Pietra Leccese and Other Natural Stones in Puglia Region: A New Category of Building Materials for Radiation Protection?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection Site
- Fine-grained, homogeneous, mostly porous, and scarcely tenacious organogenic marly limestones characterized by the presence of glauconite granules: Pietra Leccese is mainly used as ornamental and decorative stone; and
- Predominantly organogenic limestones with fine to coarse grain and varying degrees of compactness, porosity, and toughness; they are sometimes associated with sandy-clayey deposits. They are defined as tuff and can be divided into two types: finer-grained tuff is very porous, light and not very resistant to compression, such as Pietra Mazzara, which is used in the construction of roof vaults; coarser-grained tuff is more compact, heavy, and resistant, such as Carparo, and is used for the load-bearing structures of the building or as cladding material.
2.2. Sample Preparation
2.3. X-ray Fluorescence Spectroscopy Measurements
2.4. Gamma-Ray Spectroscopy Measurements
2.5. Gamma-Index
2.6. Radium Equivalent Activity and External Radiation Hazard
- A model for a room with infinitely thick walls without windows and doors, as reported in the following Equation (3) [1]:
- 2.
- A model for a room with doors and windows, described by Equation (4), for which the presence of doors and windows and a consequent ventilation would have the exposure to radiation [28]:
3. Results and Discussion
3.1. XRF—Measurement Results
3.2. Activity Concentration Determined by Gamma Measurements
3.3. Iγ Index, Raeq and Hex
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations Scientific Committee on the Effects of Atomic Radiation. Report to the General Assembly, with Scientific Annexes; United Nations: New York, NY, USA, 2020. [Google Scholar]
- United Nations Scientific Committee on the Effects of Atomic Radiation. Report of the United Nations Scientific Committee on the Effects of Atomic Radiation; United Nations: New York, NY, USA, 2013; Volumes I and II. [Google Scholar]
- Mothersill, C.; Seymour, C. Implications for human and environmental health of low doses of ionising radiation. J. Environ. Radioact. 2014, 133, 5–9. [Google Scholar] [CrossRef] [PubMed]
- Durante, M.; Grossi, G.F.; Napolitano, M.; Pugliese, M.; Gialanella, G. Chromosome-Damage Induced by High-Let Alpha-Particles in Plateau-Phase C3h 10t1/2 Cells. Int. J. Radiat. Biol. 1992, 62, 571–580. [Google Scholar] [CrossRef]
- Schweizer, C.; Edwards, R.; Bayer-Oglesby, L.; Gauderman, W.J.; Ilacqua, V.; Jantunen, M.J.; Lai, H.K.; Nieuwenhuijsen, M.; Künzli, N. Indoor time–microenvironment–activity patterns in seven regions of Europe. J. Expo. Sci. Environ. Epidemiol. 2007, 17, 170–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European commission report on radiological protection principles concerning the natural radioactivity of building materials. Radiat. Prot. 1999, 112. Available online: https://ec.europa.eu/energy/sites/default/files/documents/112.pdf (accessed on 21 October 2021).
- European Union. Laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom, council directive 2013/59/Euratom. Off. J. Eur. Union 2013, 13, 1–73. [Google Scholar]
- Italian Government. Decreto Legislativo n. 101 del 31 luglio 2020. Attuazione della Direttiva 2013/59/Euratom, Che Stabilisce Norme Fondamentali di Sicurezza Relative alla Protezione Contro i Pericoli Derivanti dall’Esposizione alle Radiazioni Ionizzanti, e Che Abroga le Direttive 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom e 2003/122/Euratom e Riordino della Normativa di Settore in Attuazione dell’Articolo 20, Comma 1, Lettera a), della Legge 4 Ottobre 2019, n. 117. GU Serie Generale n. 201 del 12-08-2020—Suppl. Ordinario n. 29. Available online: https://www.gazzettaufficiale.it/eli/id/2020/08/12/20G00121/sg (accessed on 4 September 2021).
- La Verde, G.; Raulo, A.; D’Avino, V.; Roca, V.; Pugliese, M. Radioactivity content in natural stones used as building materials in Puglia region analysed by high resolution gamma-ray spectroscopy: Preliminary results. Constr. Build Mater. 2020, 239, 117668. [Google Scholar] [CrossRef]
- Andriani, F.G.; Walsh, N. Petrophysical and mechanical properties of soft and porous building rocks used in Apulian monuments (south Italy). Geol. Soc. 2010, 333, 129–141. [Google Scholar] [CrossRef]
- Quarto, M.; Pugliese, M.; la Verde, G.; Loffredo, F.; Roca, V. Radon Exposure Assessment and Relative Effective Dose Estimation to Inhabitants of Puglia Region, South Italy. Int. J. Environ. Res. Public Health 2015, 12, 14948–14957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Avino, V.; Pugliese, M.; la Verde, G. Effectiveness of passive ventilation on radon indoor level in Puglia Region according to European Directive 2013/59/EURATOM. Indoor Built Environ. 2020, 1420326X20940364. [Google Scholar] [CrossRef]
- Sabbarese, C.; Ambrosino, F.; D’Onofrio, A.; Pugliese, M.; La Verde, G.; D’Avino, V.; Roca, V. The first radon potential map of the Campania region (southern Italy). Appl. Geochem. 2021, 126, 104890. [Google Scholar] [CrossRef]
- Pugliese, M.; Roca, V.; Gialanella, G. 222Rn indoor concentration in Campania. Phys. Med. 1994, 10, 118–119. [Google Scholar]
- Quarto, M.; Pugliese, M.; Loffredo, F.; Roca, V. Indoor radon concentration measurements in some dwellings of the Penisola Sorrentina, South Italy. Radiat. Prot. Dosim. 2013, 156, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Nuccetelli, C.; Risica, S.; Onisei, S.; Leonardi, F.; Trevisi, R. Natural Radioactivity in Building Materials in the European Union: A Database of Activity Concentrations, Radon Emanations and Radon Exhalation Rates; Rapport ISTISAN 17/36; Istituto Superiore di Sanità: Roma, Italy, 2017. [Google Scholar]
- Doglioni, C.; Mongelli, F.; Pieri, P. The Apulia uplift (SE Italy): An anomaly in the foreland of the Appenninic subduction due to buckling of a thick continental lithosphere. Tectonics 1994, 13, 1309–1321. [Google Scholar] [CrossRef]
- Quarries Land Register. Available online: http://www.pugliacon.sit.puglia.it/Documenti/GestioneDocumentale/Documenti/Attivita_Estrattive/05_Rapporti_annuali/ElencoCaveCatasto.pdf (accessed on 10 April 2021).
- Adozione Piano Regionale alle Attività Estrattive (P.R.A.E.)—L.R. 37/85 art. 33. Bollettino Ufficiale della Regione Puglia—n. 50 Suppl. del 29-3-2001. Available online: http://old.regione.puglia.it/documents/10192/5385672/bur-050-1.pdf/35e5b6db-e6ad-4273-a105-89121c80c285;jsessionid=B645270F298FBD27CA2BDF106429757E (accessed on 7 September 2021).
- Ricchetti, G. Le Successioni Sedimentarie. Guida all’Escursione Generale Precongressuale e all’Escursione Tematica sul Cretaceo Murgiano; Congress of the Italian Geological Society: Bari, Italy, 1994. [Google Scholar]
- International Organization for Standardization. UNI EN ISO 18589-2:2015. Measurement of Radioactivity in the Environment—Soil – Part 2: Guidance for the Selection of the Sampling Strategy, Sampling and Pre-Treatment of Samples; International Organization for Standardization: Geneva, Switzerland, 2015. [Google Scholar]
- Raulo, A.; Sowinska, M.; Hennard, G.; Campajola, L.; Marano, D.; Paternoster, G.; Perillo, E. Pt-CdTe Detectors Spectroscopic Performances and RBS and XRF Interface Composition Analysis. IEEE Trans. Nucl. Sci. 2012, 59, 1491–1496. [Google Scholar] [CrossRef]
- Currie, L.A. Limits for qualitative detection and quantitative determination, Application to radiochemistry. Anal. Chem. 1968, 40, 586–593. [Google Scholar] [CrossRef]
- Artiola, V.; la Verde, G.; D’Avino, V.; Pugliese, M. Sassi of Matera Building Material: High-Resolution Gamma-Ray Spectroscopy Characterization for Radioprotection. Buildings 2021, 11, 258. [Google Scholar] [CrossRef]
- Nuccetelli, C.; Leonardi, F.; Trevisi, R. A new accurate and flexible index to assess the contribution of building materials to indoor gamma exposure. J. Environ. Radioact. 2015, 11, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Nuccetelli, C.; de With, G.; Trevisi, R.; Vanhoudt, N.; Pepin, S.; Friedmann, H.; Xhixha, G.; Schroeyers, W.; Aguiar, J.; Hondros, J.; et al. Legislative Aspects. In Naturally Occurring Radioactive Materials in Construction, Integrating Radiation Protection in Reuse (COST Action Tu1301 NORM4BUILDING); Schroeyers, W., Ed.; Woodhead Publishing: Duxford, UK, 2017; pp. 37–60. [Google Scholar]
- Markkanen, M. Radiation Dose Assessments for Materials with Elevated Natural Radioactivity; Finnish Centre for Radiation and Nuclear Safety: Helsinki, Finland, 1995. [Google Scholar]
- Oktay, B.; Şule, K.; Mahmut, D. Assessments of natural radioactivity and radiological hazards in construction materials used in Elazig Turkey. Radiat. Meas. 2011, 46, 153–158. [Google Scholar]
- Rizzo, S.; Brai, M.; Basile, S.; Bellia, S.; Hauser, S. Gamma activity and geochemical features of building materials: Estimation of gamma dose rate and indoor radon levels in Sicily. Appl. Radiat. Isot. 2001, 55, 259–265. [Google Scholar] [CrossRef]
- Righi, S.; Bruzzi, L. Natural radioactivity and radon exhalation in building materials used Italian dwellings. J. Environ. Radioact. 2006, 88, 158–170. [Google Scholar] [CrossRef] [PubMed]
MDL | Pietra Leccese | Pietra Mazzara | Carparo | ||
---|---|---|---|---|---|
Al2O3 | % | 5 | n.d. | n.d. | n.d. |
SiO2 | % | 2 | 5.2 ± 0.9 | 2.0 ± 0.8 | 1.9 ± 0.9 |
K2O | % | 0.2 | 0.35 ± 0.03 | 0.22 ± 0.03 | 0.17 ± 0.03 |
CaO | % | 0.1 | 99.7 ± 0.3 | 96.2 ± 0.2 | 96.5 ± 0.3 |
TiO2 | ppm | 300 | 702 ± 171 | 312 ± 148 | 269 ± 103 |
MnO | ppm | 150 | 160 ± 45 | 602 ± 57 | 435 ± 63 |
Fe2O3 | % | 0.01 | 1.31 ± 0.02 | 1.27 ± 0.02 | 1.16 ± 0.02 |
Co3O2 | ppm | 10 | 12 ± 3 | 14 ± 3 | 8 ± 3 |
NiO | ppm | 40 | 139 ± 17 | 88 ± 15 | 64 ± 13 |
ZnO | ppm | 60 | 272 ± 32 | 144 ± 28 | 141 ± 31 |
As2O3 | ppm | 50 | 87 ± 22 | < | 77 ± 30 |
Rb2O | ppm | 70 | < | < | < |
SrO | ppm | 80 | 2060 ± 41 | 1440 ± 35 | 1500 ± 41 |
Y2O3 | ppm | 150 | 289 ± 58 | < | 142 ± 61 |
ZrO2 | ppm | 90 | 157 ± 45 | 167 ± 42 | < |
Nb | ppm | 150 | < | < | 35 ± 16 |
BaO | ppm | 450 | < | < | 397 ± 144 |
Th | ppm | 120 | 126 ± 52 | < | 155 ± 57 |
U | ppm | 90 | 92 ± 33 | 127 ± 32 | < |
Legend: | |||||
MDL | Minimum Detection Limit (IAEA: Soil7, SL1, SDMT-2, 312) | ||||
n.d. | Not detected | ||||
< | Less than 2 standard deviations |
Sample | Activity Concentration (Bq kg−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|
226Ra | 232Th | 40K | |||||||
Average | Min | Max | Average | Min | Max | Average | Min | Max | |
Pietra Leccese | 349 ± 19 | 313 ± 18 | 406 ± 21 | 3.2 ± 1.1 | 2.7 ± 1.0 | 3.8 ± 1.4 | 24.9 ± 2.7 | 21.1 ± 2.4 | 30.5 ± 3.1 |
Pietra Mazzara | 213 ± 12 | 187 ± 11 | 258 ± 14 | 2.5 ± 1.0 | 1.9 ± 0.8 | 2.9 ± 1.3 | 7.5 ± 1.4 | 6.8 ± 1.2 | 7.7 ± 1.4 |
Carparo | 33 ± 2 | 30 ± 2 | 38 ± 4 | 6.4 ± 3.0 | 5.6 ± 2.8 | 7.1 ± 3.2 | 12.3 ± 1.5 | 11.6 ± 1.4 | 13.0 ± 2.1 |
Building Material | Number of Samples | 226Ra (Bq kg−1) | 232Th (Bq kg−1) | 40K (Bq kg−1) | Ref | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Max | Min | Mean | Max | Min | Mean | Max | Min | |||
Limestone_1 | 27 | 11 | 30 | 0.4 | 2 | 22 | [29] | ||||
Limestone_2 | 1 | 65 | 6 | 46 | [30] | ||||||
Limestone_3 | 1 | 76 | 8 | 47 | [30] |
Samples | Iγ Index | Raeq Bq kg−1 | Hex Model (3) | Hex Model (4) |
---|---|---|---|---|
Pietra Leccese | 1.19 ± 0.07 | 1153 | 1 | 0.5 |
Pietra Mazzara | 0.75 ± 0.05 | 749 | 0.6 | 0.3 |
Carparo | 0.14 ± 0.02 | 129 | 0.12 | 0.6 |
Reference level | 1 | 370 | 1 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
La Verde, G.; Raulo, A.; D’Avino, V.; Paternoster, G.; Roca, V.; La Commara, M.; Pugliese, M. Pietra Leccese and Other Natural Stones in Puglia Region: A New Category of Building Materials for Radiation Protection? Int. J. Environ. Res. Public Health 2021, 18, 11213. https://doi.org/10.3390/ijerph182111213
La Verde G, Raulo A, D’Avino V, Paternoster G, Roca V, La Commara M, Pugliese M. Pietra Leccese and Other Natural Stones in Puglia Region: A New Category of Building Materials for Radiation Protection? International Journal of Environmental Research and Public Health. 2021; 18(21):11213. https://doi.org/10.3390/ijerph182111213
Chicago/Turabian StyleLa Verde, Giuseppe, Adelaide Raulo, Vittoria D’Avino, Giovanni Paternoster, Vincenzo Roca, Marco La Commara, and Mariagabriella Pugliese. 2021. "Pietra Leccese and Other Natural Stones in Puglia Region: A New Category of Building Materials for Radiation Protection?" International Journal of Environmental Research and Public Health 18, no. 21: 11213. https://doi.org/10.3390/ijerph182111213
APA StyleLa Verde, G., Raulo, A., D’Avino, V., Paternoster, G., Roca, V., La Commara, M., & Pugliese, M. (2021). Pietra Leccese and Other Natural Stones in Puglia Region: A New Category of Building Materials for Radiation Protection? International Journal of Environmental Research and Public Health, 18(21), 11213. https://doi.org/10.3390/ijerph182111213