Towards an Ideology-Free, Truly Mechanistic Health Psychology
Abstract
:1. Introduction
2. Societal Utility as Criterion
3. Binary Classification
4. Quo Vadis?
Author Contributions
Funding
Conflicts of Interest
References
- Kahneman, D. Thinking, Fast and Slow; Farrar, Straus and Giroux: New York, NY, USA, 2011. [Google Scholar]
- McClure, S.M.; Bickel, W.K. A dual-systems perspective on addiction: Contributions from neuroimaging and cognitive training. Ann. N. Y. Acad. Sci. 2014, 1327, 62–78. [Google Scholar] [CrossRef] [Green Version]
- Wiers, R.W.; Gladwin, T.E. Reflective and impulsive processes in addiction and the role of motivation. In Reflective and Impulsive Determinants of Human Behavior; Deutsch, R., Gawronski, B., Hofmann, W., Eds.; Routledge: New York, NY, USA, 2017; pp. 173–188. [Google Scholar]
- Lannoy, S.; Billieux, J.; Maurage, P. Beyond Inhibition: A Dual-Process Perspective to Renew the Exploration of Binge Drinking. Front. Hum. Neurosci. 2014, 8, 405. [Google Scholar] [CrossRef] [Green Version]
- Strack, F.; Deutsch, R. Reflective and Impulsive Determinants of Social Behavior. Pers. Soc. Psychol. Rev. 2004, 8, 220–247. [Google Scholar] [CrossRef] [Green Version]
- Greene, J. Moral Tribes: Emotion, Reason, and the Gap Between Us and Them; Penguin Books: London, UK, 2019. [Google Scholar]
- Devine, P.G. Stereotypes and prejudice: Their automatic and controlled components. J. Personal. Soc. Psychol. 1989, 56, 5–18. [Google Scholar] [CrossRef]
- Evans, J.S.B.; Coventry, K.R. A dual process approach to behavioural addiction: The case of gambling. In Handbook of Implicit Processes in Addictive Behaviors: Developments in Memory, Cognition, Emotion, and Social Cognition Research; Wiers, R.W., Stacy, A., Eds.; Sage Publications: Thousands Oaks, CA, USA, 2006. [Google Scholar]
- Hommel, B.; Wiers, R. Towards a Unitary Approach to Human Action Control. Trends Cogn. Sci. 2017, 21, 940–949. [Google Scholar] [CrossRef]
- Hommel, B. GOALIATH: A theory of goal-directed behavior. Psychol. Res. 2021, in press. [Google Scholar] [CrossRef]
- Hommel, B. Binary theorizing doesn’t account for action control. Front. Psychol. 2019, 10, 2542. [Google Scholar] [CrossRef]
- Melnikoff, D.E.; Bargh, J.A. The mythical number two. Trends Cogn. Sci. 2018, 22, 280–293. [Google Scholar] [CrossRef]
- Sugimura, M.; Chimed-Ochir, O.; Yumiya, Y.; Ohge, H.; Shime, N.; Sakaguchi, T.; Tanaka, J.; Takafuta, T.; Mimori, M.; Kuwabara, M.; et al. The Association between Wearing a Mask and COVID-19. Int. J. Environ. Res. Public Health 2021, 18, 9131. [Google Scholar] [CrossRef]
- Atkinson, J.W.; Birch, D. The Dynamics of Action; John Wiley & Sons: Hoboken, NJ, USA, 1970. [Google Scholar]
- Lewin, K. The conflict between Aristotelian and Galilean modes of thought in contemporary psychology. J. Gen. Psychol. 1931, 5, 141–176. [Google Scholar] [CrossRef]
- Braitenberg, V. Vehicles: Experiments in Synthetic Psychology; MIT Press: Cambridge, MA, USA, 1984. [Google Scholar]
- Hommel, B.; Chapman, C.S.; Cisek, P.; Neyedli, H.F.; Song, J.-H.; Welsh, T.N. No one knows what attention is. Atten. Percept. Psychophys. 2019, 81, 2288–2303. [Google Scholar] [CrossRef] [Green Version]
- Hommel, B. Pseudo-mechanistic Explanations in Psychology and Cognitive Neuroscience. Top. Cogn. Sci. 2019, 12, 1294–1305. [Google Scholar] [CrossRef] [Green Version]
- Husain, S.F.; Yu, R.; Tang, T.-B.; Tam, W.W.; Tran, B.; Quek, T.T.; Hwang, S.-H.; Chang, C.W.; Ho, C.S.; Ho, R.C. Validating a functional near-infrared spectroscopy diagnostic paradigm for Major Depressive Disorder. Sci. Rep. 2020, 10, 9740. [Google Scholar] [CrossRef]
- Monden, Y.; Dan, H.; Nagashima, M.; Dan, I.; Kyutoku, Y.; Okamoto, M.; Yamagata, T.; Momoi, M.Y.; Watanabe, E. Clinically-oriented monitoring of acute effects of methylphenidate on cerebral hemodynamics in ADHD children using fNIRS. Clin. Neurophysiol. 2012, 123, 1147–1157. [Google Scholar] [CrossRef]
- Deng, Z.-D.; Luber, B.; Balderston, N.L.; Afanador, M.V.; Noh, M.; Thomas, J.; Altekruse, W.C.; Exley, S.L.; Awasthi, S.; Lisanby, S.H. Device-Based Modulation of Neurocircuits as a Therapeutic for Psychiatric Disorders. Annu. Rev. Pharmacol. Toxicol. 2020, 60, 591–614. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar] [CrossRef]
- Pringsheim, T.; Holler-Managan, Y.; Okun, M.S.; Jankovic, J.; Piacentini, J.; Cavanna, A.E.; Martino, D.; Müller-Vahl, K.; Woods, D.W.; Robinson, M.; et al. Comprehensive systematic review summary: Treatment of tics in people with Tourette syndrome and chronic tic disorders. Neurology 2019, 92, 907–915. [Google Scholar] [CrossRef] [Green Version]
- Kleimaker, A.; Kleimaker, M.; Bäumer, T.; Beste, C.; Münchau, A. Gilles de la Tourette Syndrome—A Disorder of Action-Perception Integration. Front. Neurol. 2020, 11, 597898. [Google Scholar] [CrossRef]
- Münchau, A.; Colzato, L.S.; AghajaniAfjedi, A.; Beste, C. A neural noise account of Gilles de la Tourette syndrome. NeuroImage Clin. 2021, 30, 102654. [Google Scholar] [CrossRef]
- Mielke, E.; Takacs, A.; Kleimaker, M.; Schappert, R.; Conte, G.; Onken, R.; Künemund, T.; Verrel, J.; Bäumer, T.; Beste, C.; et al. Tourette syndrome as a motor disorder revisited—Evidence from action coding. NeuroImage Clin. 2021, 30, 102611. [Google Scholar] [CrossRef]
- Belluscio, B.A.; Jin, L.; Watters, V.; Lee, T.H.; Hallett, M. Sensory sensitivity to external stimuli in Tourette syndrome patients. Mov. Disord. 2011, 26, 2538–2543. [Google Scholar] [CrossRef] [Green Version]
- Biermann-Ruben, K.; Miller, A.; Franzkowiak, S.; Finis, J.; Pollok, B.; Wach, C.; Südmeyer, M.; Jonas, M.; Thomalla, G.; Müller-Vahl, K.; et al. Increased sensory feedback in Tourette syndrome. NeuroImage 2012, 63, 119–125. [Google Scholar] [CrossRef]
- Orth, M. Transcranial magnetic stimulation in Gilles de la Tourette syndrome. J. Psychosom. Res. 2009, 67, 591–598. [Google Scholar] [CrossRef]
- Orth, M.; Amann, B.L.; Robertson, M.M.; Rothwell, J. Excitability of motor cortex inhibitory circuits in Tourette syndrome before and after single dose nicotine. Brain 2005, 128, 1292–1300. [Google Scholar] [CrossRef] [Green Version]
- Brandt, V.; Lynn, M.; Obst, M.; Brass, M.; Münchau, A. Visual feedback of own tics increases tic frequency in patients with Tourette’s syndrome. Cogn. Neurosci. 2014, 6, 1–7. [Google Scholar] [CrossRef]
- Herrmann, K.; Sprenger, A.; Baumung, L.; Alvarez-Fischer, D.; Münchau, A.; Brandt, V. Help or hurt? How attention modulates tics under different conditions. Cortex 2019, 120, 471–482. [Google Scholar] [CrossRef]
- Misirlisoy, E.; Brandt, V.; Ganos, C.; Tübing, J.; Münchau, A.; Haggard, P. The relation between attention and tic generation in Tourette syndrome. Neuropsychology 2015, 29, 658–665. [Google Scholar] [CrossRef]
- Ganos, C.; Bongert, J.; Asmuss, L.; Martino, D.; Haggard, P.; Münchau, A. The somatotopy of tic inhibition: Where and how much? Mov. Disord. 2015, 30, 1184–1189. [Google Scholar] [CrossRef]
- Brandt, V.C.; Patalay, P.; Bäumer, T.; Brass, M.; Münchau, A. Tics as a model of over-learned behavior—Imitation and inhibition of facial tics. Mov. Disord. 2016, 31, 1155–1162. [Google Scholar] [CrossRef]
- Delorme, C.; Salvador, A.; Valabregue, R.; Roze, E.; Palminteri, S.; Vidailhet, M.; De Wit, S.; Robbins, T.; Hartmann, A.; Worbe, Y. Enhanced habit formation in Gilles de la Tourette syndrome. Brain 2015, 139, 605–615. [Google Scholar] [CrossRef]
- Kleimaker, M.; Kleimaker, A.; Weissbach, A.; Colzato, L.S.; Beste, C.; Bäumer, T.; Münchau, A. Non-invasive Brain Stimulation for the Treatment of Gilles de la Tourette Syndrome. Front. Neurol. 2020, 11, 1539. [Google Scholar] [CrossRef]
- Beste, C.; Tübing, J.; Seeliger, H.; Bäumer, T.; Brandt, V.; Stock, A.-K.; Münchau, A. Altered perceptual binding in Gilles de la Tourette syndrome. Cortex 2016, 83, 160–166. [Google Scholar] [CrossRef]
- Beste, C.; Münchau, A. Tics and Tourette syndrome—Surplus of actions rather than disorder? Mov. Disord. 2017, 33, 238–242. [Google Scholar] [CrossRef]
- Buse, J.; Beste, C.; Roessner, V. Neural correlates of prediction violations in boys with Tourette syndrome: Evidence from harmonic expectancy. World J. Biol. Psychiatry 2017, 19, 130–141. [Google Scholar] [CrossRef] [PubMed]
- Buse, J.; Schoenefeld, K.; Münchau, A.; Roessner, V. Neuromodulation in Tourette syndrome: Dopamine and beyond. Neurosci. Biobehav. Rev. 2013, 37, 1069–1084. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Jackson, G.M.; Dyke, K.; Jackson, S.R. Impaired forward model updating in young adults with Tourette syndrome. Brain 2019, 142, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Petruo, V.; Bodmer, B.; Bluschke, A.; Münchau, A.; Roessner, V.; Beste, C. Comprehensive Behavioral Intervention for Tics reduces perception-action binding during inhibitory control in Gilles de la Tourette syndrome. Sci. Rep. 2020, 10, 1174. [Google Scholar] [CrossRef] [Green Version]
- Petruo, V.; Bodmer, B.; Brandt, V.C.; Baumung, L.; Roessner, V.; Münchau, A.; Beste, C. Altered perception-action binding modulates inhibitory control in Gilles de la Tourette syndrome. J. Child Psychol. Psychiatry 2019, 60, 953–962. [Google Scholar] [CrossRef] [Green Version]
- Hommel, B.; Müsseler, J.; Aschersleben, G.; Prinz, W. The Theory of Event Coding (TEC): A framework for perception and action planning. Behav. Brain Sci. 2001, 24, 849–878. [Google Scholar] [CrossRef]
- Hommel, B. Event files: Feature binding in and across perception and action. Trends Cogn. Sci. 2004, 8, 494–500. [Google Scholar] [CrossRef]
- Kleimaker, M.; Takacs, A.; Conte, G.; Onken, R.; Verrel, J.; Bäumer, T.; Münchau, A.; Beste, C. Increased perception-action binding in Tourette syndrome. Brain 2020, 143, 1934–1945. [Google Scholar] [CrossRef]
- Weissbach, A.; Kleimaker, M.; Bäumer, T.; Beste, C.; Münchau, A. Electro-Myo-Stimulation Induced Tic Exacerbation – Increased Tendencies for the Formation of Perception-Action Links in Tourette Syndrome. Tremor Other Hyperkinetic Mov. 2020, 10, 41. [Google Scholar] [CrossRef]
- Takacs, A.; Münchau, A.; Nemeth, D.; Roessner, V.; Beste, C. Lower-level associations in Gilles de la Tourette syndrome: Convergence between hyperbinding of stimulus and response features and procedural hyperfunctioning theories. Eur. J. Neurosci. 2021, 54, 5143–5160. [Google Scholar] [CrossRef]
- Kataoka, Y.; Kalanithi, P.S.; Grantz, H.; Schwartz, M.L.; Saper, C.; Leckman, J.F.; Vaccarino, F.M. Decreased number of parvalbumin and cholinergic interneurons in the striatum of individuals with Tourette syndrome. J. Comp. Neurol. 2009, 518, 277–291. [Google Scholar] [CrossRef] [PubMed]
- Kalanithi, P.S.A.; Zheng, W.; Kataoka, Y.; DiFiglia, M.; Grantz, H.; Saper, C.B.; Schwartz, M.L.; Leckman, J.F.; Vaccarino, F.M. Altered parvalbumin-positive neuron distribution in basal ganglia of individuals with Tourette syndrome. Proc. Natl. Acad. Sci. USA 2005, 102, 13307–13312. [Google Scholar] [CrossRef] [Green Version]
- Neuner, I.; Kupriyanova, Y.; Stöcker, T.; Huang, R.; Posnansky, O.; Schneider, F.; Tittgemeyer, M.; Shah, N.J. White-matter abnormalities in Tourette syndrome extend beyond motor pathways. NeuroImage 2010, 51, 1184–1193. [Google Scholar] [CrossRef] [PubMed]
- Peterson, B.S. Neuroimaging studies of Tourette syndrome: A decade of progress. Adv. Neurol. 2001, 85, 179–196. [Google Scholar]
- Roessner, V.; Overlack, S.; Schmidt-Samoa, C.; Baudewig, J.; Dechent, P.; Rothenberger, A.; Helms, G. Increased putamen and callosal motor subregion in treatment-naïve boys with Tourette syndrome indicates changes in the bihemispheric motor network: Increased putamen and callosal motor subregion in TS boys. J. Child Psychol. Psychiatry 2011, 52, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Sowell, E.R.; Kan, E.; Yoshii, J.; Thompson, P.; Bansal, R.; Xu, D.; Toga, A.W.; Peterson, B.S. Thinning of sensorimotor cortices in children with Tourette syndrome. Nat. Neurosci. 2008, 11, 637–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomalla, G.; Siebner, H.R.; Jonas, M.; Bäumer, T.; Biermann-Ruben, K.; Hummel, F.; Gerloff, C.; Müller-Vahl, K.; Schnitzler, A.; Orth, M.; et al. Structural changes in the somatosensory system correlate with tic severity in Gilles de la Tourette syndrome. Brain 2009, 132, 765–777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Worbe, Y.; Gerardin, E.; Hartmann, A.; Valabregue, R.; Chupin, M.; Tremblay, L.; Vidailhet, M.; Colliot, O.; Lehéricy, S. Distinct structural changes underpin clinical phenotypes in patients with Gilles de la Tourette syndrome. Brain 2010, 133, 3649–3660. [Google Scholar] [CrossRef] [Green Version]
- Worbe, Y.; Marrakchi-Kacem, L.; Lecomte, S.; Valabregue, R.; Poupon, F.; Guevara, P.; Tucholka, A.; Mangin, J.-F.; Vidailhet, M.; Lehericy, S.; et al. Altered structural connectivity of cortico-striato-pallido-thalamic networks in Gilles de la Tourette syndrome. Brain 2015, 138, 472–482. [Google Scholar] [CrossRef] [Green Version]
- Ganos, C.; Roessner, V.; Münchau, A. The functional anatomy of Gilles de la Tourette syndrome. Neurosci. Biobehav. Rev. 2013, 37, 1050–1062. [Google Scholar] [CrossRef] [PubMed]
- Church, J.A.; Fair, D.A.; Dosenbach, N.U.F.; Cohen, A.; Miezin, F.M.; Petersen, S.E.; Schlaggar, B.L. Control networks in paediatric Tourette syndrome show immature and anomalous patterns of functional connectivity. Brain 2009, 132, 225–238. [Google Scholar] [CrossRef]
- Worbe, Y.; Malherbe, C.; Hartmann, A.; Pélégrini-Issac, M.; Messé, A.; Vidailhet, M.; Lehéricy, S.; Benali, H. Functional immaturity of cortico-basal ganglia networks in Gilles de la Tourette syndrome. Brain 2012, 135, 1937–1946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roessner, V.; Schoenefeld, K.; Buse, J.; Bender, S.; Ehrlich, S.; Münchau, A. Pharmacological treatment of tic disorders and Tourette Syndrome. Neuropharmacology 2012, 68, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Harris, K.; Singer, H.S. Tic Disorders: Neural Circuits, Neurochemistry, and Neuroimmunology. J. Child Neurol. 2006, 21, 678–689. [Google Scholar] [CrossRef]
- Draper, A.; Stephenson, M.; Jackson, G.M.; Pépés, S.; Morgan, P.; Morris, P.; Jackson, S.R. Increased GABA Contributes to Enhanced Control over Motor Excitability in Tourette Syndrome. Curr. Biol. 2014, 24, 2343–2347. [Google Scholar] [CrossRef] [Green Version]
- Jackson, G.M.; Draper, A.; Dyke, K.; Pépés, S.; Jackson, S.R. Inhibition, Disinhibition, and the Control of Action in Tourette Syndrome. Trends Cogn. Sci. 2015, 19, 655–665. [Google Scholar] [CrossRef] [Green Version]
- Leckman, J.F.; Bloch, M.H.; Smith, M.E.; Larabi, D.; Hampson, M. Neurobiological Substrates of Tourette’s Disorder. J. Child Adolesc. Psychopharmacol. 2010, 20, 237–247. [Google Scholar] [CrossRef]
- Martino, D.; Ganos, C.; Worbe, Y. Neuroimaging applications in Tourette’s Syndrome. Int. Rev. Neurobiol. 2018, 143, 65–108. [Google Scholar] [CrossRef]
- Puts, N.A.J.; Harris, A.D.; Crocetti, D.; Nettles, C.; Singer, H.S.; Tommerdahl, M.; Edden, R.A.E.; Mostofsky, S.H. Reduced GABAergic inhibition and abnormal sensory symptoms in children with Tourette syndrome. J. Neurophysiol. 2015, 114, 808–817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, D.J.; Young, J.G.; Nathanson, J.A.; Shaywitz, B.A. Clonidine in Tourette’s syndrome. Lancet 1979, 2, 551–553. [Google Scholar] [CrossRef]
- Cohen, D.J.; Detlor, J.; Young, J.G.; Shaywitz, B.A. Clonidine Ameliorates Gilles de la Tourette Syndrome. Arch. Gen. Psychiatry 1980, 37, 1350–1357. [Google Scholar] [CrossRef]
- Leckman, J.F.; Hardin, M.T.; Riddle, M.A.; Stevenson, J.; Ort, S.I.; Cohen, D.J. Clonidine Treatment of Gilles de la Tourette’s Syndrome. Arch. Gen. Psychiatry 1991, 48, 324–328. [Google Scholar] [CrossRef]
- Scahill, L.; Chappell, P.B.; Kim, Y.S.; Schultz, R.T.; Katsovich, L.; Shepherd, E.; Arnsten, A.F.; Cohen, D.J.; Leckman, J.F. A Placebo-Controlled Study of Guanfacine in the Treatment of Children with Tic Disorders and Attention Deficit Hyperactivity Disorder. Am. J. Psychiatry 2001, 158, 1067–1074. [Google Scholar] [CrossRef]
- Hsu, C.-J.; Wong, L.-C.; Lee, W.-T. Immunological Dysfunction in Tourette Syndrome and Related Disorders. Int. J. Mol. Sci. 2021, 22, 853. [Google Scholar] [CrossRef]
- Tsetsos, F.; Yu, D.; Sul, J.H.; Huang, A.Y.; Illmann, C.; Osiecki, L.; Darrow, S.M.; Hirschtritt, M.E.; Greenberg, E.; Muller-Vahl, K.R.; et al. Synaptic processes and immune-related pathways implicated in Tourette syndrome. Transl. Psychiatry 2021, 11, 56. [Google Scholar] [CrossRef]
- Colzato, L.S.; Steenbergen, L.; Sellaro, R.; Stock, A.-K.; Arning, L.; Beste, C. Effects of l-Tyrosine on working memory and inhibitory control are determined by DRD2 genotypes: A randomized controlled trial. Cortex 2016, 82, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Persson, J.; Rieckmann, A.; Kalpouzos, G.; Fischer, H.; Bäckman, L. Influences of a DRD2 polymorphism on updating of long-term memory representations and caudate BOLD activity: Magnification in aging. Hum. Brain Mapp. 2014, 36, 1325–1334. [Google Scholar] [CrossRef] [PubMed]
- Colzato, L.S.; van Wouwe, N.C.; Hommel, B.; Zmigrod, S.; Ridderinkhof, K.; Wylie, S. Dopaminergic modulation of the updating of stimulus–response episodes in Parkinson’s disease. Behav. Brain Res. 2012, 228, 82–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colzato, L.S.; Zmigrod, S.; Hommel, B. Dopamine, norepinephrine, and the management of sensorimotor bindings: Individual differences in updating of stimulus–response episodes are predicted by DAT1, but not DBH5′-ins/del. Exp. Brain Res. 2013, 228, 213–220. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hommel, B.; Beste, C. Towards an Ideology-Free, Truly Mechanistic Health Psychology. Int. J. Environ. Res. Public Health 2021, 18, 11126. https://doi.org/10.3390/ijerph182111126
Hommel B, Beste C. Towards an Ideology-Free, Truly Mechanistic Health Psychology. International Journal of Environmental Research and Public Health. 2021; 18(21):11126. https://doi.org/10.3390/ijerph182111126
Chicago/Turabian StyleHommel, Bernhard, and Christian Beste. 2021. "Towards an Ideology-Free, Truly Mechanistic Health Psychology" International Journal of Environmental Research and Public Health 18, no. 21: 11126. https://doi.org/10.3390/ijerph182111126
APA StyleHommel, B., & Beste, C. (2021). Towards an Ideology-Free, Truly Mechanistic Health Psychology. International Journal of Environmental Research and Public Health, 18(21), 11126. https://doi.org/10.3390/ijerph182111126