Associations between Second-Hand Tobacco Smoke Exposure and Cardiorespiratory Fitness, Physical Activity, and Respiratory Health in Children
Abstract
:1. Introduction
1.1. Cardiorespiratory Fitness and Physical Activity
1.2. Second-Hand Tobacco Smoke
1.3. Second-Hand Tobacco Smoke, Cardiorespiratory Fitness, and Physical Activity
1.4. Aim
2. Materials and Methods
2.1. Study Design
2.2. Participants and Setting
2.3. Data Collection Procedures
2.4. Measures
2.4.1. Demographic Information
2.4.2. Second-Hand Smoke Exposure
2.4.3. Anthropometry
2.4.4. Physical Activity
2.4.5. Respiratory Health
2.4.6. Cardiorespiratory Fitness
2.5. Statistical Methods
3. Results
3.1. Participant Descriptives
3.1.1. Sampling
3.1.2. Participant Demographics and Weight Classification
3.1.3. Cardiorespiratory Fitness
3.1.4. Physical Activity
3.1.5. Spirometry
3.1.6. Fractional Exhaled Nitric Oxide
3.1.7. Household Smoking Status
3.1.8. Carbon Monoxide as a Measure of Second-Hand Tobacco Smoke Exposure
3.2. Association between Second-Hand Smoke Exposure and Children’s Cardiorespiratory Fitness
3.3. Association between Second-Hand Smoke Exposure and Children’s Physical Activity
3.4. Association between Second-Hand Smoke Exposure and Markers of Respiratory Health in Children
4. Discussion
4.1. Household Smoking
4.2. Cardiorespiratory Fitness and Physical Activity Levels
4.3. Association of Second-Hand Smoke Exposure with Cardiorespiratory Fitness
4.4. Association of Second-Hand Smoke Exposure with Physical Activity
4.5. Markers of Respiratory Health
4.5.1. Association between Second-Hand Smoke Exposure and Spirometry Outcomes
4.5.2. Association between Second-Hand Smoke Exposure and Fractional Exhaled Nitric Oxide
4.6. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, D.; Artero, E.G.; Sui, X.; Blair, S.N. Review: Mortality Trends in the General Population: The Importance of Cardiorespiratory Fitness. J. Psychopharmacol. 2010, 24 (Suppl. 4), 27–35. [Google Scholar] [CrossRef]
- Lang, J.J.; Tomkinson, G.R.; Janssen, I.; Ruiz, J.R.; Ortega, F.B.; Léger, L.; Tremblay, M.S. Making a Case for Cardiorespiratory Fitness Surveillance among Children and Youth. Exerc. Sport Sci. Rev. 2018, 46, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Zaqout, M.; Vyncke, K.; Moreno, L.A.; De Miguel-Etayo, P.; Lauria, F.; Molnar, D.; Lissner, L.; Hunsberger, M.; Veidebaum, T.; Tornaritis, M.; et al. Determinant Factors of Physical Fitness in European Children. Int. J. Public Health 2016, 61, 573–582. [Google Scholar] [CrossRef] [Green Version]
- Raghuveer, G.; Hartz, J.; Lubans, D.; Takken, T.; Wiltz, J.; Perak, A.; Baker-Smith, C.; Mietus-Snyder, M.; Pietris, N.; Edwards, N. Cardiorespiratory Fitness in Youth: An Important Marker of Health: A Scientific Statement From the American Heart Association. Circulation 2020, 142, e101–e118. [Google Scholar] [CrossRef] [PubMed]
- Tomkinson, G.R.; Lang, J.J.; Tremblay, M.S. Temporal Trends in the Cardiorespiratory Fitness of Children and Adolescents Representing 19 High-Income and Upper Middle-Income Countries between 1981 and 2014. Br. J. Sports Med. 2017, 53, 478–486. [Google Scholar] [CrossRef] [Green Version]
- Stratton, G.; Canoy, D.; Boddy, L.M.; Taylor, S.R.; Hackett, A.F.; Buchan, I.E. Cardiorespiratory Fitness and Body Mass Index of 9-11-Year-Old English Children: A Serial Cross-Sectional Study from 1998 to 2004. Int. J. Obes. 2007, 31, 1172–1178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boddy, L.M.; Fairclough, S.J.; Hackett, A.F.; Stratton, G. Changes in Cardiorespiratory Fitness in 9- to 10.9-Year-Old Children: Sportslinx 1998–2010. Med. Sci. Sports Exerc. 2012, 44, 481–486. [Google Scholar] [CrossRef] [Green Version]
- Knaeps, S.; Bourgois, J.G.; Charlier, R.; Mertens, E.; Lefevre, J.; Wijndaele, K. Ten-Year Change in Sedentary Behaviour, Moderate-To-Vigorous Physical Activity, Cardiorespiratory Fitness and Cardiometabolic Risk: Independent Associations and Mediation Analysis. Br. J. Sports Med. 2018, 52, 1063–1069. [Google Scholar] [CrossRef] [Green Version]
- Brage, S.; Wedderkopp, N.; Ekelund, U.; Franks, P.W.; Wareham, N.J.; Andersen, L.B.; Froberg, K. Features of the Metabolic Syndrome Are Associated with Objectively Measured Physical Activity and Fitness in Danish Children: The European Youth Heart Study (EYHS). Diabetes Care 2004, 27, 2141–2148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mäkelä, S.; Aaltonen, S.; Korhonen, T.; Rose, R.J.; Kaprio, J. Diversity of Leisure-Time Sport Activities in Adolescence as a Predictor of Leisure-Time Physical Activity in Adulthood. Scand. J. Med. Sci. Sport 2017, 27, 1902–1912. [Google Scholar] [CrossRef]
- Telama, R.; Yang, X.; Viikari, J.; Välimäki, I.; Wanne, O.; Raitakari, O. Physical Activity from Childhood to Adulthood: A 21-Year Tracking Study. Am. J. Prev. Med. 2005, 28, 267–273. [Google Scholar] [CrossRef]
- Department of Health and Social Care; Davies, D.S.C.; Atherton, F.; McBride, M.; Calderwood, C. UK Chief Medical Officers’ Physical Activity Guidelines. 2019. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/832868/uk-chief-medical-officers-physical-activity-guidelines.pdf (accessed on 28 October 2021).
- Sport England. Active Lives Children and Young People Survey Academic Year 2018/19. 2019. Available online: https://sportengland-production-files.s3.eu-west-2.amazonaws.com/s3fs-public/active-lives-children-survey-academic-year-18-19.pdf (accessed on 28 October 2021).
- Janssen, I.; Boyce, W.F.; Simpson, K.; Pickett, W. Influence of Individual- and Area-Level Measures of Socioeconomic Status on Obesity, Unhealthy Eating, and Physical Inactivity in Canadian Adolescents. Am. J. Clin. Nutr. 2006, 83, 139–145. [Google Scholar] [CrossRef]
- Lampinen, E.K.; Eloranta, A.M.; Haapala, E.A.; Lindi, V.; Väistö, J.; Lintu, N.; Karjalainen, P.; Kukkonen-Harjula, K.; Laaksonen, D.; Lakka, T.A. Physical Activity, Sedentary Behaviour, and Socioeconomic Status among Finnish Girls and Boys Aged 6–8 Years. Eur. J. Sport Sci. 2017, 14, 462–472. [Google Scholar] [CrossRef]
- Wolfe, A.M.; Lee, J.A.; Laurson, K.R. Socioeconomic Status and Physical Fitness in Youth: Findings from the NHANES National Youth Fitness Survey. J. Sports Sci. 2020, 38, 534–541. [Google Scholar] [CrossRef]
- Clennin, M.N.; Pate, R.R. The Association between Neighborhood Socioeconomic Deprivation, Cardiorespiratory Fitness, and Physical Activity in US Youth. J. Phys. Act. Health 2019, 16, 1147–1153. [Google Scholar] [CrossRef]
- Talhout, R.; Schulz, T.; Florek, E.; van Benthem, J.; Wester, P.; Opperhuizen, A. Hazardous Compounds in Tobacco Smoke. Int. J. Environ. Res. Public Health 2011, 8, 613–628. [Google Scholar] [CrossRef] [PubMed]
- Acuff, L.; Fristoe, K.; Hamblen, J.; Smith, M.; Chen, J. Third-Hand Smoke: Old Smoke, New Concerns. J. Community Health 2016, 41, 680–687. [Google Scholar] [CrossRef] [PubMed]
- Environmental Protection Agency (US). Respiratory Health Effects of Passive Smoking: Lung Cancer and Other Disorders; Environmental Protection Agency (US): Washingotn, DC, USA, 1993.
- Carreras, G.; Lugo, A.; Gallus, S.; Cortini, B.; Fernández, E.; López, M.J.; Soriano, J.B.; López-Nicolás, A.; Semple, S.; Gorini, G.; et al. Burden of Disease Attributable to Second-Hand Smoke Exposure: A Systematic Review. Prev. Med. 2019, 129, 105833. [Google Scholar] [CrossRef] [Green Version]
- Öberg, M.; Jaakkola, M.S.; Woodward, A.; Peruga, A.; Prüss-Ustün, A. Worldwide Burden of Disease from Exposure to Second-Hand Smoke: A Retrospective Analysis of Data from 192 Countries. Lancet 2011, 377, 139–146. [Google Scholar] [CrossRef]
- Stanaway, J.D.; Afshin, A.; Gakidou, E.; Lim, S.S.; Abate, D.; Al, E. Global, Regional, and National Comparative Risk Assessment of 84 Behavioural, Environmental and Occupational, and Metabolic Risks or Clusters of Risks for 195 Countries and Territories, 1990-2017: A Systematic Analysis for the Global Burden of Disease Stu. Lancet 2018, 392, 1923–1994. [Google Scholar] [CrossRef] [Green Version]
- Longman, J.; Passey, M. Children, Smoking Households and Exposure to Second-Hand Smoke in the Home in Rural Australia: Analysis of a National Cross-Sectional Survey. BMJ Open 2013, 3, e003128. [Google Scholar] [CrossRef] [Green Version]
- Lajunen, K.; Kalliola, S.; Kotaniemi-Syrjänen, A.; Pekka Malmberg, L.; Pelkonen, A.S.; Mäkelä, M.J. Environmental Tobacco Smoke Affects Lung Function of Preschoolers with Asthma Even after a Decade. Am. J. Respir. Crit. Care Med. 2019, 199, 534–536. [Google Scholar] [CrossRef]
- Naeem, Z. Second-Hand Smoke—Ignored Implications. Int. J. Health Sci. 2015, 9, 5–6. [Google Scholar] [CrossRef]
- Wang, Z.; May, S.M.; Charoenlap, S.; Pyle, R.; Ott, N.L.; Mohammed, K.; Joshi, A.Y. Effects of Secondhand Smoke Exposure on Asthma Morbidity and Health Care Utilization in Children: A Systematic Review and Meta-Analysis. Ann. Allergy Asthma Immunol. 2015, 115, 396–401. [Google Scholar] [CrossRef] [Green Version]
- The National Archives. The Smoke-Free (Exemptions and Vehicles) Regulations 2007; The National Archives: Richmond, UK, 2007.
- Jarvis, M.J.; Mindell, J.; Gilmore, A.; Feyerabend, C.; West, R. Smoke-Free Homes in England: Prevalence, Trends and Validation by Cotinine in Children. Tob. Control 2009, 18, 491–495. [Google Scholar] [CrossRef]
- Office for National Statistics. Adult Smoking Habits in the UK: 2019; Office for National Statistics: London, UK, 2020.
- Jarvis, M.J.; Feyerabend, C. Recent Trends in Children’s Exposure to Second-Hand Smoke in England: Cotinine Evidence from the Health Survey for England. Addiction 2015, 110, 1484–1492. [Google Scholar] [CrossRef] [PubMed]
- Moore, G.F.; Currie, D.; Gilmore, G.; Holliday, J.C.; Moore, L. Socioeconomic Inequalities in Childhood Exposure to Secondhand Smoke before and after Smoke-Free Legislation in Three UK Countries. J. Public Health 2012, 34, 599–608. [Google Scholar] [CrossRef] [PubMed]
- McGee, C.E.; Trigwell, J.; Fairclough, S.J.; Murphy, R.C.; Porcellato, L.; Ussher, M.; Foweather, L. Influence of Family and Friend Smoking on Intentions to Smoke and Smoking-Related Attitudes and Refusal Self-Efficacy among 9–10 Year Old Children from Deprived Neighbourhoods: A Cross-Sectional Study. BMC Public Health 2015, 15, 225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flouris, A.D.; Metsios, G.S.; Carrill, A.E.; Jamurtas, A.Z.; Stivaktakis, P.D.; Tzatzarakis, M.N.; Tsatsakis, A.M.; Koutedakis, Y. Respiratory and Immune Response to Maximal Physical Exertion Following Exposure to Secondhand Smoke in Healthy Adults. PLoS ONE 2012, 7, e31880. [Google Scholar] [CrossRef]
- Flouris, A.D.; Koutedakis, Y. Immediate and Short-Term Consequences of Secondhand Smoke Exposure on the Respiratory System. Curr. Opin. Pulm. Med. 2011, 17, 110–115. [Google Scholar] [CrossRef] [Green Version]
- De Borba, A.T.; Jost, R.T.; Gass, R.; Nedel, F.B.; Cardoso, D.M.; Pohl, H.H.; Reckziegel, M.B.; Corbellini, V.A.; Paiva, D.N. The Influence of Active and Passive Smoking on the Cardiorespiratory Fitness of Adults. Multidiscip. Respir. Med. 2014, 9, 34. [Google Scholar] [CrossRef] [Green Version]
- Papathanasiou, G.; Mamali, A.; Papafloratos, S.; Zerva, E. Effects of Smoking on Cardiovascular Function: The Role of Nicotine and Carbon Monoxide. Health Sci. J. 2014, 8, 272–288. [Google Scholar]
- Magnússon, K.T.; Sveinsson, T.; Arngrimsson, S.Á.; Johannsson, E. Predictors of Fatness and Physical Fitness in Nine-Year-Old Icelandic School Children. Int. J. Pediatr. Obes. 2008, 3, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Hacke, C.; Weisser, B. Effects of Parental Smoking on Exercise Systolic Blood Pressure in Adolescents. J. Am. Heart Assoc. 2015, 4, e001936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaymaz, N.; Yildirim, S.; Tekin, M.; Aylanc, H.; Battal, F.; Topaloglu, N.; Binnetoglu, F.; Akbal, A. The Effects of Passive Smoking on the Six-Minute Walk Test in Obese Pediatric Cases. J. Clin. Res. Pediatr. Endocrinol. 2014, 6, 245–249. [Google Scholar] [CrossRef]
- Audrain-McGovern, J.; Rodriguez, D.; Cuevas, J.; Sass, J. Initial Insight into Why Physical Activity May Help Prevent Adolescent Smoking Uptake. Drug Alcohol Depend. 2013, 132, 471–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horn, K.; Dino, G.; Branstetter, S.A.; Zhang, J.; Noerachmanto, N.; Jarrett, T.; Taylor, M. Effects of Physical Activity on Teen Smoking Cessation. Pediatrics 2011, 128, e801–e811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parnell, M.; Gee, I.; Foweather, L.; Whyte, G.; Knowles, Z. Children of Smoking and Non-Smoking Households’ Perceptions of Physical Activity, Cardiorespiratory Fitness, and Exercise. Children 2021, 8, 552. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Housing Communities & Local Government. English Indices of Deprivation. 2019. Available online: http://imd-by-postcode.opendatacommunities.org/imd/2019 (accessed on 28 October 2021).
- Global Adult Tobacco Survey Collaborative Group. Tobacco Questions for Surveys: A Subset of Key Questions from the Global Adult Tobacco Survey (GATS), 2nd ed.; Centres for Disease Control and Prevention: Atalanta, GA, USA, 2011.
- Cropsey, K.L.; Trent, L.R.; Clark, C.B.; Stevens, E.N.; Lahti, A.C.; Hendricks, P.S. How Low Should You Go? Determining the Optimal Cutoff for Exhaled Carbon Monoxide to Confirm Smoking Abstinence When Using Cotinine as Reference. Nicotine Tob. Res. 2014, 16, 1348–1355. [Google Scholar] [CrossRef] [Green Version]
- Tual, S.; Piau, J.P.; Jarvis, M.J.; Dautzenberg, B.; Annesi-Maesano, I. Impact of Tobacco Control Policies on Exhaled Carbon Monoxide in Non-Smokers. J. Epidemiol. Community Health 2010, 64, 554–556. [Google Scholar] [CrossRef] [Green Version]
- Deveci, S.E.; Deveci, F.; Açik, Y.; Ozan, A.T. The Measurement of Exhaled Carbon Monoxide in Healthy Smokers and Non-Smokers. Respir. Med. 2004, 98, 551–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gourgoulianis, K.; Gogou, E.; Hamos, V.; Molyvdas, P. Indoor Maternal Smoking Doubles Adolescents’ Exhaled Carbon Monoxide. Acta Paediatr. 2007, 91, 712–713. [Google Scholar] [CrossRef]
- Marfell-Jones, M.; Olds, T.; Stewart, A.; Carter, L. Kinanthropometry IX: Proceedings of the 9th International Conference of the International Society for the Advancement of Kinanthropometry; Routledge: London, UK, 2006. [Google Scholar]
- Lohman, T.G.; Roche, A.F.; Martorell, R. Anthropometric Standardization Reference Manual; Human Kinetics: Chicago, IL, USA, 1988. [Google Scholar]
- Cole, T.J.; Lobstein, T. Extended International (IOTF) Body Mass Index Cut-Offs for Thinness, Overweight and Obesity. Pediatr. Obes. 2012, 7, 284–294. [Google Scholar] [CrossRef]
- Mirwald, R.L.; Baxter-Jones, A.D.G.; Bailey, D.A.; Beunen, G.P. An Assessment of Maturity from Anthropometric Measurements. Med. Sci. Sports Exerc. 2002, 34, 689–694. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, K.C.; Crocker, P.R.E.; Donen, R.M. The Physical Activity Questionnaire for Older Children (PAQ-C) and Adolescents (PAQ-A) Manual; College of Kinesiology, University of Saskatchewan: Saskatoon, SK, Canada, 2004; pp. 1–37. [Google Scholar]
- Biddle, S.J.H.; Gorely, T.; Pearson, N.; Bull, F.C. An Assessment of Self-Reported Physical Activity Instruments in Young People for Population Surveillance: Project ALPHA. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 1. [Google Scholar] [CrossRef] [Green Version]
- Voss, C.; Dean, P.H.; Gardner, R.F.; Duncombe, S.L.; Harris, K.C. Validity and Reliability of the Physical Activity Questionnaire for Children (PAQ-C) and Adolescents (PAQ-A) in Individuals with Congenital Heart Disease. PLoS ONE 2017, 12, e0175806. [Google Scholar] [CrossRef]
- Eckel, S.P.; Linn, W.S.; Salam, M.T.; Bastain, T.M.; Zhang, Y.; Rappaport, E.B.; Liu, M.; Berhane, K. Spirometry Effects on Conventional and Multiple Flow Exhaled Nitric Oxide in Children. J. Asthma 2015, 52, 198–204. [Google Scholar] [CrossRef] [Green Version]
- Dweik, R.A.; Boggs, P.B.; Erzurum, S.C.; Irvin, C.G.; Leigh, M.W.; Lundberg, J.O.; Olin, A.C.; Plummer, A.L.; Taylor, D.R. An Official ATS Clinical Practice Guideline: Interpretation of Exhaled Nitric Oxide Levels (FENO) for Clinical Applications. Am. J. Respir. Crit. Care Med. 2011, 184, 602–615. [Google Scholar] [CrossRef] [Green Version]
- Arnold, R.J.; Massanari, M.; Lee, T.A.; Brooks, E. A Review of the Utility and Cost Effectiveness of Monitoring Fractional Exhaled Nitric Oxide (FeNO) in Asthma Management. Manag. Care 2018, 27, 34–41. [Google Scholar]
- Hatziagorou, E.; Tsanakas, J. Assessment of Airway Inflammation with Exhaled NO Measurement. Hippokratia. 2007, 11, 51–62. [Google Scholar]
- Quanjer, P.H.; Stanojevic, S.; Cole, T.J.; Baur, X.; Hall, G.L.; Culver, B.H.; Enright, P.L.; Hankinson, J.L.; Ip, M.S.M.; Zheng, J.; et al. Multi-Ethnic Reference Values for Spirometry for the 3-95-Yr Age Range: The Global Lung Function 2012 Equations. Eur. Respir. J. 2012, 40, 1324–1343. [Google Scholar] [CrossRef]
- Korotzer, B.; Ong, S.; Hansen, J.E. Ethnic Differences in Pulmonary Function in Healthy Nonsmoking Asian- Americans and European-Americans. Am. J. Respir. Crit. Care Med. 2000, 161 4 Pt 1, 1101–1108. [Google Scholar] [CrossRef]
- Vandevoorde, J.; Verbanck, S.; Schuermans, D.; Kartounian, J.; Vincken, W. FEV1/FEV6and FEV6as an Alternative for FEV1/FVC and FVC in the Spirometric Detection of Airway Obstruction and Restriction. Chest 2005, 127, 1560–1564. [Google Scholar] [CrossRef]
- Armstrong, N.; McManus, A.M. Aerobic Fitness. In Oxford Textbook of Children’s Sport and Exercise Medicine; Armstrong, N., van Mechelen, W., Eds.; Oxford University Press: Oxford, UK, 2017; pp. 161–180. [Google Scholar]
- Armstrong, N.; Winsley, R. Is Peak VO, a Maximal Index of Children’s Aerobic Fitness? Int. J. Sports Med. 1996, 17, 356–359. [Google Scholar] [CrossRef] [PubMed]
- Boddy, L.M.; Murphy, M.H.; Cunningham, C.; Breslin, G.; Foweather, L.; Gobbi, R.; Graves, L.E.F.; Hopkins, N.D.; Auth, M.K.H.; Stratton, G. Physical Activity, Cardiorespiratory Fitness, and Clustered Cardiometabolic Risk in 10- to 12-Year-Old School Children: The REACH Y6 Study. Am. J. Hum. Biol. 2014, 26, 446–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hopkins, N.; Stratton, G.; Maia, J.; Tinken, T.M.; Graves, L.E.; Cable, T.N.; Green, D.J. Heritability of Arterial Function, Fitness, and Physical Activity in Youth: A Study of Monozygotic and Dizygotic Twins. J. Pediatr. 2010, 157, 943–948. [Google Scholar] [CrossRef]
- Yelling, M.; Lamb, K.L.; Swaine, I.L. Validity of a Pictorial Perceived Exertion Scale for Effort Estimation and Effort Production During Stepping Exercise in Adolescent Children. Eur. Phys. Educ. Rev. 2002, 8, 157–175. [Google Scholar] [CrossRef] [Green Version]
- Daley, A.J.; Copeland, R.J.; Wright, N.P.; Wales, J.K.H. Protocol for: Sheffield Obesity Trial (SHOT): A Randomised Controlled Trial of Exercise Therapy and Mental Health Outcomes in Obese Adolescents [ISRCNT83888112]. BMC Public Health 2005, 5, 113. [Google Scholar] [CrossRef] [Green Version]
- Welsman, J.; Armstrong, N. Interpreting Aerobic Fitness in Youth: The Fallacy of Ratio Scaling. Pediatric Exerc. Sci. 2019, 31, 184–190. [Google Scholar] [CrossRef] [Green Version]
- Lang, J.J.; Tremblay, M.S.; Ortega, F.B.; Ruiz, J.R.; Tomkinson, G.R. Review of Criterion-Referenced Standards for Cardiorespiratory Fitness: What Percentage of 1 142 026 International Children and Youth Are Apparently Healthy? Br. J. Sports Med. 2019, 53, 953–958. [Google Scholar] [CrossRef]
- Field, A.P. Discovering Statistics Using IBM SPSS Statistics, 5th ed.; SAGE Publishing: Thousand Oaks, CA, USA, 2018. [Google Scholar]
- Dukellis, D.; Zuk, J.; Pan, Z.; Morrison, J.E.; Friesen, R.H. Exhaled Carbon Monoxide Screening for Environmental Tobacco Smoke Exposure in Preanesthetic Children. Paediatr. Anaesth. 2009, 19, 848–853. [Google Scholar] [CrossRef] [PubMed]
- Zeiher, J.; Ombrellaro, K.J.; Perumal, N.; Keil, T.; Mensink, G.B.M.; Finger, J.D. Correlates and Determinants of Cardiorespiratory Fitness in Adults: A Systematic Review. Sports Med. Open 2019, 5, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Y.; Chan, E.Y.Y.; Zhu, Y.; Wong, T.W. Adverse Effect of Outdoor Air Pollution on Cardiorespiratory Fitness in Chinese Children. Atmos. Environ. 2013, 64, 10–17. [Google Scholar] [CrossRef]
- Biddle, S.J.H.; Atkin, A.J.; Cavill, N.; Foster, C. Correlates of Physical Activity in Youth: A Review of Quantitative Systematic Reviews. Int. Rev. Sport Exerc. Psychol. 2011, 4, 25–49. [Google Scholar] [CrossRef]
- O’Donoghue, G.; Kennedy, A.; Puggina, A.; Aleksovska, K.; Buck, C.; Burns, C.; Cardon, G.; Carlin, A.; Ciarapica, D.; Colotto, M.; et al. Socio-Economic Determinants of Physical Activity across the Life Course: A “DEterminants of DIet and Physical ACtivity” (DEDIPAC) Umbrella Literature Review. PLoS ONE 2018, 13, e0190737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polak, M.; Szafraniec, K.; Kozela, M.; Wolfshaut-Wolak, R.; Bobak, M.; Pajak, A. Socioeconomic Status and Pulmonary Function, Transition from Childhood to Adulthood: Cross-Sectional Results from the Polish Part of the HAPIEE Study. BMJ Open 2019, 9, e022638. [Google Scholar] [CrossRef] [Green Version]
- Laaksonen, M.; Rahkonen, O.; Karvonen, S.; Lahelma, E. Socioeconomic Status and Smoking: Analysing Inequalities with Multiple Indicators. Eur. J. Public Health 2005, 15, 262–269. [Google Scholar] [CrossRef]
- Hiscock, R.; Bauld, L.; Amos, A.; Fidler, J.A.; Munafò, M. Socioeconomic Status and Smoking: A Review. Ann. N. Y. Acad. Sci. 2012, 1248, 107–123. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Nieuwenhuijsen, M.J.; Colvile, R.N. Fine Particulate Matter and Carbon Monoxide Exposure Concentrations in Urban Street Transport Microenvironments. Atmos. Environ. 2007, 41, 4781–4810. [Google Scholar] [CrossRef]
- Raub, J.A.; Mathieu-Nolf, M.; Hampson, N.B.; Thom, S.R. Carbon Monoxide Poisoning—A Public Health Perspective. Toxicology 2000, 145, 1–14. [Google Scholar] [CrossRef]
- Florescu, A.; Ferrence, R.; Einarson, T.; Selby, P.; Soldin, O.; Koren, G. Methods for Quantification of Exposure to Cigarette Smoking and Environmental Tobacco Smoke: Focus on Developmental Toxicology. Ther. Drug Monit. 2009, 31, 14–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benowitz, N.L.; Bernert, J.T.; Caraballo, R.S.; Holiday, D.B.; Wang, J. Optimal Serum Cotinine Levels for Distinguishing Cigarette Smokers and Nonsmokers within Different Racial/Ethnic Groups in the United States between 1999 and 2004. Am. J. Epidemiol. 2009, 169, 236–248. [Google Scholar] [CrossRef] [Green Version]
- Hukkanen, J.; Jacob, P.; Benowitz, N.L. Metabolism and Disposition Kinetics of Nicotine. Pharmacol. Rev. 2005, 57, 79–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semple, S.; Mueller, W.; Leyland, A.H.; Gray, L.; Cherrie, J.W. Assessing Progress in Protecting Non-Smokers from Secondhand Smoke. Tob. Control 2019, 28, 692–695. [Google Scholar] [CrossRef] [Green Version]
- Kim, S. Overview of Cotinine Cutoff Values for Smoking Status Classification. Int. J. Environ. Res. Public Health 2016, 13, 1236. [Google Scholar] [CrossRef] [PubMed]
- Tomkinson, G.R.; Lang, J.J.; Tremblay, M.S.; Dale, M.; Leblanc, A.G.; Belanger, K.; Ortega, F.B.; Léger, L. International Normative 20 m Shuttle Run Values from 1 142 026 Children and Youth Representing 50 Countries. Br. J. Sports Med. 2017, 51, 1545–1554. [Google Scholar] [CrossRef] [Green Version]
- Benítez-Porres, J. Cut-off Values for Classifying Active Children and Adolescentes Using the Physical Activity Questionnaire: PAQ-C and PAQ-A. Nutr. Hosp. 2016, 33, 564. [Google Scholar] [CrossRef]
- Noonan, R.J.; Boddy, L.M.; Knowles, Z.R.; Fairclough, S.J. Cross-Sectional Associations between High-Deprivation Home and Neighbourhood Environments, and Health-Related Variables among Liverpool Children. BMJ Open 2016, 6, e008693. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.C.W.; McManus, A.M.; Au, C.T.; So, H.K.; Chan, A.; Sung, R.Y.T.; Li, A.M. Appropriate Scaling Approach for Evaluating Peak VO 2 Development in Southern Chinese 8 to 16 Years Old. PLoS ONE 2019, 14, e0213674. [Google Scholar] [CrossRef]
- Lolli, L.; Batterham, A.M.; Weston, K.L.; Atkinson, G. Size Exponents for Scaling Maximal Oxygen Uptake in Over 6500 Humans: A Systematic Review and Meta-Analysis. Sports Med. 2017, 47, 1405–1419. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, N.; Williams, J.; Balding, J.; Gentle, P.; Kirby, B. The Peak Oxygen Uptake of British Children with Reference to Age, Sex and Sexual Maturity. Eur. J. Appl. Physiol. Occup. Physiol. 1991, 62, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Sutton, N. The Assessment of Children’s Anaerobic Performance; University of Exeter: Exeter, UK, 1999. [Google Scholar]
- Cutrufello, P.T.; Smoliga, J.M.; Rundell, K.W. Small Things Make a Big Difference. Sports Med. 2012, 42, 1041–1058. [Google Scholar] [CrossRef] [PubMed]
- Flouris, A.D.; Metsios, G.S.; Jamurtas, A.Z.; Koutedakis, Y. Cardiorespiratory and Immune Response to Physical Activity Following Exposure to a Typical Smoking Environment. Heart 2010, 96, 860–864. [Google Scholar] [CrossRef] [PubMed]
- Doll, R.; Hill, A.B. Smoking and Carcinoma of the Lung. Br. Med. J. 1950, 2, 739–748. [Google Scholar] [CrossRef] [Green Version]
- Doll, R.; Hill, A.B. The Mortality of Doctors in Relation to Their Smoking Habits: A Preliminary Report. BMJ 1954, 328, 1529–1533. [Google Scholar] [CrossRef] [Green Version]
- Kaur, G.; Begum, R.; Thota, S.; Batra, S. A Systematic Review of Smoking-Related Epigenetic Alterations. Arch. Toxicol. 2019, 93, 2715–2740. [Google Scholar] [CrossRef]
- Richmond, R.C.; Suderman, M.; Langdon, R.; Relton, C.L.; Smith, G.D. DNA Methylation as a Marker for Prenatal Smoke Exposure in Adults. Int. J. Epidemiol. 2018, 47, 1120–1130. [Google Scholar] [CrossRef] [Green Version]
- Högberg, L.; Cnattingius, S.; Lundholm, C.; D’Onofrio, B.M.; Långström, N.; Iliadou, A.N. Effects of Maternal Smoking during Pregnancy on Offspring Blood Pressure in Late Adolescence. J. Hypertens. 2012, 30, 693–699. [Google Scholar] [CrossRef] [Green Version]
- Koshy, G.; Delpisheh, A.; Brabin, B.J. Dose Response Association of Pregnancy Cigarette Smoke Exposure, Childhood Stature, Overweight and Obesity. Eur. J. Public Health 2011, 21, 286–291. [Google Scholar] [CrossRef] [Green Version]
- DiFranza, J.R.; Aligne, C.A.; Weitzman, M. Prenatal and Postnatal Environmental Tobacco Smoke Exposure and Children’s Health. Pediatrics 2004, 113, 1007–1015. [Google Scholar]
- Berlin, I.; Oncken, C. Maternal Smoking during Pregnancy and Negative Health Outcomes in the Offspring. Nicotine Tob. Res. 2018, 20, 663–664. [Google Scholar] [CrossRef]
- Welk, G.J. The Youth Physical Activity Promotion Model: A Conceptual Bridge between Theory and Practice. Quest 1999, 51, 5–23. [Google Scholar] [CrossRef]
- Wu, X.Y.; Han, L.H.; Zhang, J.H.; Luo, S.; Hu, J.W.; Sun, K. The Influence of Physical Activity, Sedentary Behavior on Health-Related Quality of Life among the General Population of Children and Adolescents: A Systematic Review. PLoS ONE 2017, 12, e0187668. [Google Scholar] [CrossRef] [Green Version]
- Ekelund, U.; Steene-Johannessen, J.; Brown, W.J.; Fagerland, M.W.; Owen, N.; Powell, K.E.; Bauman, A.; Lee, I.M.; Ding, D.; Heath, G.; et al. Does Physical Activity Attenuate, or Even Eliminate, the Detrimental Association of Sitting Time with Mortality? A Harmonised Meta-Analysis of Data from More than 1 Million Men and Women. Lancet 2016, 388, 1302–1310. [Google Scholar] [CrossRef] [Green Version]
- Janz, K. Professor Kathleen Janz adds an “Active Voice” to Causes of Physical Inactivity. Available online: https://medicine.uiowa.edu/obesity/content/professor-kathleen-janz-adds-active-voice-causes-physical-inactivity (accessed on 25 February 2018).
- Jat, K.R. Spirometry in Children. Prim. Care Respir. J. 2013, 22, 221–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hegewald, M.J.; Crapo, R.O. Socioeconomic Status and Lung Function. Chest 2007, 132, 1608–1614. [Google Scholar] [CrossRef]
- Franklin, P.J. Indoor Air Quality and Respiratory Health of Children. Paediatr. Respir. Rev. 2007, 8, 281–286. [Google Scholar] [CrossRef]
- Dales, R.; Wheeler, A.; Mahmud, M.; Frescura, A.M.; Smith-Doiron, M.; Nethery, E.; Liu, L. The Influence of Living near Roadways on Spirometry and Exhaled Nitric Oxide in Elementary Schoolchildren. Environ. Health Perspect. 2008, 116, 1423–1427. [Google Scholar] [CrossRef] [Green Version]
- Braun, L. Race, Ethnicity and Lung Function: A Brief History. Can. J. Respir. Ther. 2015, 51, 99–101. [Google Scholar]
- Schivinski, C.I.S.; de Assumpção, M.S.; de Figueiredo, F.C.X.S.; Wamosy, R.M.G.; Ferreira, L.G.; Ribeiro, J.D. Impulse Oscillometry, Spirometry, and Passive Smoking in Healthy Children and Adolescents. Rev. Port. Pneumol. Engl. Ed. 2017, 23, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Bird, Y.; Staines-Orozco, H. Pulmonary Effects of Active Smoking and Secondhand Smoke Exposure among Adolescent Students in Juárez, Mexico. Int. J. COPD 2016, 11, 1459–1467. [Google Scholar] [CrossRef] [Green Version]
- Moshammer, H.; Hoek, G.; Luttmann-Gibson, H.; Neuberger, M.A.; Antova, T.; Gehring, U.; Hruba, F.; Pattenden, S.; Rudnai, P.; Slachtova, H.; et al. Parental Smoking and Lung Function in Children: An International Study. Am. J. Respir. Crit. Care Med. 2006, 173, 1255–1263. [Google Scholar] [CrossRef]
- Li, Y.F.; Gilliland, F.D.; Berhane, K.; McConnell, R.; Gauderman, W.J.; Rappaport, E.B.; Peters, J.M. Effects of in Utero and Environmental Tobacco Smoke Exposure on Lung Function in Boys and Girls with and without Asthma. Am. J. Respir. Crit. Care Med. 2000, 162, 2097–2104. [Google Scholar] [CrossRef] [Green Version]
- Thacher, J.D.; Schultz, E.S.; Hallberg, J.; Hellberg, U.; Kull, I.; Thunqvist, P.; Pershagen, G.; Gustafsson, P.M.; Melén, E.; Bergström, A. Tobacco Smoke Exposure in Early Life and Adolescence in Relation to Lung Function. Eur. Respir. J. 2018, 51, 1702111. [Google Scholar] [CrossRef] [PubMed]
- Gilliland, F.D.; Berhane, K.; McConnell, R.; Gauderman, W.J.; Vora, H.; Rappaport, E.B.; Avol, E.; Peters, J.M. Maternal Smoking during Pregnancy, Environmental Tobacco Smoke Exposure and Childhood Lung Function. Thorax 2000, 55, 271–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuo, C.R.W.; Spears, M.; Haughney, J.; Smith, A.; Miller, J.; Bradshaw, T.; Murray, L.; Williamson, P.; Lipworth, B. Scottish Consensus Statement on the Role of FeNO in Adult Asthma. Respir. Med. 2019, 155, 54–57. [Google Scholar] [CrossRef] [PubMed]
- Brody, D.J.; Zhang, X.; Kit, B.K.; Dillon, C.F. Reference Values and Factors Associated with Exhaled Nitric Oxide: U.S. Youth and Adults. Respir. Med. 2013, 107, 1682–1691. [Google Scholar] [CrossRef] [Green Version]
- Bjermer, L.; Alving, K.; Diamant, Z.; Magnussen, H.; Pavord, I.; Piacentini, G.; Price, D.; Roche, N.; Sastre, J.; Thomas, M.; et al. Current Evidence and Future Research Needs for FeNO Measurement in Respiratory Diseases. Respir. Med. 2014, 108, 830–841. [Google Scholar] [CrossRef] [Green Version]
- Karimi, L.; Vijverberg, S.J.H.; Farzan, N.; Ghanbari, M.; Verhamme, K.M.C.; Maitland-van der Zee, A.H. FCER2 T2206C Variant Associated with FENO Levels in Asthmatic Children Using Inhaled Corticosteroids: The PACMAN Study. Clin. Exp. Allergy 2019, 49, 1429–1436. [Google Scholar] [CrossRef] [Green Version]
- Kingwell, B.A. Nitric Oxide-mediated Metabolic Regulation during Exercise: Effects of Training in Health and Cardiovascular Disease. FASEB J. 2000, 14, 1685–1696. [Google Scholar] [CrossRef] [PubMed]
- Shannon, O.M.; Duckworth, L.; Barlow, M.J.; Woods, D.; Lara, J.; Siervo, M.; O’Hara, J.P. Dietary Nitrate Supplementation Enhances High-Intensity Running Performance in Moderate Normobaric Hypoxia, Independent of Aerobic Fitness. Nitric Oxide Biol. Chem. 2016, 59, 63–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailey, S.J.; Winyard, P.; Vanhatalo, A.; Blackwell, J.R.; DiMenna, F.J.; Wilkerson, D.P.; Tarr, J.; Benjamin, N.; Jones, A.M. Dietary Nitrate Supplementation Reduces the O2 Cost of Low-Intensity Exercise and Enhances Tolerance to High-Intensity Exercise in Humans. J. Appl. Physiol. 2009, 107, 1144–1155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahovuo-Saloranta, A.; Csonka, P.; Lehtimäki, L. Basic Characteristics and Clinical Value of FeNO in Smoking Asthmatics—A Systematic Review. J. Breath Res. 2019, 13, 034003. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Liu, Y.; Sun, H.; Ma, J.; Xiao, L.; Cao, L.; Li, W.; Wang, B.; Yuan, J.; Chen, W. Associations of Urinary Polycyclic Aromatic Hydrocarbon Metabolites with Fractional Exhaled Nitric Oxide and Exhaled Carbon Monoxide: A Cross-Sectional Study. Sci. Total Environ. 2018, 618, 542–550. [Google Scholar] [CrossRef] [PubMed]
- Jacinto, T.; Malinovschi, A.; Janson, C.; Fonseca, J.; Alving, K. Differential Effect of Cigarette Smoke Exposure on Exhaled Nitric Oxide and Blood Eosinophils in Healthy and Asthmatic Individuals. J. Breath Res. 2017, 11, 036006. [Google Scholar] [CrossRef] [PubMed]
- Matsunaga, K.; Kuwahira, I.; Hanaoka, M.; Saito, J.; Tsuburai, T.; Fukunaga, K.; Matsumoto, H.; Sugiura, H.; Ichinose, M. An Official JRS Statement: The Principles of Fractional Exhaled Nitric Oxide (FeNO) Measurement and Interpretation of the Results in Clinical Practice. Respir. Investig. 2021, 59, 34–52. [Google Scholar] [CrossRef]
N | Minimum | Maximum | Mean | SD | |
---|---|---|---|---|---|
Anthropometry | |||||
Decimal age (years) | 104 | 8.5 | 11.5 | 10.1 | 0.6 |
Maturation (years to PHV) | 103 | −4.1 | 0.1 | −2.2 | 1.0 |
Stature (cm) | 103 | 122.0 | 158.0 | 141.7 | 6.6 |
Mass (kg) | 103 | 22.8 | 66.0 | 38.2 | 9.2 |
BMI (kg·m−2) | 103 | 13.2 | 30.5 | 19.0 | 3.9 |
Cardiorespiratory fitness | |||||
VO2peak (mL·min−1) | 94 | 843.0 | 2399.0 | 1659.5 | 307.9 |
VO2peak (mL·kg−1·min−1) | 94 | 24.8 | 59.5 | 45.0 | 7.7 |
VO2peak (mL·kg−0.53·min−1) | 94 | 157.5 | 322.6 | 247.2 | 36.3 |
Respiratory health | |||||
FEV1 (%) | 103 | 43.9 | 131.7 | 83.0 | 17.2 |
FVC (%) | 103 | 44.3 | 136.0 | 89.0 | 19.7 |
PEF (%) | 103 | 33.6 | 155.7 | 75.3 | 21.0 |
FEV1/FVC | 103 | 52.7 | 100.0 | 89.6 | 11.0 |
FeNO * (ppb) | 102 | <5 | 147 | 15.9 | 33.4 |
Physical activity | |||||
PAQ-C | 103 | 2.1 | 5.0 | 3.6 | 0.7 |
SHS exposure | |||||
eCO (ppm) | 100 | 0 | 7 | 1.8 | 1.2 |
Cigarettes per day | 104 | 0 | 65 | 5.5 | 10.8 |
Deprivation | |||||
EIMD rank * | 104 | 69 | 25,530 | 1427 | 5652 |
Model and Predictor | Unstandardised Coefficient (B) | 95% Confidence Interval | Standard Error of B | Significance | |
---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||
Unadjusted model (R2 = 0.036, p = 0.068, F = 3.4) | |||||
Constant | 252.3 | 243.1 | 261.5 | 4.6 | <0.001 |
Sqrt-cigarettes | −3.7 | −7.6 | 0.3 | 2.0 | 0.068 |
Adjusted model (R2 = 0.352, p < 0.001, F = 6.6) | |||||
Constant | −113.7 | −331.9 | 104.5 | 109.7 | 0.303 |
Sqrt-cigarettes | −3.8 | −7.3 | −0.4 | 1.7 | 0.030 |
Sex | −26.2 | −49.0 | −3.4 | 11.5 | 0.025 |
Age (years) | 12.2 | 0.4 | 23.9 | 5.9 | 0.042 |
Stature (cm) | 1.3 | 0.1 | 2.5 | 0.6 | 0.036 |
Maturation (years to PHV) | 0.1 | −12.4 | 12.4 | 6.2 | 0.998 |
Physical activity | 15.4 | 6.0 | 24.8 | 4.7 | 0.002 |
LogEIMD | 5.2 | −5.7 | 16.0 | 5.5 | 0.347 |
Model and Predictor | Unstandardised Coefficient (B) | 95% Confidence Interval | Standard Error of B | Significance | |
---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||
Unadjusted model (R2 = 0.011, p = 0.548, F = 0.4) | |||||
Constant | 241.3 | 226.4 | 256.3 | 7.4 | <0.001 |
Smoke indoors | −7.4 | −32.3 | 17.5 | 12.2 | 0.548 |
Adjusted model (R2 = 0.297, p = 0.153, F = 1.7) | |||||
Constant | 136.3 | −318.4 | 591.0 | 222.0 | 0.544 |
Smoking indoors | −17.0 | −41.2 | 7.1 | 11.8 | 0.159 |
Sex | −26.3 | −62.0 | 9.3 | 17.4 | 0.142 |
Age (years) | −0.7 | −24.2 | 22.8 | 11.5 | 0.951 |
Stature (cm) | 0.6 | −1.9 | 3.2 | 1.2 | 0.611 |
Maturation (years to PHV) | 5.6 | −14.4 | 25.7 | 9.8 | 0.570 |
Physical activity | 20.4 | 4.7 | 36.2 | 7.7 | 0.013 |
LogEIMD | −7.5 | −32.0 | 17.0 | 12.0 | 0.538 |
Model and Predictor | Unstandardised Coefficient (B) | 95% CI | Standard Error of B | Significance | |
---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||
Unadjusted model (R2 < 0.001, p = 0.826, F = 0.05) | |||||
Constant | 3.64 | 3.47 | 3.81 | 0.08 | <0.001 |
Sqrt-cigarettes | 0.01 | −0.07 | 0.08 | 0.04 | 0.826 |
Adjusted model (R2 = 0.089, p = 0.104, F = 1.9) | |||||
Constant | 6.54 | 3.05 | 10.03 | 1.76 | <0.001 |
Sqrt-cigarettes | 0.03 | −0.05 | 0.11 | 0.04 | 0.456 |
Sex | −0.29 | −0.80 | 0.21 | 0.25 | 0.255 |
Age (years) | −0.21 | −0.47 | 0.04 | 0.13 | 0.100 |
BMI (kg·m−2) | −0.03 | −0.07 | 0.01 | 0.02 | 0.104 |
Maturation (years to PHV) | 0.05 | −0.22 | 0.31 | 0.13 | 0.732 |
LogEIMD | 0.04 | −0.20 | 0.28 | 0.12 | 0.751 |
Model | Model R2 | Model Significance, p | Unstandardised Coefficient (B) for Sqrt-Cigarettes | 95% Confidence Interval | Standard Error of B | Significance of B, p | |
---|---|---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||||
FEV1% unadjusted | <0.001 | 0.864 | −0.2 | −2.0 | 1.7 | 0.9 | 0.864 |
FEV1% adjusted | 0.138 | 0.005 | 0.4 | −1.4 | 2.2 | 0.9 | 0.660 |
FVC% unadjusted | 0.013 | 0.247 | −1.2 | −3.3 | 0.9 | 1.1 | 0.247 |
FVC% adjusted | 0.135 | 0.006 | −0.7 | −2.8 | 1.3 | 1.0 | 0.494 |
PEF% unadjusted | 0.002 | 0.659 | −0.6 | −2.7 | 1.6 | 1.1 | 0.608 |
PEF% adjusted | 0.064 | 0.166 | 0.0 | −2.2 | 2.1 | 1.1 | 0.965 |
FER unadjusted | 0.015 | 0.227 | 0.6 | −0.4 | 1.7 | 0.5 | 0.227 |
FER adjusted | 0.030 | 0.561 | 0.7 | −0.4 | 1.8 | 0.5 | 0.204 |
FeNO unadjusted | 0.001 | 0.760 | −0.01 | −0.09 | 0.07 | 0.04 | 0.760 |
FeNO adjusted | 0.050 | 0.701 | −0.01 | −0.10 | 0.08 | 0.04 | 0.818 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parnell, M.; Foweather, L.; Whyte, G.; Dickinson, J.; Gee, I. Associations between Second-Hand Tobacco Smoke Exposure and Cardiorespiratory Fitness, Physical Activity, and Respiratory Health in Children. Int. J. Environ. Res. Public Health 2021, 18, 11445. https://doi.org/10.3390/ijerph182111445
Parnell M, Foweather L, Whyte G, Dickinson J, Gee I. Associations between Second-Hand Tobacco Smoke Exposure and Cardiorespiratory Fitness, Physical Activity, and Respiratory Health in Children. International Journal of Environmental Research and Public Health. 2021; 18(21):11445. https://doi.org/10.3390/ijerph182111445
Chicago/Turabian StyleParnell, Melissa, Lawrence Foweather, Greg Whyte, John Dickinson, and Ivan Gee. 2021. "Associations between Second-Hand Tobacco Smoke Exposure and Cardiorespiratory Fitness, Physical Activity, and Respiratory Health in Children" International Journal of Environmental Research and Public Health 18, no. 21: 11445. https://doi.org/10.3390/ijerph182111445
APA StyleParnell, M., Foweather, L., Whyte, G., Dickinson, J., & Gee, I. (2021). Associations between Second-Hand Tobacco Smoke Exposure and Cardiorespiratory Fitness, Physical Activity, and Respiratory Health in Children. International Journal of Environmental Research and Public Health, 18(21), 11445. https://doi.org/10.3390/ijerph182111445