P.J.; Lee, C.J.; Brown, K.R.; Malinowski, M.; Seabrook, G.R.; Edmiston, C.E. Assessment of an innovative antimicrobial surface disinfectant in the operating room environment using adenosine triphosphate bioluminescence assay. Am. J. Infect. Control 2015, 43, 283–285. [Google Scholar] [CrossRef]
- Suzuki, A.; Namba, Y.; Matsuura, M.; Horisawa, A. Bacterial contamination of floors and other surfaces in operating rooms: A five-year survey. J. Hyg. 1984, 93, 559–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roux, D.; Aubier, B.; Cochard, H.; Quentin, R.; Van Der Mee-Marquet, N. Contaminated sinks in intensive care units: An underestimated source of extended-spectrum beta-lactamase-producing Enterobacteriaceae in the patient environment. J. Hosp. Infect. 2013, 85, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Hinsa-Leasure, S.M.; Nartey, Q.; Vaverka, J.; Schmidt, M.G. Copper alloy surfaces sustain terminal cleaning levels in a rural hospital. Am. J. Infect. Control 2016, 44, e195–e203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furlan, M.C.R.; Ferreira, A.M.; Rigotti, M.A.; Guerra, O.G.; Frota, O.P.; De Sousa, A.F.L.; De Andrade, D. Correlation among monitoring methods of surface cleaning and disinfection in outpatient facilities. Acta Paul. Enferm. 2019, 32, 282–289. [Google Scholar] [CrossRef] [Green Version]
- Byers, K.E.; Durbin, L.J.; Simonton, B.M.; Anglim, A.M.; Adal, A.; Farr, B.M.; Control, S.I.; Epidemiology, H.; Apr, N. Disinfection of Hospital Rooms Contaminated with Vancomycin-Resistant Enterococcus faecium. Infect. Control Hosp. Epidemiol. 2020, 19, 261–264. [Google Scholar]
- Panknin, H. Diversity of the ambient flora and effectiveness of surface disinfection measures in the neonatal unit. Hyg. Med. 2014, 39, 245–247. [Google Scholar]
- Kitagawa, H.; Mori, M.; Kashiyama, S.; Sasabe, Y.; Ukon, K.; Shimokawa, N.; Shime, N.; Ohge, H. Effect of pulsed xenon ultraviolet disinfection on methicillin-resistant Staphylococcus aureus contamination of high-touch surfaces in a Japanese hospital. Am. J. Infect. Control 2020, 48, 139–142. [Google Scholar] [CrossRef]
- Styaningsih, N.; Suwundo, A.; Adi, M.S. Effectiveness of Disinfectant A and B on the Growth of Bacteria in the Area of Central Surgical Installation of Hospital X in Kudus City. Indian J. Public Health Res. Dev. 2019, 10, 795–804. [Google Scholar] [CrossRef]
- Santos, A.G., Jr.; Ferreira, A.M.; Frota, O.P.; Rigotti, M.A.; Barcelos, L.d.S.; Lopes de Sousa, A.F.; de Andrade, D.; Guerra, O.G.; Furlan, M.C.R. Effectiveness of Surface Cleaning and Disinfection in a Brazilian Healthcare Facility. Open Nurs. J. 2018, 12, 36–44. [Google Scholar] [CrossRef]
- Anderson, D.J.; Moehring, R.W.; Weber, D.J.; Lewis, S.S.; Chen, L.F.; Schwab, J.C.; Becherer, P.; Blocker, M.; Triplett, P.F.; Knelson, L.P.; et al. Effectiveness of targeted enhanced terminal room disinfection on hospital-wide acquisition and infection with multidrug-resistant organisms and Clostridium difficile: A secondary analysis of a multicentre cluster randomised controlled trial with crossover. Lancet Infect. Dis. 2018, 18, 845–853. [Google Scholar] [CrossRef]
- Frota, O.P.; Ferreira, A.M.; Guerra, O.G.; Rigotti, M.A.; de Andrade, D.; Borges, N.M.A.; de Almeida, M.T. Efficiency of cleaning and disinfection of surfaces: Correlation between assessment methods. Rev. Bras. Enferm. 2017, 70, 1176–1183. [Google Scholar] [CrossRef] [Green Version]
- Blazejewski, C.; Wallet, F.; Rouzé, A.; Le Guern, R.; Ponthieux, S.; Salleron, J.; Nseir, S. Efficiency of hydrogen peroxide in improving disinfection of ICU rooms. Crit. Care. 2015, 19, 30. [Google Scholar] [CrossRef] [Green Version]
- Rutala, W.A.; Kanamori, H.; Gergen, M.F.; Knelson, L.P.; Sickbert-Bennett, E.E.; Chen, L.F.; Anderson, D.J.; Sexton, D.J.; Weber, D.J. Enhanced disinfection leads to reduction of microbial contamination and a decrease in patient colonization and infection. Infect. Control Hosp. Epidemiol. 2018, 39, 1118–1121. [Google Scholar] [CrossRef] [PubMed]
- Mayfield, J.L.; Leet, T.; Miller, J.; Mundy, L.M. Environmental Control to Reduce Transmission of Clostridium difficile. Clin. Infect. Dis. 2000, 31, 995–1000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyce, J.M.; Havill, N.L.; Guercia, K.A.; Schweon, S.J.; Moore, B.A. Evaluation of two organosilane products for sustained antimicrobial activity on high-touch surfaces in patient rooms. Am. J. Infect. Control 2014, 42, 326–328. [Google Scholar] [CrossRef] [PubMed]
- Bogusz, A.; Stewart, M.; Hunter, J.; Yip, B.; Reid, D.; Robertson, C.; Dancer, S.J. How quickly do hospital surfaces become contaminated after detergent cleaning? Healthc. Infect. 2013, 18, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Casini, B.; Righi, A.; De Feo, N.; Totaro, M.; Giorgi, S.; Zezza, L.; Valentini, P.; Tagliaferri, E.; Costa, A.L.; Barnini, S.; et al. Improving cleaning and disinfection of high-touch surfaces in intensive care during carbapenem-resistant Acinetobacter baumannii endemo-epidemic situations. Int. J. Environ. Res. Public Health. 2018, 15, 2305. [Google Scholar] [CrossRef] [Green Version]
- Fitton, K.; Barber, K.R.; Karamon, A.; Zuehlke, N.; Atwell, S.; Enright, S. Long-acting water-stable organosilane agent and its sustained effect on reducing microbial load in an intensive care unit. Am. J. Infect. Control 2017, 45, 1214–1217. [Google Scholar] [CrossRef]
- Vesley, D.; Klapes, N.A.; Benzow, K.; Le, C.T. Microbiological evaluation of wet and dry floor sanitization systems in hospital patient rooms. Appl. Environ. Microbiol. 1987, 53, 1042–1045. [Google Scholar] [CrossRef] [Green Version]
- Sigler, V.; Hensley, S. Persistence of mixed Staphylococci assemblages following disinfection of hospital room surfaces. J. Hosp. Infect. 2013, 83, 253–256. [Google Scholar] [CrossRef]
- Fattorini, M.; Buonocore, G.; Lenzi, D.; Burgassi, S.; Cardaci, R.M.R.; Biermann, K.P.; Cevenini, G.; Messina, G. Public Health since the beginning: Neonatal incubators safety in a clinical setting. J. Infect. Public Health 2018, 11, 788–792. [Google Scholar] [CrossRef]
- Hacek, D.M.; Ascp, M.T.; Ogle, A.M.; Fisher, A.; Ascp, M.T.; Robicsek, A. Significant impact of terminal room cleaning with bleach on reducing nosocomial Clostridium difficile. Am. J. Infect. Control 2010, 38, 350–353. [Google Scholar] [CrossRef] [PubMed]
- Butin, M.; Dumont, Y.; Monteix, A.; Raphard, A.; Roques, C.; Martins Simoes, P.; Picaud, J.C.; Laurent, F. Sources and reservoirs of Staphylococcus capitis NRCS-A inside a NICU. Antimicrob. Resist. Infect. Control 2019, 8, 157. [Google Scholar] [CrossRef] [PubMed]
- Otter, J.A.; Mepham, S.; Athan, B.; Mack, D.; Smith, R.; Jacobs, M.; Hopkins, S. Terminal decontamination of the Royal Free London’s high-level isolation unit after a case of Ebola virus disease using hydrogen peroxide vapor. Am. J. Infect. Control. 2016, 44, 233–235. [Google Scholar] [CrossRef] [PubMed]
- Strassle, P.; Thom, K.A.; Johnsonm, J.K.; Leekha, S.; Lissauer, M.; Zhu, J.; Harris, A.D. The effect of terminal cleaning on environmental contamination rates of multidrug-resistant Acinetobacter baumannii. Am. J. Infect. Control 2012, 40, 1005–1007. [Google Scholar] [CrossRef] [Green Version]
- Garvey, M.I.; Wilkinson, M.A.C.; Bradley, C.W.; Holden, K.L.; Holden, E. Wiping out MRSA: Effect of introducing a universal disinfection wipe in a large UK teaching hospital. Antimicrob. Resist. Infect. Control 2018, 7, 155. [Google Scholar] [CrossRef]
- Orenstein, R.; Aronhalt, K.C.; McManus, J.E., Jr.; Fedraw, L.A. A Targeted Strategy to Wipe Out Clostridium difficile. Infect. Control. Hosp. Epidemiol. 2011, 32, 1137–1139. [Google Scholar]
- Kaatz, G.W.; Gitlin, S.D.; Schaberg, D.R.; Wilson, K.H.; Kauffman, C.A.; Seo, S.M.; Fekety, R. Acquisition of Clostridium difficile from the hospital environment. Am. J. Epidemiol. 1988, 127, 1289–1294. [Google Scholar] [CrossRef]
- Youkee, D.; Brown, C.S.; Lilburn, P.; Shetty, N.; Brooks, T.; Simpson, A.; Bentley, N.; Lado, M.; Kamara, T.B.; Walker, N.F.; et al. Assessment of Environmental Contamination and Environmental Decontamination Practices within an Ebola Holding Unit, Freetown, Sierra Leone. PLoS ONE 2015, 10, e0145167. [Google Scholar] [CrossRef] [Green Version]
- Mosci, D.; Marmo, G.W.; Sciolino, L.; Zaccaro, C.; Antonellini, R.; Accogli, L.; Lazzarotto, T.; Mongardi, M.; Landini, M.P. Automatic environmental disinfection with hydrogen peroxide and silver ions versus manual environmental disinfection with sodium hypochlorite: A multicentre randomized before-and-after trial. J. Hosp. Infect. 2017, 97, 175–179. [Google Scholar] [CrossRef]
- Galván Contreras, R.-; Tapia, R.A.R.; Cervantes, E.S.; Aguilar, R.M.A.C. Comparative study on the effectiveness of 6% sodium hypochlorite solution vs a bromine-chloro-dimethylhydantoin solution for disinfecting hospital environments. Perinatol. Reprod. Hum. 2017, 30, 145–150. [Google Scholar]
- Huang, Y.S.; Chen, Y.C.; Chen, M.L.; Cheng, A.; Hung, I.C.; Wang, J.T.; Sheng, W.H.; Chang, S.C. Comparing visual inspection, aerobic colony counts, and adenosine triphosphate bioluminescence assay for evaluating surface cleanliness at a medical center. Am. J. Infect. Control 2015, 43, 882–886. [Google Scholar] [CrossRef]
- Patel, S.S.; Pevalin, D.J.; Prosser, R.; Couchman, A. Comparison of detergent-based cleaning, disinfectant-based cleaning, and detergent-based cleaning after enhanced domestic staff training within a source isolation facility. Br. J. Infect. Control 2007, 8, 20–25. [Google Scholar] [CrossRef]
- Wilcox, M.H.; Fawley, W.N.; Wigglesworth, N.; Parnell, P.; Verity, P.; Freeman, J. Comparison of the effect of detergent versus hypochlorite cleaning on environmental contamination and incidence of Clostridium difficile infection. J. Hosp. Infect. 2003, 54, 109–114. [Google Scholar] [CrossRef]
- Barbut, F.; Menuet, D.; Verachten, M.; Girou, E. Comparison of the Efficacy of a Hydrogen Peroxide Dry-Mist Disinfection System and Sodium Hypochlorite Solution for Eradication of Clostridium difficile Spores. Infect. Control Hosp. Epidemiol. 2009, 30, 507–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, A.; Nerandzic, M.M.; Kundrapu, S.; Donskey, C.J. Does Organic Material on Hospital Surfaces Reduce the Effectiveness of Hypochlorite and UV Radiation for Disinfection of Clostridium difficile? Infect. Control Hosp. Epidemiol. 2013, 34, 1106–1108. [Google Scholar] [CrossRef]
- Anderson, D.J.; Chen, L.F.; Weber, D.J.; Moehring, R.W.; Lewis, S.S.; Triplett, P.F.; Blocker, M.; Becherer, P.; Schwab, J.C.; Knelson, L.P.; et al. Enhanced terminal room disinfection and acquisition and infection caused by multidrug-resistant organisms and Clostridium difficile (the Benefits of Enhanced Terminal Room Disinfection study): A cluster-randomised, multicentre, crossover study. Lancet 2017, 389, 805–814. [Google Scholar] [CrossRef]
- Lerner, A.O.; Abu-Hanna, J.; Carmeli, Y.; Schechner, V. Environmental contamination by carbapenem-resistant Acinetobacter baumannii: The effects of room type and cleaning methods. Infect. Control Hosp. Epidemiol. 2019, 41, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Jinadatha, C.; Quezada, R.; Huber, T.W.; Williams, J.B.; Zeber, J.E.; Copeland, L.A. Evaluation of a pulsed-xenon ultraviolet room disinfection device for impact on contamination levels of methicillin-resistant Staphylococcus aureus. BMC Infect. Dis. 2014, 14, 187. [Google Scholar] [CrossRef] [Green Version]
- Casini, B.; Tuvo, B.; Cristina, M.L.; Spagnolo, A.M.; Totaro, M.; Baggiani, A.; Privitera, G.P. Evaluation of an Ultraviolet C (UVC) Light-Emitting Device for Disinfection of High Touch Surfaces in Hospital Critical Areas. Int. J. Environ. Res. Public Health 2019, 16, 3572. [Google Scholar] [CrossRef] [Green Version]
- Simon Garcia, M.J.; Gonzalez Sanchez, J.A.; Alcudia Perez, F.; Sanchez Sanchez, C.; Gomez Mayoral, B.; Merino Martinez, M.R. Evaluation of the effect of a cleaning disinfection intervention on the rate of multiresistant microorganism infections in the Intensive Care Unit. Enferm. Intensiva 2009, 20, 27–34. [Google Scholar] [PubMed]
- Manian, F.A.; Griesnauer, S.; Bryant, A. Implementation of hospital-wide enhanced terminal cleaning of targeted patient rooms and its impact on endemic Clostridium difficile infection rates. Am. J. Infect. Control 2013, 41, 537–541. [Google Scholar] [CrossRef]
- Manian, F.A.; Griesenauer, S.; Senkel, D.; Setzer, J.M.; Doll, S.A.; Perry, A.M.; Wiechens, M. Isolation of Acinetobacter baumannii Complex and Methicillin-Resistant Staphylococcus aureus from Hospital Rooms Following Terminal Cleaning and Disinfection: Can We Do Better? Infect. Control Hosp. Epidemiol. 2011, 32, 667–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghantoji, S.S.; Stibich, M.; Stachowiak, J.; Cantu, S.; Adachi, J.A.; Raad, I.I.; Chemaly, R.F. Non-inferiority of pulsed xenon UV light versus bleach for reducing environmental Clostridium difficile contamination on high-touch surfaces in Clostridium difficile infection isolation rooms. J. Med. Microbiol. 2015, 64, 191–194. [Google Scholar] [CrossRef]
- Coppin, J.D.; Villamaria, F.C.; Williams, M.D.; Copeland, L.A.; Zeber, J.E.; Jinadatha, C. Self-sanitizing copper-impregnated surfaces for bioburden reduction in patient rooms. Am. J. Infect. Control 2017, 45, 692–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aucella, F.; Vigilante, M.; Valente, G.L.; Stallone, C. Systematic monitor disinfection is effective in limiting HCV spread in hemodialysis. Blood Purif. 2000, 18, 110–114. [Google Scholar] [CrossRef]
- Rathod, S.N.; Beauvais, K.; Sullivan, L.K.; Sudikoff, S.N.; Peaper, D.R.; Martinello, R.A. The effectiveness of a novel colorant additive in the daily cleaning of patient rooms. Infect. Control Hosp. Epidemiol. 2019, 40, 721–723. [Google Scholar] [CrossRef]
- Ho, Y.H.; Wang, L.S.; Jiang, H.L.; Chang, C.H.; Hsieh, C.J.; Chang, D.C.; Tu, H.Y.; Chiu, T.Y.; Chao, H.J.; Tseng, C.C. Use of a sampling area-adjusted adenosine triphosphate bioluminescence assay based on digital image quantification to assess the cleanliness of hospital surfaces. Int. J. Environ. Res. Public Health 2016, 13, 576. [Google Scholar] [CrossRef]
- Hall, T.J.; Jeanes, A.; McKain, L.W.; Jepson, M.J.; Coen, P.G.; Hickok, S.S.; Gant, V.A. A UK district general hospital cleaning study: A comparison of the performance of ultramicrofibre technology with or without addition of a novel copper-based biocide with standard hypochlorite-based cleaning. J. Infect. Prev. 2011, 12, 232–236. [Google Scholar] [CrossRef]
- Oztoprak, N.; Kizilates, F.; Percin, D. Comparison of steam technology and a two-step cleaning (water/detergent) and disinfecting (1000 resp. 5000 ppm hypochlorite) method using microfiber cloth for environmental control of multidrug-resistant organisms in an intensive care unit. GMS Hyg. Infect. Control. 2019, 14, Doc15. [Google Scholar]
- Andersen, B.M.; Bånrud, H.; Bøe, E.; Bjordal, O.; Drangsholt, F. Comparison of UV C Light and Chemicals for Disinfection of Surfaces in Hospital Isolation Units. Infect. Control Hosp. Epidemiol. 2006, 27, 729–734. [Google Scholar] [CrossRef] [PubMed]
- Turner, A.G.; Hill, C.; Higgins, M.M.; Craddock, J.G.; Nc, C.H. Disinfection of Immersion Tanks (Hubbard) in a Hospital Burn Unit. Arch Env. Health 1974, 28, 101–105. [Google Scholar] [CrossRef]
- Chen, C.H.; Tu, C.C.; Kuo, H.Y.; Zeng, R.F.; Yu, C.S.; Lu, H.H.S.; Liou, M.L. Dynamic change of surface microbiota with different environmental cleaning methods between two wards in a hospital. Appl. Microbiol. Biotechnol. 2017, 101, 771–781. [Google Scholar] [CrossRef] [PubMed]
- Best, E.L.; Parnell, P.; Thirkell, G.; Verity, P.; Copland, M.; Else, P.; Denton, M.; Hobson, R.P.; Wilcox, M.H. Effectiveness of deep cleaning followed by hydrogen peroxide decontamination during high Clostridium difficile infection incidence. J. Hosp. Infect. 2014, 87, 25–33. [Google Scholar] [CrossRef]
- Garvey, M.I.; Bradley, C.W.; Jumaa, P. Environmental decontamination following occupancy of a burns patient with multiple carbapenemase-producing organisms. J. Hosp. Infect. 2016, 93, 136–140. [Google Scholar] [CrossRef] [PubMed]
- Stewart, M.; Bogusz, A.; Hunter, J.; Devanny, I.; Yip, B.; Reid, D.; Robertson, C.; Dancer, S.J. Evaluating Use of Neutral Electrolyzed Water for Cleaning Near-Patient Surfaces. Infect. Control Hosp. Epidemiol. 2014, 35, 1505–1510. [Google Scholar] [CrossRef] [Green Version]
- Hosein, I.; Madeloso, R.; Nagaratnam, W.; Villamaria, F.; Stock, E.; Jinadatha, C. Evaluation of a pulsed xenon ultraviolet light device for isolation room disinfection in a United Kingdom hospital. Am. J. Infect. Control. 2016, 44, e157–e161. [Google Scholar] [CrossRef] [Green Version]
- Ojajärvi, J.; Mäkelä, P. Evaluation of Chlorine Compounds for Surface Disinfection by Laboratory and ln-use Testing. Scand. J. Infect. Dis. 1976, 8, 267–270. [Google Scholar] [CrossRef]
- Johnson, A.; Weston, L.; Grisewood, L.; Kyffin, M. Evaluation of the Ultra-VTM (ultraviolet) decontamination system as an adjunct to cleaning in a district general hospital. J. Hosp. Infect. 2016, 94, 406–407. [Google Scholar] [CrossRef]
- Frabetti, A.; Vandini, A.; Balboni, P.; Triolo, F.; Mazzacane, S. Experimental evaluation of the efficacy of sanitation procedures in operating rooms. Am. J. Infect. Control 2009, 37, 658–664. [Google Scholar] [CrossRef]
- Al-Hamad, A.; Maxwell, S. How clean is clean? Proposed methods for hospital cleaning assessment. J. Hosp. Infect. 2008, 70, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Goldenberg, S.D.; Patel, A.; Tucker, D.; French, G.L. Lack of enhanced effect of a chlorine dioxide-based cleaning regimen on environmental contamination with Clostridium difficile spores. J. Hosp. Infect. 2012, 82, 64–67. [Google Scholar] [CrossRef] [PubMed]
- Shelly, M.J.; Scanlon, T.G.; Ruddy, R.; Hannan, M.M.; Murray, J.G. Meticillin-resistant Staphylococcus aureus (MRSA) environmental contamination in a radiology department. Clin. Radiol. 2011, 66, 861–864. [Google Scholar] [CrossRef] [PubMed]
- Allen, O.; Jadkauskaite, L.; Shafi, N.T.; Jackson, A.; Athithan, V.; Chiu, Y.D.; IES, E.; Floto, R.A.; Haworth, C.S. Microbiological evaluation of UV disinfection effectiveness in a specialist cystic fibrosis clinic. J. Cyst. Fibros. 2019, 18, e37–e39. [Google Scholar] [CrossRef] [PubMed]
- Casey, A.L.; Adams, D.; Karpanen, T.J.; Lambert, P.A.; Cookson, B.D.; Nightingale, P.; Miruszenko, L.; Shillam, R.; Christian, P.; Elliott, T.S.J. Role of copper in reducing hospital environment contamination. J. Hosp. Infect. 2010, 74, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Gan, T.; Xu, H.; Wu, J.; Zhu, Y.; Wang, L.; Jin, H.; Wei, L.; Shen, L.; Ni, X.; Cao, J.; et al. Sequential enhanced cleaning eliminates multidrug-resistant organisms in general intensive care unit of a traditional Chinese medicine hospital. J. Crit. Care 2017, 41, 216–221. [Google Scholar] [CrossRef] [PubMed]
- Karpanen, T.J.; Casey, A.L.; Lambert, P.A.; Cookson, B.D.; Nightingale, P.; Miruszenko, L.; Elliott, T.S.J. The Antimicrobial Efficacy of Copper Alloy Furnishing in the Clinical Environment: A Crossover Study. Infect. Control Hosp. Epidemiol. 2012, 33, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Gable, T.S. Bactericidal effectiveness of floor cleaning methods in a hospital environment. Hospitals 1966, 40, 107–111. [Google Scholar] [PubMed]
- Ogino, J.; Fujimori, I.; Goto, R.; Hisamastu, K.; Murakami, Y.; Yamada, T.; Kikushima, K. Efficacy of pyoktanin and DF-100 for prevention of nosocomial MRSA infection. Pract. Otol. Suppl. 1995, 79, 104–109. [Google Scholar]
- Smith, T.L.; Iwen, P.C.; Olson, S.B.; Rupp, M.E. Environmental contamination with vancomycin-resistant Enterococci in an outpatient setting. Infect. Control Hosp. Epidemiol. 1998, 19, 515–518. [Google Scholar] [CrossRef]
- Meinke, R.; Meyer, B.; Frei, R.; Passweg, J.; Widmer, A.F. Equal Efficacy of Glucoprotamin and an Aldehyde Product for Environmental Disinfection in a Hematologic Transplant Unit: A Prospective Crossover Trial. Infect. Control Hosp. Epidemiol. 2012, 33, 1077–1080. [Google Scholar] [CrossRef] [Green Version]
- Stibich, M.; Stachowiak, J.; Tanner, B.; Berkheiser, M.; Moore, L.; Raad, I.; Chemaly, R.F. Evaluation of a Pulsed-Xenon Ultraviolet Room Disinfection Device for Impact on Hospital Operations and Microbial Reduction. Infect. Control Hosp. Epidemiol. 2011, 32, 286–288. [Google Scholar] [CrossRef]
- Danforth, D.; Nicolle, L.E.; Hume, K.; Alfieri, N.; Sims, H. Nosocomial infections on nursing units with floors cleaned with a disinfectant compared with detergent. J. Hosp. Infect. 1987, 10, 229–235. [Google Scholar] [CrossRef]
- Tekin, A.; Dal, T.; Selçuk, C.T.; Deveci, Ö.; Tekin, R.; Mete, M.; Dayan, S.; Hoşoǧlu, S. Orthophenylphenol in healthcare environments: A trial related to a new administration method and a review of the literature. Turk. J. Med. Sci. 2013, 43, 805–809. [Google Scholar] [CrossRef]
- Hamilton, D.; Foster, A.; Ballantyne, L.; Kingsmore, P.; Bedwell, D.; Hall, T.J.; Hickok, S.S.; Jeanes, A.; Coen, P.G.; Gant, V.A. Performance of ultramicrofibre cleaning technology with or without addition of a novel copper-based biocide. J. Hosp. Infect. 2010, 74, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Hedin, G.; Rynbäck, J.; Loré, B. Reduction of bacterial surface contamination in the hospital environment by application of a new product with persistent effect. J. Hosp. Infect. 2010, 75, 112–115. [Google Scholar] [CrossRef] [PubMed]
- Dunklin, E.W.; Lester, W. Residual surface disinfection ii. the effect of orthophenylphenol treatment of the floor on bacterial contamination in a recovery room. J. Infect. Dis. 1959, 104, 41–55. [Google Scholar] [CrossRef]
- Daschner, F.; Rabbenstein, G.; Langmaack, H. Surface decontamination in the control of hospital infections: Comparison of different methods. Dtsch. Med. Wochenschr. 1980, 105, 325–329. [Google Scholar] [CrossRef]
- Exner, M.; Vogel, F.; Hamann, R. Surface disinfection in a medical intensive care unit. Intensivmedizin 1982, 19, 26–29. [Google Scholar]
- Marais, F.; Mehtar, S.; Chalkley, L. Antimicrobial efficacy of copper touch surfaces in reducing environmental bioburden in a South African community healthcare facility. J. Hosp. Infect. 2010, 74, 80–82. [Google Scholar] [CrossRef]
- Montero, D.A.; Arellano, C.; Pardo, M.; Vera, R.; Gálvez, R.; Cifuentes, M.; Berasain, M.A.; Gómez, M.; Ramírez, C.; Vidal, R.M. Antimicrobial properties of a novel copper-based composite coating with potential for use in healthcare facilities. Antimicrob. Resist. Infect. Control 2019, 8, 3. [Google Scholar] [CrossRef]
- Inkinen, J.; Mäkinen, R.; Keinänen-Toivola, M.M.; Nordström, K.; Ahonen, M. Copper as an antibacterial material in different facilities. Lett. Appl. Microbiol. 2017, 64, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, M.G.; Attaway, H.H.; Ms, I.I.I.; Bs, S.E.F.; Lisa, L.; Schmidt, M.G.; Iii, H.H.A.; Fairey, S.E.; Steed, L.L.; Michels, H.T.; et al. Copper Continuously Limits the Concentration of Bacteria Resident on Bed Rails within the Intensive Care Unit. Infect. Control Hosp. Epidemiol. 2013, 34, 11–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, M.G.; Von Dessauer, B.; Benavente, C.; Benadof, D.; Cifuentes, P.; Elgueta, A.; Duran, C.; Navarrete, M.S. Copper surfaces are associated with significantly lower concentrations of bacteria on selected surfaces within a pediatric intensive care unit. Am. J. Infect. Control. 2016, 44, 203–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salgado, C.D.; Sepkowitz, K.A.; John, J.F.; Cantey, J.R.; Attaway, H.H.; Freeman, K.D.; Sharpe, P.A.; Michels, H.T.; Schmidt, M.G. Copper Surfaces Reduce the Rate of Healthcare-Acquired Infections in the Intensive Care Unit. Infect. Control Hosp. Epidemiol. 2013, 34, 479–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rai, S.; Hirsch, B.; Attaway, H.; Nadan, R.; Fairey, S.; Hardy, J.; Miller, G.; Armellino, D.; Moran, W.; Sharpe, P.; et al. Evaluation of the Antimicrobial Properties of Copper Surfaces in an Outpatient Infectious Disease Practice. Infect. Control Hosp. Epidemiol. 2012, 33, 200–201. [Google Scholar] [CrossRef]
- Von Dessauer, B.; Navarrete, M.S.; Benadof, D.; Benavente, C.; Schmidt, M.G. Potential effectiveness of copper surfaces in reducing health care–associated infection rates in a pediatric intensive and intermediate care unit: A nonrandomized controlled trial. Am. J. Infect. Control 2016, 44, e133–e139. [Google Scholar] [CrossRef] [Green Version]
- Sifri, C.D.; Burke, G.H.; Enfield, K.B. Reduced health care-associated infections in an acute care community hospital using a combination of self-disinfecting copper-impregnated composite hard surfaces and linens. Am. J. Infect. Control 2016, 44, 1565–1571. [Google Scholar] [CrossRef] [Green Version]
- Souli, M.; Antoniadou, A.; Katsarolis, I.; Mavrou, I.; Paramythiotou, E.; Papadomichelakis, E.; Drogari-Apiranthitou, M.; Panagea, T.; Giamarellou, H.; Petrikkos, G.; et al. Reduction of environmental contamination with multidrug-resistant bacteria by copper-alloy coating of surfaces in a highly endemic setting. Infect. Control Hosp. Epidemiol. 2017, 38, 765–771. [Google Scholar] [CrossRef]
- Schmidt, M.G.; Attaway, H.H.; Fairey, S.E.; Howard, J.; Mohr, D.; Craig, S. Self-disinfecting copper beds sustain terminal cleaning and disinfection effects throughout patient care. Appl. Environ. Microbiol. 2020, 86, e01886-19. [Google Scholar] [CrossRef]
- Schmidt, M.G.; Attaway, H.H.; Sharpe, P.A.; John, J.; Sepkowitz, K.A.; Morgan, A.; Fairey, S.E.; Singh, S.; Steed, L.L.; Cantey, J.R.; et al. Sustained reduction of microbial burden on common hospital surfaces through introduction of copper. J. Clin. Microbiol. 2012, 50, 2217–2223. [Google Scholar] [CrossRef] [Green Version]
- Esolen, L.M.; Thakur, L.; Layon, A.J.; Fuller, T.A.; Harrington, D.J.; Jha, K.; Kariyawasam, S. The efficacy of self-disinfecting bedrail covers in an intensive care unit. Am. J. Infect. Control 2018, 46, 417–419. [Google Scholar] [CrossRef]
- Prindis, V.; Michalek, J.; Kubatova, I. Application of photocatalytic nanolayers SmartCoat in health care facility. EMBEC NBC 2018, 65, 1089–1090. [Google Scholar]
- Edmiston, C.E.; Spencer, M.; Lewis, B.D.; Rossi, P.J.; Brown, K.R.; Malinowski, M.; Seabrook, G.R.; Leaper, D. Assessment of a novel antimicrobial surface disinfectant on inert surfaces in the intensive care unit environment using ATP-bioluminesence assay. Am. J. Infect. Control 2020, 48, 143–146. [Google Scholar] [CrossRef]
- Lee, W.S.; Hsieh, T.C.; Shiau, J.C.; Ou, T.Y.; Chen, F.L.; Liu, Y.H.; Yen, M.Y.; Hsueh, P.R. Bio-Kil, a nano-based disinfectant, reduces environmental bacterial burden and multidrug-resistant organisms in intensive care units. J. Microbiol. Immunol. Infect. 2017, 50, 737–746. [Google Scholar] [CrossRef] [Green Version]
- Özpolat, B.; Çavuşoǧlu, T.; Yilmaz, S.; Büyükkoçak, Ü.; Günaydin, S. Clinical and laboratory evaluation of anti-microbial efficacy of photocataylsts. J. Clin. Anal. Med. 2011, 2, 32–35. [Google Scholar] [CrossRef]
- Thom, K.A.; Standiford, H.C.; Johnson, J.K.; Hanna, N.; Furuno, J.P. Effectiveness of an Antimicrobial Polymer to Decrease Contamination of Environmental Surfaces in the Clinical Setting. Infect. Control Hosp. Epidemiol. 2014, 35, 1060–1062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortí-Lucas, R.M.; Muñoz-Miguel, J. Effectiveness of surface coatings containing silver ions in bacterial decontamination in a recovery unit. Antimicrob. Resist. Infect. Control. 2017, 6, 61. [Google Scholar] [CrossRef]
- Kim, M.H.; Lee, S.G.; Kim, K.S.; Heo, Y.J.; Oh, J.E.; Jeong, S.J. Environmental disinfection with photocatalyst as an adjunctive measure to control transmission of methicillin-resistant Staphylococcus aureus: A prospective cohort study in a high-incidence setting. BMC Infect. Dis. 2018, 18, 610. [Google Scholar] [CrossRef] [PubMed]
- Reid, M.; Whatley, V.; Spooner, E.; Nevill, A.M.; Cooper, M.; Ramsden, J.J.; Dancer, S.J. How Does a Photocatalytic Antimicrobial Coating Affect Environmental Bioburden in Hospitals? Infect. Control Hosp. Epidemiol. 2018, 39, 398–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamimi, A.H.; Carlino, S.; Gerba, C.P. Long-term efficacy of a self-disinfecting coating in an intensive care unit. Am. J. Infect. Control. 2014, 42, 1178–1181. [Google Scholar] [CrossRef] [PubMed]
- De Jong, B.; Meeder, A.M.; Koekkoek, K.W.A.C.; Schouten, M.A.; Westers, P.; van Zanten, A.R.H. Pre–post evaluation of effects of a titanium dioxide coating on environmental contamination of an intensive care unit: The TITANIC study. J. Hosp. Infect. 2018, 99, 256–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afinogenova, A.G.; Kraeva, L.A.; Afinogenov, G.E.; Veretennikov, V.V. Probiotic-based sanitation as alternatives to chemical disinfectants. Russ. J. Infect. Immun. 2017, 7, 419–424. [Google Scholar] [CrossRef]
- Taylor, L.; Phillips, P.; Hastings, R. Reduction of bacterial contamination in a healthcare environment by silver antimicrobial technology. J. Infect. Prev. 2009, 10, 6–12. [Google Scholar] [CrossRef]
- Karunanayake, L.I.; Waniganayake, Y.C.; Nirmala Gunawardena, K.D.; Danuka Padmaraja, S.A.; Peter, D.; Jayasekera, R.; Karunanayake, P. Use of silicon nanoparticle surface coating in infection control: Experience in a tropical healthcare setting. Infect. Dis. Heal. 2019, 24, 201–207. [Google Scholar] [CrossRef]
- Shapey, S.; Machin, K.; Levi, K.; Boswell, T.C. Activity of a dry mist hydrogen peroxide system against environmental Clostridium difficile contamination in elderly care wards. J. Hosp. Infect. 2008, 70, 136–141. [Google Scholar] [CrossRef]
- Havill, N.L.; Moore, B.A.; Boyce, J.M. Comparison of the Microbiological Efficacy of Hydrogen Peroxide Vapor and Ultraviolet Light Processes for Room Decontamination. Infect. Control Hosp. Epidemiol. 2012, 33, 507–512. [Google Scholar] [CrossRef]
- Andersen, B.M.; Rasch, M.; Hochlin, K.; Jensen, F.H.; Wismar, P.; Fredriksen, J.E. Decontamination of rooms, medical equipment and ambulances using an aerosol of hydrogen peroxide disinfectant. J. Hosp. Infect. 2006, 62, 149–155. [Google Scholar] [CrossRef]
- Humayun, T.; Qureshi, A.; Al Roweily, S.F.; Carig, J.; Humayun, F. Efficacy of Hydrogen Peroxide Fumigation in Improving Disinfection of Hospital Rooms and Reducing the Number of Microorganisms. J. Ayub Med. Coll. Abbottabad 2019, 31, S646–S650. [Google Scholar]
- Ali, S.; Muzslay, M.; Bruce, M.; Jeanes, A.; Moore, G.; Wilson, A.P.R. Efficacy of two hydrogen peroxide vapour aerial decontamination systems for enhanced disinfection of meticillin-resistant Staphylococcus aureus, Klebsiella pneumoniae and Clostridium difficile in single isolation rooms. J. Hosp. Infect. 2016, 93, 70–77. [Google Scholar] [CrossRef]
- Chan, H.T.; White, P.; Sheorey, H.; Cocks, J.; Waters, M.J. Evaluation of the biological efficacy of hydrogen peroxide vapour decontamination in wards of an Australian hospital. J. Hosp. Infect. 2011, 79, 125–128. [Google Scholar] [CrossRef] [PubMed]
- Holmdahl, T.; Walder, M.; Uzcátegui, N.; Odenholt, I.; Lanbeck, P.; Medstrand, P.; Widell, A. Hydrogen peroxide vapor decontamination in a patient room using feline Calicivirus and Murine Norovirus as surrogate markers for human norovirus. Infect. Control Hosp. Epidemiol. 2016, 37, 561–566. [Google Scholar] [CrossRef] [PubMed]
- Otter, J.A.; Yezli, S.; Schouten, M.A.; Van Zanten, A.R.H.; Houmes-Zielman, G.; Nohlmans-Paulssen, M.K.E. Hydrogen peroxide vapor decontamination of an intensive care unit to remove environmental reservoirs of multidrug-resistant gram-negative rods during an outbreak. Am. J. Infect. Control. 2010, 38, 754–756. [Google Scholar] [CrossRef] [PubMed]
- Taneja, N.; Biswal, M.; Kumar, A.; Edwin, A.; Sunita, T.; Emmanuel, R.; Gupta, A.K.; Sharma, M. Hydrogen peroxide vapour for decontaminating air-conditioning ducts and rooms of an emergency complex in northern India: Time to move on. J. Hosp. Infect. 2011, 78, 200–203. [Google Scholar] [CrossRef]
- Boyce, J.M.; Havill, N.L.; Otter, J.A.; McDonald, L.C.; Adams, N.M.; Cooper, T.; Thompson, A.; Wiggs, L.; Killgore, G.; Tauman, A.; et al. Impact of hydrogen peroxide vapor room decontamination on Clostridium difficile environmental contamination and transmission in a healthcare setting. Infect. Control Hosp. Epidemiol. 2008, 29, 723–729. [Google Scholar] [CrossRef]
- Singh, H.; Kumar, R.; Singh, K.; Attri, J. Infection Control in Isolation Units/Hdus/Icus—A Comparative Study Using Three Different Disinfectants with Fogger for Environmental Decontamination. J. Evol. Med. Dent. Sci. 2017, 6, 3091–3096. [Google Scholar] [CrossRef]
- Oon, A.; Reading, E.; Ferguson, J.K.; Dancer, S.J.; Mitchell, B.G. Measuring environmental contamination in critical care using dilute hydrogen peroxide (DHP) technology: An observational cross-over study. Infect. Dis. Heal. 2020, 25, 107–112. [Google Scholar] [CrossRef]
- Popov, D.A.; Anuchina, N.M. Microbiological Efficacy of Hospital Environment Decontamination by Hydrogen Peroxide Aerosol. Biomed. Eng. 2016, 50, 92–95. [Google Scholar] [CrossRef]
- Hardy, K.J.; Gossain, S.; Henderson, N.; Drugan, C.; Oppenheim, B.A.; Gao, F.; Hawkey, P.M. Rapid recontamination with MRSA of the environment of an intensive care unit after decontamination with hydrogen peroxide vapour. J. Hosp. Infect. 2007, 66, 360–368. [Google Scholar] [CrossRef]
- Barbut, F.; Yezli, S.; Mimoun, M.; Pham, J.; Chaouat, M.; Otter, J.A. Reducing the spread of Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus on a burns unit through the intervention of an infection control bundle. Burns 2013, 39, 395–403. [Google Scholar] [CrossRef]
- Mccord, J.; Prewitt, M.; Dyakova, E.; Mookerjee, S.; Otter, J.A. Reduction in Clostridium difficile infection associated with the introduction of hydrogen peroxide vapour automated room disinfection. J. Hosp. Infect. 2016, 94, 185–187. [Google Scholar] [CrossRef]
- French, G.L.; Otter, J.A.; Shannon, K.P.; Adams, N.M.T.; Watling, D.; Parks, M.J. Tackling contamination of the hospital environment by methicillin-resistant Staphylococcus aureus (MRSA): A comparison between conventional terminal cleaning and hydrogen peroxide vapour decontamination. J. Hosp. Infect. 2004, 57, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Bates, C.J.; Pearse, R. Use of hydrogen peroxide vapour for environmental control during a Serratia outbreak in a neonatal intensive care unit. J. Hosp. Infect. 2005, 61, 364–366. [Google Scholar] [CrossRef]
- Ray, A.; Perez, F.; Beltramini, A.M.; Jakubowycz, M.; Dimick, P.; Jacobs, M.R.; Roman, K.; Bonomo, R.A.; Salata, R.A. Use of Vaporized Hydrogen Peroxide Decontamination during an Outbreak of Multidrug-Resistant Acinetobacter baumannii Infection at a Long-Term Acute Care Hospital. Infect. Control Hosp. Epidemiol. 2010, 31, 1236–1241. [Google Scholar] [CrossRef] [Green Version]
- Aimiya, K.; Sato, T.; Hishida, H.; Yamaguchi, K. Primary Decontamination Treatments and the Control of Microbial Contamination in a New Ward. J. Antibact. Antifung. Agents 1989, 17, 53–56. [Google Scholar]
- Gelmini, F.; Belotti, L.; Vecchi, S.; Testa, C.; Beretta, G. Air dispersed essential oils combined with standard sanitization procedures for environmental microbiota control in nosocomial hospitalization rooms. Complement. Ther. Med. 2016, 25, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Lowe, J.J.; Gibbs, S.G.; Iwen, P.C.; Smith, P.W.; Hewlett, A.L. Impact of chlorine dioxide gas sterilization on nosocomial organism viability in a hospital room. Int. J. Environ. Res. Public Health 2013, 10, 2596–2605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sexton, J.D.; Tanner, B.D.; Maxwell, S.L.; Gerba, C.P. Reduction in the microbial load on high-touch surfaces in hospital rooms by treatment with a portable saturated steam vapor disinfection system. Am. J. Infect. Control 2011, 39, 655–662. [Google Scholar] [CrossRef] [PubMed]
- Shekhawat, P.S.; Singh, R.N.; Shekhawat, R.; Joshi, K.R. Fumigation of neonatal nursery: How effective in reducing the environmental pathogens? Indian Pediatr. 1992, 29, 126–127. [Google Scholar] [PubMed]
- Munster, A.M.; Ostrander, W.E. Terminal disinfection of contaminated patient care areas: To fog or not to fog? Am. Surg. 1974, 40, 713–715. [Google Scholar] [PubMed]
- Lowe, J.J.; Gibbs, S.G.; Iwen, P.C.; Smith, P.W.; Hewlett, A.L. Decontamination of a hospital room using gaseous chlorine dioxide: Bacillus anthracis, Francisella tularensis, and Yersinia pestis. J. Occup. Environ. Hyg. 2013, 10, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Čamdžić, A.; Dedeić-Ljubović, A.; Madacki-Todorović, K. Using desinfection devices in intensive care units. Acta Med. Salin. 2019, 49, 191–194. [Google Scholar]
- Nakata, S.; Ikeda, T.; Nakatani, H.; Sakamoto, M.; Higashidutsumi, M.; Honda, T.; Kawayoshi, A.; Iwamura, Y. Evaluation of an automatic fogging disinfection unit. Environ. Health Prev. Med. 2001, 6, 160–164. [Google Scholar] [CrossRef]
- Nagai, I.; Kadota, M.; Matsuoka, K.; Jitsukawa, S. Evaluation of Chemical Aerosol Spray Disinfection in the Operating Room. Med. J. Osaka Univ. 1983, 34, 27–31. [Google Scholar] [PubMed]
- Dyas, A.; Boughton, B.J.; Das, B.C. Ozone killing action against bacterial and fungal species; microbiological testing of a domestic ozone generator. J. Clin. Pathol. 1983, 36, 1102–1104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ory, J.; Cazaban, M.; Richaud-Morel, B.; Di Maio, M.; Dunyach-Remy, C.; Pantel, A.; Sotto, A.; Laurent, F.; Lavigne, J.P.; Butin, M. Successful implementation of infection control measure in a neonatal intensive care unit to combat the spread of pathogenic multidrug resistant Staphylococcus capitis. Antimicrob. Resist. Infect. Control 2019, 8, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cassini, A.; Högberg, L.D.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.S.; Colomb-Cotinat, M.; Kretzschmar, M.E.; Devleesschauwer, B.; Cecchini, M.; et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet Infect. Dis. 2019, 19, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Bernabé, K.J.; Langendorf, C.; Ford, N.; Ronat, J.B.; Murphy, R.A. Antimicrobial resistance in West Africa: A systematic review and meta-analysis. Int. J. Antimicrob. Agents 2017, 50, 629–639. [Google Scholar] [CrossRef]
- World Health Organization. Improving Infection Prevention and Control at the Health Facility—Interim Practical Manual Supporting Implementation of the WHO Guidelines on Core Components of Infection Prevention and Control Programmes; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Zingg, W.; Holmes, A.; Dettenkofer, M.; Goetting, T.; Secci, F.; Clack, L.; Allegranzi, B.; Magiorakos, A.-P.; Pittet, D. Review Hospital organisation, management, and structure for prevention of health-care-associated infection: A systematic review and expert consensus. Lancet 2015, 15, 212–224. [Google Scholar] [CrossRef]
- Lee, M.H.; Lee, G.A.; Lee, S.H.; Park, Y.H. Effectiveness and core components of infection prevention and control programmes in long-term care facilities: A systematic review. J. Hosp. Infect. 2019, 102, 377–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristic | n (%) | |
---|---|---|
Number of Studies | Total number of studies included | 181 (100%) |
Studies with organism outcomes | 168 (93%) | |
Studies with HAI outcomes | 28 (15%) | |
Country Income | High income | 156 (86%) |
Upper-middle income | 18 (10%) | |
Lower-middle income | 6 (3%) | |
Low income | 1 (1%) | |
Study Design 2 | Controlled crossover | 9 (5%) |
Other controlled study | 78 (46%) | |
Uncontrolled (no contemporary control) | 81 (48%) | |
Outcome Measurement 1,2 | Concentration | 106 (63%) |
Percent surfaces | 72 (43%) | |
ATP or qualitative | 10 (6%) | |
Genes | 4 (2%) | |
Intervention 1 | ||
Manually Applied | Alcohol | 20 (11%) |
Peroxygen | 17 (9%) | |
Quaternary ammonium compounds | 45 (25%) | |
Sodium hypochlorite | 34 (19%) | |
Other chlorine | 25 (14%) | |
Other manually applied | 18 (10%) | |
Surface | Copper | 17 (9%) |
Other surfaces | 15 (8%) | |
Vapor | Hydrogen peroxide vapor | 33 (18%) |
Other vapors | 18 (10%) | |
Outcome Organism 1,2 | All viable organisms | 111 (66%) |
Gram-positive bacilli | 34 (20%) | |
Gram-positive cocci/other | 63 (38%) | |
Gram-negative bacteria | 42 (25%) | |
Fungi | 11 (7%) | |
Virus | 3 (2%) | |
Antibiotic-resistant organism | 56 (33%) |
Fit for Purpose |
1. Veracity of disinfectant kill claim on target organism. |
2. Dry surface persistence and longevity of disinfectant. |
3. Efficacy of disinfectant with biofilm/organic material. |
Safety |
4. Chemical or antimicrobial resistance resulting from disinfectant. |
5. Toxicity to healthcare workers or patients resulting from disinfectant. |
6. Surface degradation resulting from disinfectant. |
Implementation |
7. Adherence to disinfection protocol. |
8. Appropriate disinfection application. |
9. Costs of disinfectant installation, application, and/or repair. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Christenson, E.C.; Cronk, R.; Atkinson, H.; Bhatt, A.; Berdiel, E.; Cawley, M.; Cho, G.; Coleman, C.K.; Harrington, C.; Heilferty, K.; et al. Evidence Map and Systematic Review of Disinfection Efficacy on Environmental Surfaces in Healthcare Facilities. Int. J. Environ. Res. Public Health 2021, 18, 11100. https://doi.org/10.3390/ijerph182111100
Christenson EC, Cronk R, Atkinson H, Bhatt A, Berdiel E, Cawley M, Cho G, Coleman CK, Harrington C, Heilferty K, et al. Evidence Map and Systematic Review of Disinfection Efficacy on Environmental Surfaces in Healthcare Facilities. International Journal of Environmental Research and Public Health. 2021; 18(21):11100. https://doi.org/10.3390/ijerph182111100
Chicago/Turabian StyleChristenson, Elizabeth C., Ryan Cronk, Helen Atkinson, Aayush Bhatt, Emilio Berdiel, Michelle Cawley, Grace Cho, Collin Knox Coleman, Cailee Harrington, Kylie Heilferty, and et al. 2021. "Evidence Map and Systematic Review of Disinfection Efficacy on Environmental Surfaces in Healthcare Facilities" International Journal of Environmental Research and Public Health 18, no. 21: 11100. https://doi.org/10.3390/ijerph182111100
APA StyleChristenson, E. C., Cronk, R., Atkinson, H., Bhatt, A., Berdiel, E., Cawley, M., Cho, G., Coleman, C. K., Harrington, C., Heilferty, K., Fejfar, D., Grant, E. J., Grigg, K., Joshi, T., Mohan, S., Pelak, G., Shu, Y., & Bartram, J. (2021). Evidence Map and Systematic Review of Disinfection Efficacy on Environmental Surfaces in Healthcare Facilities. International Journal of Environmental Research and Public Health, 18(21), 11100. https://doi.org/10.3390/ijerph182111100