The Importance of Cardiorespiratory vs. Muscular Fitness in Reducing the Odds of Hypertension in War Veterans: A Population-Based Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Blood Pressure Assessment
2.3. CRF
2.4. MF
2.5. Fat Mass Assessment
2.6. Fasting Blood Glucose
2.7. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CRF | Cardiorespiratory fitness |
CVD | Cardiovascular diseases |
ES | Effect size |
ICC | Intraclass correlation |
MF | Musculoskeletal fitness |
OR | Odd ratio |
PA | Physical activity |
Q | Quartile |
r | Pearson’s coefficient of correlation |
β | Beta coefficient |
95% CI | 95 percent confidence interval |
References
- Roth, G.A.; Forouzanfar, M.H.; Moran, A.E.; Barber, R.; Nguyen, G.; Feigin, V.L.; Naghavi, M.; Mensah, G.A.; Murray, C.G.L. Demographic and epidemiologic drivers of global cardiovascular mortality. N. Engl. J. Med. 2015, 372, 1333–1341. [Google Scholar] [CrossRef] [Green Version]
- Mills, K.T.; Stefanescu, A.; He, J. The global epidemiology of hypertension. Nat. Rev. Nephrol. 2020, 16, 223–237. [Google Scholar] [CrossRef]
- GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: A systematic analysis for the global burden of disease study 2017. Lancet 2018, 392, 1736–1788. [Google Scholar] [CrossRef] [Green Version]
- Mills, K.T.; Bundy, J.D.; Kelly, T.N.; Reed, J.E.; Kearney, P.M.; Reynolds, K.; Chen, J.; He, J. Global disparities of hypertension prevalence and control: A systematic analysis of population-based studies from 90 countries. Circulation 2016, 134, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Leng, B.; Jin, Y.; Li, G.; Chen, L.; Jin, N. Socioeconomic status and hypertension: A meta-analysis. J. Hypertens. 2015, 33, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Carnethon, M.R.; Sternfeld, B.; Schreiner, P.J.; Jacobs, D.R., Jr.; Lewis, C.E.; Liu, K.; Sidney, S. Association of 20-year changes in cardiorespiratory fitness with incident type 2 diabetes: The coronary artery risk development in young adults (CARDIA) fitness study. Diabetes Care 2009, 32, 1284–1288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassinen, M.; Lakka, T.A.; Savonen, K.; Litmanen, H.; Kiviaho, L.; Laaksonen, D.E.; Komulainen, P.; Rauramaa, R. Cardiorespiratory fitness as a feature of metabolic syndrome in older men and women: The Dose-Responses to Exercise Training study (DR’s EXTRA). Diabetes Care 2008, 31, 1242–1247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carnethon, M.R.; Gidding, S.S.; Nehgme, R.; Sidney, S.; Jacobs, D.R., Jr.; Liu, K. Cardiorespiratory fitness in young adulthood and the development of cardiovascular disease risk factors. JAMA 2003, 290, 3092–3100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ash, G.I.; Eicher, J.D.; Pescatello, L.S. The promises and challenges of the use of genomics in the prescription of exercise for hypertension: The 2013 update. Curr. Hypertens. Rev. 2013, 9, 130–147. [Google Scholar] [CrossRef]
- Pescatello, L.S. Exercise and hypertension: Recent advances in exercise prescription. Curr. Hypertens. Rep. 2005, 7, 281–286. [Google Scholar] [CrossRef]
- Diaz, K.M.; Shimbo, D. Physical activity and the prevention of hypertension. Curr. Hypertens. Rep. 2013, 15, 659–668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhéaume, C.; Arsenault, B.J.; Bélanger, S.; Pérusse, L.; Tremblay, A.; Bouchard, C.; Poirier, P.; Després, J.-P. Low cardiorespiratory fitness levels and elevated blood pressure: What is the contribution of visceral adiposity? Hypertension 2009, 54, 91–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sui, X.; LaMonte, M.J.; Blair, S.N. Cardiorespiratory fitness and risk of nonfatal cardiovascular disease in women and men with hypertension. Am. J. Hypertens. 2007, 20, 608–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rankinen, T. Cardiorespiratory fitness, BMI, and risk of hypertension: The Hypgene Study. Med. Sci. Sports Exerc. 2007, 39, 1687–1692. [Google Scholar] [CrossRef] [PubMed]
- Barlow, C.E.; LaMonte, M.J.; Fitzgerald, S.J.; Kampert, J.B.; Perrin, J.L.; Blair, S.N. Cardiorespiratory fitness is an independent predictor of hypertension incidence among initially normotensive healthy women. Am. J. Epidemiol. 2006, 163, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Maslow, A.L.; Sui, X.; Colabianchi, N.; Hussey, J.; Blair, S.N. Muscular strength and incident hypertension in normotensive and prehypertensive men. Med. Sci. Sports Exerc. 2010, 42, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Van Daele, C.M.; Chirinos, J.A.; De Meyer, T.; De Buyzere, M.L.; Langlois, M.R.; Bekaert, S.; Segers, P.; Gillebert, T.C.; Rietzschel, E.R. Muscle strength is a major determinant of the blood pressure response to isometric stress testing: The Asklepios population study. J. Hypertens. 2020, 38, 224–234. [Google Scholar] [CrossRef] [PubMed]
- Mallah, M.A.; Liu, M.; Liu, Y.; Xu, H.F.; Wu, X.J.; Chen, X.T.; Wang, H.; Liu, C.-L.; Tian, Y.-R.; Li, M.-X.; et al. Association of handgrip strength with the prevalence of hypertension in a Chinese Han population. Chronic. Dis. Transl. Med. 2019, 5, 113–121. [Google Scholar] [CrossRef] [PubMed]
- McAuley, P.; Pittsley, J.; Myers, J.; Abella, J.; Froelicher, V.F. Fitness and fatness as mortality predictors in healthy older men: The veterans exercise testing study. J. Gerontol. A Biol. Sci. Med. Sci. 2009, 64, 695–699. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.; Yau, F.; Ho, S.C.; Woo, J. Associations of cardiorespiratory fitness, physical activity, and obesity with metabolic syndrome in Hong Kong Chinese midlife women. BMC Public Health 2013, 13, 614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasović, M.; Kalčik, Z.; Štefan, L.; Štefan, A.; Knjaz, D.; Braš, M. Normative data for blood pressure in Croatian war veterans: A population-based study. Int. J. Environ. Res. Public Health 2021, 18, 4175. [Google Scholar] [CrossRef] [PubMed]
- Peraica, T.; Vidović, A.; Petrović, Z.K.; Kozarić-Kovačić, D. Quality of life of Croatian veterans’ wives and veterans with posttraumatic stress disorder. Health Qual. Life Outcomes 2014, 12, 136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williamson, V.; Harwood, H.; Greenberg, K.; Stevelink, S.A.M.; Greenberg, N. Impact of military service on physical health later in life: A qualitative study of geriatric UK veterans and non-veterans. BMJ Open 2019, 9, e028189. [Google Scholar] [CrossRef] [Green Version]
- Smith, E.A.; Malone, R.E. “Everywhere the soldier will be”: Wartime tobacco promotion in the US military. Am. J. Public Health 2009, 99, 1595–1602. [Google Scholar] [CrossRef] [PubMed]
- Littman, A.J.; Jacobson, I.G.; Boyko, E.J.; Powell, T.M.; Smith, T.C. Weight change following US military service. Int. J. Obes. 2013, 37, 244–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muntner, P.; Shimbo, D.; Carey, R.M.; Charleston, J.B.; Gaillard, T.; Misra, S.; Myers, M.G.; Ogedegbe, G.; Schwartz, J.E.; Townsend, R.R.; et al. Measurement of blood pressure in humans: A scientific statement from the American Heart Association. Hypertension 2019, 73, 35–66. [Google Scholar] [CrossRef] [PubMed]
- Flack, J.M.; Adekola, B. Blood pressure and the new ACC/AHA hypertension guidelines. Trends Cardiovasc. Med. 2020, 30, 160–164. [Google Scholar] [CrossRef]
- Rikli, R.E.; Jones, C.J. Development and validation of criterion-referenced clinically relevant fitness standards for maintaining physical independence in later years. Gerontologist 2013, 53, 255–267. [Google Scholar] [CrossRef] [PubMed]
- Suni, J.H.; Oja, P.; Miilunpalo, S.I.; Pasanen, M.E.; Vuori, I.M.; Bös, K. Health-related fitness test battery for adults: Associations with perceived health, mobility, and back function and symptoms. Arch. Phys. Med. Rehabil. 1998, 79, 559–569. [Google Scholar] [CrossRef]
- Yee, X.S.; Ng, Y.S.; Allen, J.C.; Latib, A.; Tay, E.L.; Abu Bakar, H.M.; Ho, C.Y.J.; Koh, W.C.C.; Kwek, H.H.T.; Tay, L. Performance on sit-to-stand tests in relation to measures of functional fitness and sarcopenia diagnosis in community-dwelling older adults. Eur. Rev. Aging Phys. Act. 2021, 18, 1. [Google Scholar] [CrossRef] [PubMed]
- Abe, T.; Yaginuma, Y.; Fujita, E.; Thiebaud, R.S.; Kawanishi, M.; Akamine, T. Associations of sit-up ability with sarcopenia classification measures in Japanese older women. Interv. Med. Appl. Sci. 2016, 8, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Pietiläinen, K.H.; Kaye, S.; Karmi, A.; Suojanen, L.; Rissanen, A.; Virtanen, K.A. Agreement of bioelectrical impedance with dual-energy X-ray absorptiometry and MRI to estimate changes in body fat, fat-free and visceral fat during a 12-month weight loss intervention. Br. J. Nutr. 2013, 9, 1910–1916. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.M.; Jebb, S.A.; Oke, J.; Piernas, C. Reference values for fat-free mass and fat mass measured by bioelectrical impedance in 390,565 UK adults. J. Cachexia Sarcopenia Muscle 2020, 11, 487–496. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.; Marshall, S.; Batterham, A.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Mišigoj-Duraković, M.; Sorić, M.; Matika, D.; Jukić, I.; Duraković, Z. Which is more important for reducing the odds of metabolic syndrome in men: Cardiorespiratory or muscular fitness? Obesity 2016, 24, 238–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acharya, T.; Tringali, S.; Singh, M.; Huang, J. Resistant hypertension and associated comorbidities in a veterans affairs population. J. Clin. Hypertens. 2014, 16, 741–745. [Google Scholar] [CrossRef] [PubMed]
- Kokkinos, P.F.; Andreas, P.E.; Coutoulakis, E.; Colleran, J.A.; Narayan, P.; Dotson, C.O.; Choucair, W.; Farmer, C.; Fernhall, B. Determinants of exercise blood pressure response in normotensive and hypertensive women: Role of cardiorespiratory fitness. J. Cardiopulm. Rehabil. 2002, 22, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Willardson, J.; Tudor-Locke, C. Survival of the strongest: A brief review examining the association between muscular fitness and mortality. Strength Cond. J. 2005, 27, 80–85. [Google Scholar] [CrossRef]
- Artero, E.G.; Lee, D.C.; Lavie, C.J.; España-Romero, V.; Sui, X.; Church, T.S.; Blair, S.N. Effects of muscular strength on cardiovascular risk factors and prognosis. J. Cardiopulm. Rehabil. Prev. 2012, 32, 351–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Total (N = 764) | Men (N = 508) | Women (N = 256) | Cohen’s D | p–Value † | |
---|---|---|---|---|---|
Mean ± SD | mean ± SD | mean ± SD | |||
Age (years) | 59.9 ± 7.6 | 60.0 ± 7.8 | 59.9 ± 7.1 | 0.01 | 0.878 |
Stature (cm) | 172.5 ± 9.1 | 177.1 ± 6.7 | 163.5 ± 5.9 | 2.03 | <0.001 |
Body mass (kg) | 90.3 ± 18.5 | 96.2 ± 22.2 | 78.3 ± 14.7 | 0.81 | <0.001 |
Body-mass index (kg/m2) | 29.7 ± 5.5 | 29.8 ± 5.9 | 29.4 ± 5.0 | 0.07 | 0.303 |
Fat mass (%) | 27.7 ± 12.9 | 23.9 ± 11.0 | 35.0 ± 13.3 | 1.01 | <0.001 |
Systolic blood pressure (mmHg) | 130.4 ± 14.3 | 131.9 ± 14.7 | 127.4 ± 13.0 | 0.31 | <0.001 |
Diastolic blood pressure (mmHg) | 83.2 ± 8.9 | 83.9 ± 9.0 | 81.9 ± 8.7 | 0.22 | <0.001 |
Fasting glucose (mmol/L) | 5.8 ± 1.3 | 5.8 ± 1.3 | 5.9 ± 1.3 | 0.08 | 0.610 |
Push-ups in 30 s (reps) | 9.7 ± 4.3 | 10.2 ± 4.9 | 8.7 ± 3.9 | 0.31 | 0.008 |
Chair-stands in 30 s (reps) | 11.4 ± 4.8 | 12.0 ± 5.1 | 10.1 ± 3.9 | 0.37 | <0.001 |
Sit-ups in 30 s (reps) | 9.4 ± 3.2 | 9.9 ± 3.3 | 8.4 ± 3.0 | 0.45 | 0.006 |
2-min step test (reps) | 111.6 ± 19.7 | 111.4 ± 20.1 | 112.0 ± 19.0 | 0.03 | 0.722 |
Mean ± SD | Cronbach’s α | ICC (95% CI) | p-Value | |
---|---|---|---|---|
Push-ups in 30 s (reps) | ||||
Initial | 9.7 ± 6.3 | |||
Final | 12.1 ± 7.4 | 0.953 | 0.920 | <0.001 |
Chair-stands in 30 s (reps) | ||||
Initial | 11.4 ± 4.8 | |||
Final | 13.8 ± 5.9 | 0.935 | 0.883 | <0.001 |
Sit-ups in 30 s (reps) | ||||
Initial | 9.4 ± 5.9 | |||
Final | 11.2 ± 6.6 | 0.917 | 0.854 | <0.001 |
2-min step test (reps) | ||||
Initial | 111.6 ± 19.7 | |||
Final | 111.8 ± 18.2 | 0.875 | 0.779 | <0.001 |
Quartile | Median | OR | 95% CI | Wald Statistics | p-Value | |
---|---|---|---|---|---|---|
Push-ups in 30 s (reps) † | 4 (ref) | >13.50 | 1.00 | |||
3 | 10.51–13.50 | 1.31 | 0.78 to 2.19 | 1.05 | 0.307 | |
2 | 6.00–10.50 | 2.73 | 1.57 to 4.74 | 12.67 | <0.001 | |
1 | <6.00 | 4.48 | 2.36 to 8.50 | 21.09 | <0.001 | |
Chair-stands in 30 s (reps) † | 4 (ref) | >13.50 | 1.00 | |||
3 | 12.01–13.50 | 2.93 | 1.63 to 5.28 | 12.90 | <0.001 | |
2 | 9.00–12.00 | 3.67 | 2.05 to 6.59 | 18.97 | <0.001 | |
1 | <9.00 | 3.94 | 2.12 to 7.30 | 18.93 | <0.001 | |
Sit-ups in 30 s (reps) † | 4 (ref) | >12.00 | 1.00 | |||
3 | 10.51–12.00 | 3.54 | 2.09 to 5.99 | 22.23 | <0.001 | |
2 | 6.75–10.50 | 3.46 | 1.95 to 6.16 | 17.83 | <0.001 | |
1 | <6.75 | 5.40 | 2.80 to 10.44 | 25.26 | <0.001 | |
2-min step test (reps) † | 4 (ref) | >125.00 | 1.00 | |||
3 | 101.01–125.00 | 2.00 | 1.23 to 3.26 | 7.73 | 0.005 | |
2 | 97.00–101.00 | 2.23 | 1.38 to 3.61 | 10.71 | <0.001 | |
1 | <97.00 | 2.37 | 1.45 to 3.86 | 11.94 | <0.001 | |
MF*CRF | High/high (ref) ‡ | / | 1.00 | |||
High/low | / | 1.77 | 1.00 to 3.12 | 3.88 | 0.049 | |
Low/high | / | 2.15 | 1.14 to 4.06 | 5.58 | 0.018 | |
Low/low | / | 7.09 | 3.40 to 14.80 | 27.27 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasović, M.; Štefan, L.; Kalčik, Z. The Importance of Cardiorespiratory vs. Muscular Fitness in Reducing the Odds of Hypertension in War Veterans: A Population-Based Study. Int. J. Environ. Res. Public Health 2021, 18, 11120. https://doi.org/10.3390/ijerph182111120
Kasović M, Štefan L, Kalčik Z. The Importance of Cardiorespiratory vs. Muscular Fitness in Reducing the Odds of Hypertension in War Veterans: A Population-Based Study. International Journal of Environmental Research and Public Health. 2021; 18(21):11120. https://doi.org/10.3390/ijerph182111120
Chicago/Turabian StyleKasović, Mario, Lovro Štefan, and Zvonimir Kalčik. 2021. "The Importance of Cardiorespiratory vs. Muscular Fitness in Reducing the Odds of Hypertension in War Veterans: A Population-Based Study" International Journal of Environmental Research and Public Health 18, no. 21: 11120. https://doi.org/10.3390/ijerph182111120
APA StyleKasović, M., Štefan, L., & Kalčik, Z. (2021). The Importance of Cardiorespiratory vs. Muscular Fitness in Reducing the Odds of Hypertension in War Veterans: A Population-Based Study. International Journal of Environmental Research and Public Health, 18(21), 11120. https://doi.org/10.3390/ijerph182111120