Crosstalk between Gross and Fine Motor Domains during Late Childhood: The Influence of Gross Motor Training on Fine Motor Performances in Primary School Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Fine Motor Skills Evaluation
2.4. Gross Motor Skills Training
2.5. Data Collection
2.6. Statistics
3. Results
3.1. Sex Differences in Motor Performance
3.2. Developmental Progression of Gross Motor Skills
3.3. Developmental Progression of Fine Motor Skills
3.4. Crosstalk between Gross and Fine Motor Skills
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Burton, A.W.; Rodgerson, R.W. New Perspectives on the Assessment of Movement Skills and Motor Abilities. Adapt. Phys. Act. Q. 2001, 18, 347–365. [Google Scholar] [CrossRef]
- Robinson, L.E. The Relationship between Perceived Physical Competence and Fundamental Motor Skills in Preschool Children. Child Care Health Dev. 2011, 37, 589–596. [Google Scholar] [CrossRef]
- Goldstein, S.; Naglieri, J.A. (Eds.) Encyclopedia of Child Behavior and Development; Springer: Boston, MA, USA, 2011. [Google Scholar] [CrossRef]
- Cohen, E.J.; Bravi, R.; Bagni, M.A.; Minciacchi, D. Precision in Drawing and Tracing Tasks: Different Measures for Different Aspects of Fine Motor Control. Hum. Mov. Sci. 2018, 61, 177–188. [Google Scholar] [CrossRef]
- Bravi, R.; Ioannou, C.I.; Minciacchi, D.; Altenmüller, E. Assessment of the Effects of Kinesiotaping on Musical Motor Performance in Musicians Suffering from Focal Hand Dystonia: A Pilot Study. Clin. Rehabil. 2019, 33, 1636–1648. [Google Scholar] [CrossRef]
- Ulrich, D. The Test of Gross Motor Development-3 (TGMD-3): Administration, Scoring, & International Norms. Hacet. J. Sport Sci. 2017, 24, 27–33. [Google Scholar]
- Webster, E.K.; Martin, C.K.; Staiano, A.E. Fundamental Motor Skills, Screen-Time, and Physical Activity in Preschoolers. J. Sport Health Sci. 2019, 8, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Lipkin, P.H. Motor Development and Dysfunction. Dev. Behav. Pediatr. 2009, 643–652. [Google Scholar] [CrossRef]
- Cameron, C.E.; Brock, L.L.; Murrah, W.M.; Bell, L.H.; Worzalla, S.L.; Grissmer, D.; Morrison, F.J. Fine Motor Skills and Executive Function Both Contribute to Kindergarten Achievement. Child Dev. 2012, 83, 1229–1244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seashore, H.G. Some Relationships of Fine and Gross Motor Abilities. Res. Q. Am. Assoc. Health Phys. Educ. Recreat. 1942, 13, 259–274. [Google Scholar] [CrossRef]
- Oxendine, J.B. Generality and Specificity in the Learning of Fine and Gross Motor Skills. Res. Q. Am. Assoc. Health Phys. Educ. Recreat. 1967, 38, 86–94. [Google Scholar] [CrossRef]
- Roebers, C.M.; Kauer, M. Motor and Cognitive Control in a Normative Sample of 7-Year-Olds. Dev. Sci. 2009, 12, 175–181. [Google Scholar] [CrossRef]
- Oberer, N.; Gashaj, V.; Roebers, C.M. Motor Skills in Kindergarten: Internal Structure, Cognitive Correlates and Relationships to Background Variables. Hum. Mov. Sci. 2017, 52, 170–180. [Google Scholar] [CrossRef] [PubMed]
- Dayem, T.S.A.E.; Salem, E.E.; Hadidy, E.I.E. Correlation between Gross Motor Activities and Hand Writing Skills in Elementary School Children. Trends Appl. Sci. Res. 2015, 10, 259–269. [Google Scholar] [CrossRef] [Green Version]
- Tortella, P.; Haga, M.; Loras, H.; Sigmundsson, H.; Fumagalli, G. Motor Skill Development in Italian Pre-School Children Induced by Structured Activities in a Specific Playground. PLoS ONE 2016, 11, e0160244. [Google Scholar] [CrossRef]
- Souza, C.T.; Santos, D.C.; Tolocka, R.E.; Baltieri, L.; Gibim, N.C.; Habechian, F.A. Assessment of global motor performance and gross and fine motor skills of infants attending day care centers. Braz. J. Phys. Ther. 2010, 14, 309–315. [Google Scholar] [CrossRef] [Green Version]
- Amaro, N.; Coelho, L.; Cruz, J.; Matos, R.; Morouço, P. Correlation between Fine and Gross Motor Coordination in Children. Rev. Saúde Públ. Leiria 2014, 48, 273. [Google Scholar]
- Flatters, I.; Mushtaq, F.; Hill, L.J.B.; Rossiter, A.; Jarrett-Peet, K.; Culmer, P.; Holt, R.; Wilkie, R.M.; Mon-Williams, M. Children’s Head Movements and Postural Stability as a Function of Task. Exp. Brain Res. 2014, 232, 1953–1970. [Google Scholar] [CrossRef] [PubMed]
- Dehghan, L.; Mirzakhani, N.; Rezaee, M.; Tabatabaee, M. The Relationship between Fine Motor Skills and Social Development and Maturation. Iran. Rehabil. J. 2017, 15, 407–414. [Google Scholar] [CrossRef] [Green Version]
- Leonard, H.C.; Hill, E.L. Review: The Impact of Motor Development on Typical and Atypical Social Cognition and Language: A Systematic Review. Child Adolesc. Ment. Health 2014, 19, 163–170. [Google Scholar] [CrossRef]
- Van der Fels, I.M.J.; te Wierike, S.C.M.; Hartman, E.; Elferink-Gemser, M.T.; Smith, J.; Visscher, C. The Relationship between Motor Skills and Cognitive Skills in 4–16 Year Old Typically Developing Children: A Systematic Review. J. Sci. Med. Sport 2015, 18, 697–703. [Google Scholar] [CrossRef] [Green Version]
- Zeng, N.; Ayyub, M.; Sun, H.; Wen, X.; Xiang, P.; Gao, Z. Effects of Physical Activity on Motor Skills and Cognitive Development in Early Childhood: A Systematic Review. Biomed. Res. Int. 2017, 2017, 2760716. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, V.R.; Ribeiro, M.L.S.; Melo, T.; de Tarso Maciel-Pinheiro, P.; Guimarães, T.T.; Araújo, N.B.; Ribeiro, S.; Deslandes, A.C. Motor Coordination Correlates with Academic Achievement and Cognitive Function in Children. Front. Psychol. 2016, 7, 318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aadland, K.N.; Moe, V.F.; Aadland, E.; Anderssen, S.A.; Resaland, G.K.; Ommundsen, Y. Relationships between Physical Activity, Sedentary Time, Aerobic Fitness, Motor Skills and Executive Function and Academic Performance in Children. Ment. Health Phys. Act. 2017, 12, 10–18. [Google Scholar] [CrossRef]
- Cameron, C.E.; Cottone, E.A.; Murrah, W.M.; Grissmer, D.W. How Are Motor Skills Linked to Children’s School Performance and Academic Achievement? Child Dev. Perspect. 2016, 10, 93–98. [Google Scholar] [CrossRef]
- Geertsen, S.S.; Thomas, R.; Larsen, M.N.; Dahn, I.M.; Andersen, J.N.; Krause-Jensen, M.; Korup, V.; Nielsen, C.M.; Wienecke, J.; Ritz, C.; et al. Motor Skills and Exercise Capacity Are Associated with Objective Measures of Cognitive Functions and Academic Performance in Preadolescent Children. PLoS ONE 2016, 11, e0161960. [Google Scholar] [CrossRef] [PubMed]
- Jongbloed-Pereboom, M.; Nijhuis-van der Sanden, M.W.G.; Steenbergen, B. Norm Scores of the Box and Block Test for Children Ages 3–10 Years. Am. J. Occup. Ther. 2013, 67, 312–318. [Google Scholar] [CrossRef] [Green Version]
- Westendorp, M.; Hartman, E.; Houwen, S.; Smith, J.; Visscher, C. The relationship between gross motor skills and academic achievement in children with learning disabilities. Res. Dev. Disabil. 2011, 32, 2773–2779. [Google Scholar] [CrossRef]
- Valentini, N.C.; Rudisill, M.E.; Bandeira, P.F.R.; Hastie, P.A. The development of a short form of the Test of Gross Motor Development-2 in Brazilian children: Validity and reliability. Child Care Health Dev. 2018, 44, 759–765. [Google Scholar] [CrossRef]
- Bandeira, P.F.R.; Duncan, M.; Pessoa, M.L.; Soares, Í.; da Silva, L.; Mota, J.; Martins, C. TGMD-2 Short Version: Evidence of Validity and Associations with Sex, Age, and BMI in Preschool Children. J. Motor Learn. Dev. 2020, 8, 528–543. [Google Scholar] [CrossRef]
- Guest, L.; Balogh, R.; Dogra, S.; Lloyd, M. Examining the Impact of a Multi-Sport Camp for Girls Ages 8–11 With Autism Spectrum Disorder. Ther. Recreat. J. 2017, 51, 109–126. [Google Scholar] [CrossRef]
- Strong, W.B.; Malina, R.M.; Blimkie, C.J.R.; Daniels, S.R.; Dishman, R.K.; Gutin, B.; Hergenroeder, A.C.; Must, A.; Nixon, P.A.; Pivarnik, J.M.; et al. Evidence Based Physical Activity for School-Age Youth. J. Pediatr. 2005, 146, 732–737. [Google Scholar] [CrossRef] [PubMed]
- Mathiowetz, V.; Federman, S.; Wiemer, D. Box and Block Test of Manual Dexterity: Norms for 6–19 Year Olds. Can. J. Occup. Ther. 1985, 52, 241–245. [Google Scholar] [CrossRef]
- Mathiowetz, V. Box and Blocks Test Instructions General Information (Derived from Mathiowetz et Al, 1985). Am. J. Occup. Ther. 1985, 39, 386–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burns, R.D.; Fu, Y.; Hannon, J.C.; Brusseau, T.A. School Physical Activity Programming and Gross Motor Skills in Children. Am. J. Health Behav. 2017, 41, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Temple, V.A.; Crane, J.R.; Brown, A.; Williams, B.-L.; Bell, R.I. Recreational Activities and Motor Skills of Children in Kindergarten. Phys. Educ. Sport Pedagog. 2016, 21, 268–280. [Google Scholar] [CrossRef]
- Jones, R.A.; Okely, A.D.; Hinkley, T.; Batterham, M.; Burke, C. Promoting Gross Motor Skills and Physical Activity in Childcare: A Translational Randomized Controlled Trial. J. Sci. Med. Sport 2016, 19, 744–749. [Google Scholar] [CrossRef]
- Sgrò, F.; Quinto, A.; Messana, L.; Pignato, S.; Lipoma, M. Assessment of Gross Motor Developmental Level in Italian Primary School Children. J. Phys. Educ. Sport 2017, 17, 1954–1959. [Google Scholar] [CrossRef]
- Duncan, M.J.; Jones, V.; O’Brien, W.; Barnett, L.M.; Eyre, E.L.J. Self-Perceived and Actual Motor Competence in Young British Children. Percept. Mot. Skills 2018, 125, 251–264. [Google Scholar] [CrossRef]
- Scheuer, C.; Herrmann, C.; Bund, A. Motor Tests for Primary School Aged Children: A Systematic Review. J. Sports Sci. 2019, 37, 1097–1112. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, A.; Toovey, R.; Morgan, P.E.; Spittle, A.J. Psychometric Properties of Gross Motor Assessment Tools for Children: A Systematic Review. BMJ Open 2018, 8, e021734. [Google Scholar] [CrossRef]
- Magistro, D.; Piumatti, G.; Carlevaro, F.; Sherar, L.B.; Esliger, D.W.; Bardaglio, G.; Magno, F.; Zecca, M.; Musella, G. Measurement Invariance of TGMD-3 in Children with and without Mental and Behavioral Disorders. Psychol. Assess. 2018, 30, 1421–1429. [Google Scholar] [CrossRef] [Green Version]
- Rey, E.; Carballo-Fazanes, A.; Varela-Casal, C.; Abelairas-Gómez, C. Reliability of the Test of Gross Motor Development: A Systematic Review. PLoS ONE 2020, 15, e0236070. [Google Scholar] [CrossRef]
- Ulrich, D.A. Introduction to the Special Section: Evaluation of the Psychometric Properties of the TGMD-3. J. Mot. Learn. Dev. 2017, 5, 1–4. [Google Scholar] [CrossRef]
- Allen, K.A.; Bredero, B.; Van Damme, T.; Ulrich, D.A.; Simons, J. Test of Gross Motor Development-3 (TGMD-3) with the Use of Visual Supports for Children with Autism Spectrum Disorder: Validity and Reliability. J. Autism Dev. Disord. 2017, 47, 813–833. [Google Scholar] [CrossRef] [PubMed]
- Wrotniak, B.H.; Epstein, L.H.; Dorn, J.M.; Jones, K.E.; Kondilis, V.A. The Relationship between Motor Proficiency and Physical Activity in Children. Pediatrics 2006, 118, e1758–e1765. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, T.L.; Sallis, J.F.; Broyles, S.L.; Zive, M.M.; Nader, P.R.; Berry, C.C.; Brennan, J.J. Childhood Movement Skills: Predictors of Physical Activity in Anglo American and Mexican American Adolescents? Res. Q. Exerc. Sport 2002, 73, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Okely, A.D.; Booth, M.L.; Chey, T. Relationships between Body Composition and Fundamental Movement Skills among Children and Adolescents. Res. Q. Exerc. Sport 2004, 75, 238–247. [Google Scholar] [CrossRef] [PubMed]
- Williams, H.G.; Pfeiffer, K.A.; O’Neill, J.R.; Dowda, M.; McIver, K.L.; Brown, W.H.; Pate, R.R. Motor Skill Performance and Physical Activity in Preschool Children. Obesity 2008, 16, 1421–1426. [Google Scholar] [CrossRef]
- Bolger, L.E.; Bolger, L.A.; O’ Neill, C.; Coughlan, E.; O’Brien, W.; Lacey, S.; Burns, C. Age and Sex Differences in Fundamental Movement Skills Among a Cohort of Irish School Children. J. Mot. Learn. Dev. 2018, 6, 81–100. [Google Scholar] [CrossRef]
- Haibach, P.S.; Collier, D.H.; Reid, G. Motor Learning and Development; Human Kinetics: Champaign, IL, USA, 2011. [Google Scholar]
- Rosenbloom, L. Motor Development in Early and Later Childhood: Longitudinal Approaches. Arch. Dis. Child. 1994, 71, 391. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.P.; Brown, J.K.; Walsh, E.G. Physiological Maturation of Muscles in Childhood. Lancet 1994, 343, 1386–1389. [Google Scholar] [CrossRef]
- Savelsbergh, G.; Wimmers, R.; Van Der Kamp, J.; Davids, K. The Development of Movement Control and Coordination. In Current Issues in Developmental Psychology; Springer: Dordrecht, The Netherlands, 1999. [Google Scholar] [CrossRef]
- Damon, W.; Eisenberg, N. Handbook of Child Psychology, Social, Emotional, and Personality Development, 5th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2006; Volume 3. [Google Scholar]
- Fair, D.A.; Cohen, A.L.; Dosenbach, N.U.F.; Church, J.A.; Miezin, F.M.; Barch, D.M.; Raichle, M.E.; Petersen, S.E.; Schlaggar, B.L. The Maturing Architecture of the Brain’s Default Network. Proc. Natl. Acad. Sci. USA 2008, 105, 4028–4032. [Google Scholar] [CrossRef] [Green Version]
- Cohen, E.J.; Bravi, R.; Minciacchi, D. Assessing the Development of Fine Motor Control in Elementary School Children Using Drawing and Tracing Tasks. Percept. Mot. Skills 2021, 128, 605–624. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, M.R.; Rennó, G.V.C.; Bruzi, A.T.; Fortes, L.D.S.; Malloy-Diniz, L.F. Association between motor competence and executive functions in children. Appl. Neuropsychol. Child 2021, 1–9. [Google Scholar] [CrossRef]
- Eldred, K.; Darrah, J. Using Cluster Analysis to Interpret the Variability of Gross Motor Scores of Children with Typical Development. Phys. Ther. 2010, 90, 1510–1518. [Google Scholar] [CrossRef] [PubMed]
- Cohen, E.J.; Bravi, R.; Minciacchi, D. The effect of fidget spinners on fine motor control. Sci. Rep. 2018, 8, 3144. [Google Scholar] [CrossRef]
- Cohen, K.; Lubans, D.; Morgan, P.; Plotnikoff, R.; Callister, R. Improving Fundamental Movement Skill Competency among Children Attending Schools in Low-Income Communities: The SCORES Cluster RCT. J. Sci. Med. Sport 2014, 18, e12. [Google Scholar] [CrossRef]
- Lai, S.K.; Costigan, S.A.; Morgan, P.J.; Lubans, D.R.; Stodden, D.F.; Salmon, J.; Barnett, L.M. Do School-Based Interventions Focusing on Physical Activity, Fitness, or Fundamental Movement Skill Competency Produce a Sustained Impact in These Outcomes in Children and Adolescents? A Systematic Review of Follow-up Studies. Sports Med. 2014, 44, 67–79. [Google Scholar] [CrossRef]
- Blank, R.; Miller, V.; Von Voß, H.; Von Kries, R. Effects of Age on Distally and Proximally Generated Drawing Movements: A Kinematic Analysis of School Children and Adults. Dev. Med. Child. Neurol. 1999, 41, 592–596. [Google Scholar] [CrossRef] [PubMed]
- Slykerman, S.; Ridgers, N.D.; Stevenson, C.; Barnett, L.M. How Important Is Young Children’s Actual and Perceived Movement Skill Competence to Their Physical Activity? J. Sci. Med. Sport 2016, 19, 488–492. [Google Scholar] [CrossRef]
- Junaid, K.A.; Fellowes, S. Gender Differences in the Attainment of Motor Skills on the Movement Assessment Battery for Children. Phys. Occup. Ther. Pediatr. 2006, 26, 5–11. [Google Scholar] [CrossRef] [PubMed]
Grade | Age (Years) | n | Boys | Girls | Age (Years) | |
---|---|---|---|---|---|---|
1st Grade | 6–7 | 66 | 40 | 26 | M 1 ± SD 2 | 8.57 ± 2.33 |
2nd Grade | 7–8 | 50 | 29 | 21 | Range | 6–10.6 |
3rd Grade | 8–9 | 48 | 30 | 18 | ||
4th Grade | 9–10 | 45 | 27 | 18 | ||
5th Grade | 10–11 | 31 | 20 | 11 | ||
Total | 240 | 127 | 113 |
Grade | LBS 1 | LS 2 | BS 3 |
---|---|---|---|
1st Grade | 22 | 22 | 22 |
2nd Grade | 17 | 16 | 17 |
3rd Grade | 17 | 16 | 15 |
4th Grade | 15 | 15 | 15 |
5th Grade | 11 | 9 | 11 |
Total (%) | 77 (32.1%) | 81 (33.7%) | 82 (34.1%) |
Activity | FMS 1 Evaluation (Baseline) | GMS 2 Training | FMS 1 Evaluation (Post GMS 2 Training) | ||
---|---|---|---|---|---|
(Test) | BBT 3 | TGMD-3 4 | BBT 3 | ||
Day # | Day 1 | Day 2 | Day 3 | Day 4 | Day 5 |
Test time | 5–10 min | 30–45 min | 5–10 min |
Locomotor Skills | Equipment | Material | Measures |
---|---|---|---|
ALL | Mini markers | Polyethylene | Base diameter 9.52 cm, height 16.51 cm |
Ball Skills | Equipment | Material | Measures |
Two hand strike | Batting tee Baseball Bat | Rubber, latex free Rigid polyethylene Plastic | 44.19 cm 43.69 cm 7.62 cm Diameter 7.62 cm Barrel diameter 5.72 cm, height 76.2 cm |
One hand strike | Pickleball paddle Tennis ball | Plastic Rubber and latex | Length 35.6 cm, plastic grid 1.3 cm Non-pressurized |
Dribbling | Playground balls | Nylon and rubber | Diameter 21.59 cm |
Kicking | Playground balls | Nylon and rubber | Diameter 21.59 cm |
Catch | Baseball | Rigid polyethylene | Diameter 7.62 cm |
Overhand throw | Tennis ball | Rubber and latex | Non-pressurized |
Underhand throw | Tennis ball | Rubber and latex | Non-pressurized |
Dominant Hand | Non-Dominant Hand | ||||||
---|---|---|---|---|---|---|---|
Baseline | Post | Baseline | Post | ||||
M | F | M | F | M | F | M | F |
55 (7) | 54 (7) | 50.5 (9) | 50 (8) | 55 (8) | 54 (7) | 51 (9.25) | 50 (8) |
LBS 2 Subgroup | LS 3 Subgroup | BS 4 Subgroup | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sessions | Sessions | Sessions | |||||||||||||||
1st | 2nd | 3rd | 1st | 2nd | 3rd | 1st | 2nd | 3rd | |||||||||
M | F | M | F | M | F | M | F | M | F | M | F | M | F | M | F | M | F |
80 (13) | 81 (14) | 82 (15) | 81 (16) | 85 (13) | 82 (13) | 46 (9) | 44 (9) | 45 (7) | 42 (8.5) | 46 (8) | 44 (10) | 38 (7.3) | 36 (5) | 38 (5.3) | 36 (8.5) | 38 (5) | 37 (5.5) |
Data | Baseline | Post | |
---|---|---|---|
Dominant hand | U | 7025 | 7188.5 |
Z | 0.31 | 0.62 | |
p | 0.76 | 0.53 | |
Non-dominant hand | U | 7181 | 7591.5 |
Z | 0.61 | 1.40 | |
p | 0.54 | 0.16 |
Subgroup | Data | 1st Session | 2nd Session | 3rd Session |
---|---|---|---|---|
LBS 1 | U | 762.5 | 748.5 | 724.5 |
Z | 0.43 | 0.56 | 0.79 | |
p | 0.67 | 0.58 | 0.43 | |
LS 2 | U | 618 | 582.5 | 670 |
Z | 1.38 | 1.74 | 0.86 | |
p | 0.17 | 0.84 | 0.39 | |
BS 3 | U | 529.5 | 526.5 | 517 |
Z | 1.63 | 1.67 | 1.76 | |
p | 0.10 | 0.94 | 0.08 |
LBS 2 Subgroup | LS 3 Subgroup | BS 4 Subgroup | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sessions | Sessions | Sessions | |||||||||
Grade | 1st | 2nd | 3rd | Grade | 1st | 2nd | 3rd | Grade | 1st | 2nd | 3rd |
1st grade | 74.5 (8.5) | 75.5 (10) | 78 (12.25) | 1st grade | 33 (6.75) | 34.5 (7.5) | 36 (3.25) | 1st grade | 40.5 (8.5) | 39.5 (8.25) | 40 (7.5) |
2nd grade | 75 (12.5) | 75 (16) | 77 (15.5) | 2nd grade | 36 (4.25) | 37.5 (8.75) | 37 (6.75) | 2nd grade | 45 (11.5) | 45 (9) | 43 (10) |
3rd grade | 82 (11.5) | 82 (12.5) | 84 (11.5) | 3rd grade | 37 (3.75) | 38 (4.75) | 37.5 (5.75) | 3rd grade | 45 (8) | 44 (7) | 45 (6) |
4th grade | 87 (11) | 86 (9) | 87 (9) | 4th grade | 38 (8) | 40 (5) | 39 (7) | 4th grade | 47 (6) | 45 (3) | 48 (6) |
5th grade | 87 (9) | 90 (9) | 91 (10) | 5th grade | 39 (5) | 40 (5) | 38 (3.5) | 5th grade | 51 (5) | 51 (3) | 50 (2) |
Subgroup | 1st Session | 2nd Session | 3rd Session |
---|---|---|---|
LBS 1 | R = 0.52, | R = 0.59, | R = 0.53, |
p < 0.001 | p < 0.001 | p < 0.001 | |
LS 2 | R = 0.39, | R = 0.42, | R = 0.33, |
p < 0.001 | p < 0.001 | p < 0.001 | |
BS 3 | R = 0.55, | R = 0.50, | R = 0.54, |
p < 0.001 | p < 0.001 | p < 0.001 |
Subgroup | Data | 1st Session | 2nd Session | 3rd Session |
---|---|---|---|---|
LBS 1 | Chi Sq | 33.53 | 29.84 | 24.00 |
d.f. 4 | 4 | 4 | 4 | |
p | <0.001 | <0.001 | <0.001 | |
Post-hoc 5 | 1 vs.4; 1 vs.5; 2 vs.4; 2 vs.5 | 1 vs.4; 1 vs.5; 2 vs.4; 2 vs.5 | 1 vs.4; 1 vs.5; 2 vs.4; 2 vs.5 | |
LS 2 | Chi Sq | 13.41 | 13.53 | 8.94 |
d.f. 4 | 4 | 4 | 4 | |
p | <0.05 | <0.05 | =0.06 | |
Post-hoc 5 | 1 vs.5 | 1 vs.4; 1 vs.5 | // | |
BS 3 | Chi Sq | 26.8 | 27.89 | 26.69 |
d.f. 4 | 4 | 4 | 4 | |
p | <0.001 | <0.001 | <0.001 | |
Post-hoc 5 | 1 vs.4; 1 vs.5; 2 vs.5 | 1 vs.5; 2 vs.5; 3 vs.5; 4 vs.5 | 1 vs.4; 1 vs.5; 2 vs.5 |
Dominant Hand | Non-Dominant Hand | |||
---|---|---|---|---|
Grade | Baseline | Post | Baseline | Post |
1st grade | 50 (3) | 52 (2) | 45 (2) | 46 (1) |
2nd grade | 53 (2) | 54 (2) | 49.5 (2.25) | 50 (2.25) |
3rd grade | 56 (1.75) | 57 (2.25) | 53.5 (3) | 54 (2) |
4th grade | 57 (2) | 59 (3) | 54 (3) | 55 (2) |
5th grade | 62 (3) | 63 (4) | 56 (3) | 57 (3) |
Dominant Hand | Non-Dominant Hand | ||
---|---|---|---|
Baseline | Post | Baseline | Post |
R = 0.95, p < 0.001 | R = 0.94, p < 0.001 | R = 0.94, p < 0.001 | R = 0.92, p < 0.001 |
Data | Baseline | Post | |
---|---|---|---|
Dominant hand | Chi Sq | 206.8 | 203.48 |
d.f. 1 | 4 | 4 | |
p | <0.001 | <0.001 | |
Post-hoc exceptions 2 | 3 vs.4; 4 vs.5 | 3 vs.4; 4 vs.5 | |
Non-dominant hand | Chi Sq | 203.48 | 200.48 |
d.f. 1 | 4 | 4 | |
p | <0.001 | <0.001 | |
Post-hoc exceptions 2 | 3 vs.4; 4 vs.5 | 3 vs.4; 4 vs.5 |
LBS 1 | ||||
---|---|---|---|---|
BBT Evaluations | 1st Session | 2nd Session | 3rd Session | |
Baseline | Dominant hand | R = 0.56 p < 0.001 | R = 0.56 p < 0.001 | R = 0.50 p < 0.001 |
Non-dominant hand | R = 0.58 p < 0.001 | R = 0.57 p < 0.001 | R = 0.53 p < 0.001 | |
Post | Dominant hand | R = 0.57 p < 0.001 | R = 0.55 p < 0.001 | R = 0.48 p < 0.001 |
Non-dominant hand | R = 0.62 p < 0.001 | R = 0.61 p < 0.001 | R = 0.56 p < 0.001 | |
LS 2 | ||||
Baseline | Dominant hand | R = 0.39 p < 0.001 | R = 0.40 p < 0.001 | R = 0.33 p < 0.05 |
Non-dominant hand | R = 0.33 p < 0.05 | R = 0.38 p < 0.001 | R = 0.24 p < 0.05 | |
Post | Dominant hand | R = 0.40 p < 0.001 | R = 0.43 p < 0.001 | R = 0.36 p < 0.05 |
Non-dominant hand | R = 0.36 p < 0.05 | R=0.40 p < 0.001 | R = 0.27 p < 0.05 | |
BS 3 | ||||
Baseline | Dominant hand | R = 0.55 p < 0.001 | R = 0.51 p < 0.001 | R = 0.57 p < 0.001 |
Non-dominant hand | R = 0.54 p < 0.001 | R = 0.47 p < 0.001 | R = 0.50 p < 0.001 | |
Post | Dominant hand | R = 0.56 p < 0.001 | R = 0.51 p < 0.001 | R = 0.55 p < 0.001 |
Non-dominant hand | R = 0.48 p < 0.001 | R = 0.40 p < 0.001 | R = 0.45 p < 0.001 |
LBS 1 Subgroup | LS 2 Subgroup | BS 3 Subgroup | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sessions | Sessions | Sessions | |||||||||
Grade | 1st vs. 2nd | 2nd vs. 3rd | 1st vs. 3rd | Grade | 1st vs. 2nd | 2nd vs. 3rd | 1st vs. 3rd | Grade | 1st vs. 2nd | 2nd vs. 3rd | 1st vs. 3rd |
1st grade | p = 0.16 | p = 0.82 | p = 0.06 | 1st grade | p = 0.08 | p = 0.13 | p = 0.65 | 1st grade | p = 0.52 | p = 0.28 | p = 0.15 |
2nd grade | p = 0.24 | p = 0.25 | p = 0.36 | 2nd grade | p = 0.19 | p = 0.91 | p = 0.31 | 2nd grade | p = 0.38 | p = 0.77 | p = 0.82 |
3rd grade | p = 0.31 | p = 0.69 | p = 0.45 | 3rd grade | p = 0.11 | p = 0.72 | p = 0.59 | 3rd grade | p = 0.26 | p = 0.54 | p = 0.69 |
4th grade | p = 0.22 | p = 0.18 | p = 0.34 | 4th grade | p = 0.85 | p = 0.45 | p = 0.53 | 4th grade | p = 0.96 | p = 0.39 | p = 0.14 |
5th grade | p = 0.09 | p = 0.45 | p = 0.21 | 5th grade | p = 0.68 | p = 0.78 | p = 0.56 | 5th grade | p = 0.17 | p = 0.16 | p = 0.33 |
Dominant Hand | Non-Dominant Hand | |||||
---|---|---|---|---|---|---|
Grade | p-Value | Chi-Sq | d.f. 1 | p-Value | Chi-Sq | d.f. |
1st grade | 0.43 | 0.68 | 1 | 0.74 | 0.63 | 1 |
2nd grade | 0.11 | 0.50 | 1 | 0.88 | 0.41 | 1 |
3rd grade | 0.24 | 0.86 | 1 | 0.66 | 0.74 | 1 |
4th grade | 0.09 | 0.25 | 1 | 0.13 | 0.13 | 1 |
5th grade | 0.08 | 0.19 | 1 | 0.25 | 0.36 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sorgente, V.; Cohen, E.J.; Bravi, R.; Minciacchi, D. Crosstalk between Gross and Fine Motor Domains during Late Childhood: The Influence of Gross Motor Training on Fine Motor Performances in Primary School Children. Int. J. Environ. Res. Public Health 2021, 18, 11387. https://doi.org/10.3390/ijerph182111387
Sorgente V, Cohen EJ, Bravi R, Minciacchi D. Crosstalk between Gross and Fine Motor Domains during Late Childhood: The Influence of Gross Motor Training on Fine Motor Performances in Primary School Children. International Journal of Environmental Research and Public Health. 2021; 18(21):11387. https://doi.org/10.3390/ijerph182111387
Chicago/Turabian StyleSorgente, Vincenzo, Erez James Cohen, Riccardo Bravi, and Diego Minciacchi. 2021. "Crosstalk between Gross and Fine Motor Domains during Late Childhood: The Influence of Gross Motor Training on Fine Motor Performances in Primary School Children" International Journal of Environmental Research and Public Health 18, no. 21: 11387. https://doi.org/10.3390/ijerph182111387
APA StyleSorgente, V., Cohen, E. J., Bravi, R., & Minciacchi, D. (2021). Crosstalk between Gross and Fine Motor Domains during Late Childhood: The Influence of Gross Motor Training on Fine Motor Performances in Primary School Children. International Journal of Environmental Research and Public Health, 18(21), 11387. https://doi.org/10.3390/ijerph182111387