Bayesian Design for Identifying Cohort-Specific Optimal Dose Combinations Based on Multiple Endpoints: Application to a Phase I Trial in Non-Small Cell Lung Cancer
Abstract
:1. Introduction
2. Methods
2.1. Treatment Combinations by Patient Cohort
2.2. Bayesian Dose-Finding Design
2.3. Sample Size and Stopping Rules
3. Simulation Results
3.1. Design of Simulation Study
- All doses are safe. Intermediate chemo dose maximizes efficacy.
- All doses are safe. More chemo yields better efficacy.
- Highest chemo dose with immune agent 2 is unsafe. More chemo yields better efficacy.
- Highest chemo dose with immune agent 2 is unsafe. Intermediate chemo dose maximizes efficacy.
- Highest chemo dose with and without immune agent 2 are unsafe. Intermediate chemo dose maximizes efficacy.
- Two cohorts have different safety and efficacy profiles.
3.2. Sample Size and Accrual
3.3. Summary of Operating Characteristics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CPI | Checkpoint inhibitor |
DLT | Dose-limiting toxicity |
HDAC | Histone deacetylase |
ICI | Immune checkpoint inhibitor |
IDO | Indoleamine 2,3-dioxygenase |
MTD | Maximum tolerated dose |
NSCLC | Non-small cell lung cancer |
ODC | Optimal dose combination |
PARP | Poly-ADP-ribose polymerase |
PD-1 | Programmed death-1 |
PD-L1 | Programmed death ligand-1 |
VEGF | Vascular endothelial growth factor |
References
- Cancer Today. Available online: http://gco.iarc.fr/today/home (accessed on 14 September 2021).
- Cancer of the Lung and Bronchus—Cancer Stat Facts. SEER. Available online: https://seer.cancer.gov/statfacts/html/lungb.html (accessed on 14 September 2021).
- Paz-Ares, L.; Ciuleanu, T.E.; Cobo, M.; Schenker, M.; Zurawski, B.; Menezes, J.; Richardet, E.; Bennouna, J.; Felip, E.; Juan-Vidal, O.; et al. First-line nivolumab plus ipilimumab combined with two cycles of chemotherapy in patients with non-small-cell lung cancer (CheckMate 9LA): An international, randomised, open-label, phase 3 trial. Lancet Oncol. 2021, 22, 198–211. [Google Scholar] [CrossRef]
- Hellmann, M.D.; Paz-Ares, L.; Caro, R.B.; Zurawski, B.; Kim, S.W.; Costa, E.C.; Park, K.; Alexandru, A.; Lupinacci, L.; De La Mora Jimenez, E.; et al. Nivolumab plus Ipilimumab in Advanced Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2019, 381, 2020–2031. [Google Scholar] [CrossRef]
- Socinski, M.A.; Jotte, R.M.; Cappuzzo, F.; Orlandi, F. Atezolizumab for First-Line Treatment of Metastatic Nonsquamous NSCLC. N. Engl. J. Med. 2018, 378, 2288–2301. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, L.; Rodríguez-Abreu, D.; Gadgeel, S.; Esteban, E.; Felip, E.; De Angelis, F.; Domine, M.; Clingan, P.; Hochmair, M.J.; Powell, S.F.; et al. Pembrolizumab plus Chemotherapy in Metastatic Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 378, 2078–2092. [Google Scholar] [CrossRef] [PubMed]
- Paz-Ares, L.; Luft, A.; Vicente, D.; Tafreshi, A.; Gümüş, M.; Mazières, J.; Hermes, B.; Şenler, F.Ç.; Csőszi, T.; Fülöp, A.; et al. Pembrolizumab plus Chemotherapy for Squamous Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 379, 2040–2051. [Google Scholar] [CrossRef] [PubMed]
- Giovagnoli, A. The Bayesian Design of Adaptive Clinical Trials. Int. J. Environ. Res. Public Health 2021, 18, 530. [Google Scholar] [CrossRef] [PubMed]
- Wages, N.A.; Conaway, M.R.; O’Quigley, J. Continual Reassessment Method for Partial Ordering. Biometrics 2011, 67, 1555–1563. [Google Scholar] [CrossRef] [PubMed]
- O’Quigley, J.; Pepe, M.; Fisher, L. Continual Reassessment Method: A Practical Design for Phase 1 Clinical Trials in Cancer. Biometrics 1990, 46, 33–48. [Google Scholar] [CrossRef]
- Lee, S.M.; Cheung, Y.K. Model calibration in the continual reassessment method. Clin. Trials 2009, 6, 227–238. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org (accessed on 16 September 2021).
- Cheung, K. dfcrm: Dose-Finding by the Continual Reassessment Method. 2019. Available online: https://CRAN.R-project.org/package=dfcrm (accessed on 21 September 2021).
- Wages, N.A. pocrm: Dose Finding in Drug Combination Phase I Trials Using PO-CRM. 2021. Available online: https://CRAN.R-project.org/package=pocrm (accessed on 21 September 2021).
- Cheung, Y.K. Dose Finding by the Continual Reassessment Method; Chapman and Hall/CRC: Boca Raton, FL, USA, 2011. [Google Scholar]
- Naylor, J.C.; Smith, A.F.M. Applications of a Method for the Efficient Computation of Posterior Distributions. J. R. Stat. Soc. Ser. C (Appl. Stat.) 1982, 31, 214–225. [Google Scholar] [CrossRef]
- Wages, N.A.; Horton, B.J.; Conaway, M.R.; Petroni, G.R. Operating characteristics are needed to properly evaluate the scientific validity of phase I protocols. Contemp. Clin. Trials 2021, 108, 106517. [Google Scholar] [CrossRef] [PubMed]
- O’Quigley, J.; Iasonos, A. Bridging solutions in dose-finding problems. Stat. Biopharm. Res. 2014, 6, 185–197. [Google Scholar] [CrossRef] [PubMed]
- Horton, B.J.; Wages, N.A.; Conaway, M.R. Shift models for dose-finding in partially ordered groups. Clin. Trials 2018, 16, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Conaway, M. Isotonic designs for phase I trials in partially ordered groups. Clin. Trials 2017, 14, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Conaway, M.R. A design for phase I trials in completely or partially ordered groups. Stat. Med. 2017, 36, 2323–2332. [Google Scholar] [CrossRef] [PubMed]
- Long, G.V.; Dummer, R.; Hamid, O.; Gajewski, T.F.; Caglevic, C.; Dalle, S.; Arance, A.; Carlino, M.S.; Grob, J.J.; Kim, T.M.; et al. Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (ECHO-301/KEYNOTE-252): A phase 3, randomised, double-blind study. Lancet Oncol. 2019, 20, 1083–1097. [Google Scholar] [CrossRef]
Cohort A: Adenocarcinoma Patients | ||||
---|---|---|---|---|
Pembrolizumab 200 mg IV Q3W | ||||
Chemotherapy (mg/m2) | ||||
Cisplatin | 25 | 50 | 75 | |
Pemetrexed | 150 | 375 | 500 | |
Immune agent 2 | Dose level 1 | A4 | A5 | A6 |
0 | A1 | A2 | A3 | |
Cohort B: Squamous Cell Carcinoma Patients | ||||
Pembrolizumab 200 mg IV Q3W | ||||
Chemotherapy (mg/m2) | ||||
Cisplatin | 25 | 50 | 75 | |
Gemcitabine | 400 | 800 | 1200 | |
Immune agent 2 | Dose level 1 | B4 | B5 | B6 |
0 | B1 | B2 | B3 |
Order (m) | Combination |
---|---|
1 | 1–2–4–3–5–6 |
2 | 1–2–4–5–3–6 |
3 | 1–4–2–5–3–6 |
4 | 1–4–2–3–5–6 |
Combination | ||||||
---|---|---|---|---|---|---|
Order (m) | 1 | 2 | 3 | 4 | 5 | 6 |
1 | 0.03 | 0.10 | 0.15 | 0.10 | 0.22 | 0.30 |
2 | 0.03 | 0.05 | 0.22 | 0.10 | 0.15 | 0.30 |
3 | 0.03 | 0.10 | 0.22 | 0.05 | 0.15 | 0.30 |
4 | 0.03 | 0.10 | 0.15 | 0.05 | 0.22 | 0.30 |
Row 1: (True % DLT, True % Efficacy); Row 2: % Selection as OTC; Row 3: Average Participants Treated. | Immune Agent 2 | Cohort A | Cohort B | ||||
---|---|---|---|---|---|---|---|
Cisplatin, Pemetrexed (mg/m2) | Cisplatin, Gemcitabine (mg/m2) | ||||||
25, 150 | 50, 375 | 75, 500 | 25, 400 | 50, 800 | 75, 1200 | ||
Scenario 1: All doses are safe. Intermediate chemo dose maximizes efficacy. | Dose 1 | (0.03, 0.35) | (0.08, 0.50) | (0.20, 0.45) | (0.03, 0.35) | (0.08, 0.50) | (0.20, 0.45) |
11.4 | 33.4 | 18.7 | 13.0 | 30.3 | 18.1 | ||
3.9 | 5.8 | 4.2 | 3.2 | 4.4 | 2.7 | ||
0 | (0.01, 0.25) | (0.05, 0.40) | (0.15, 0.35) | (0.01, 0.25) | (0.05, 0.40) | (0.15, 0.35) | |
4.7 | 21.5 | 10.2 | 6.7 | 20.8 | 11.1 | ||
3.1 | 5.3 | 3.7 | 2.6 | 4.3 | 2.6 | ||
Scenario 2: All doses are safe. More chemo yields better efficacy. | Dose 1 | (0.03, 0.55) | (0.08, 0.67) | (0.20, 0.78) | (0.03, 0.55) | (0.08, 0.67) | (0.20, 0.78) |
9.5 | 19.9 | 30.9 | 14.1 | 21.0 | 24.6 | ||
3.5 | 4.4 | 5.0 | 3.1 | 3.3 | 3.3 | ||
0 | (0.01, 0.45) | (0.05, 0.57) | (0.15, 0.68) | (0.01, 0.45) | (0.05, 0.57) | (0.15, 0.68) | |
4.3 | 13.2 | 22.2 | 5.7 | 16.5 | 18.1 | ||
2.9 | 4.7 | 4.5 | 2.3 | 4.2 | 3.1 | ||
Scenario 3: Highest chemo dose with immune agent 2 is unsafe. More chemo yields better efficacy. | Dose 1 | (0.22, 0.55) | (0.27, 0.67) | (0.32, 0.78) | (0.22, 0.55) | (0.27, 0.67) | (0.32, 0.78) |
22.2 | 16 | 5.9 | 20 | 17.8 | 6.7 | ||
5.2 | 3.9 | 1.5 | 3.8 | 3.2 | 1.3 | ||
0 | (0.20, 0.45) | (0.25, 0.57) | (0.30, 0.68) | (0.20, 0.45) | (0.25, 0.57) | (0.30, 0.68) | |
12.7 | 28 | 15.2 | 12.2 | 28.3 | 14.7 | ||
4.2 | 6.5 | 3.8 | 3.1 | 5.6 | 2.7 | ||
Scenario 4: Highest chemo dose with immune agent 2 is unsafe. Intermediate chemo dose maximizes efficacy. | Dose 1 | (0.22, 0.60) | (0.27, 0.85) | (0.32, 0.70) | (0.22, 0.60) | (0.27, 0.85) | (0.32, 0.70) |
9 | 19.3 | 1.7 | 8.6 | 15.8 | 1.7 | ||
3.7 | 4.2 | 1 | 2.5 | 2.7 | 0.7 | ||
0 | (0.20, 0.55) | (0.25, 0.83) | (0.30, 0.68) | (0.20, 0.55) | (0.25, 0.83) | (0.30, 0.68) | |
6.7 | 57.5 | 5.8 | 10.3 | 58.9 | 4.5 | ||
3.3 | 9.2 | 2.5 | 2.7 | 8.6 | 1.6 | ||
Scenario 5: Highest chemo dose with/out immune agent 2 is unsafe. Intermediate chemo dose maximizes efficacy. | Dose 1 | (0.10, 0.70) | (0.22, 0.85) | (0.42, 0.70) | (0.10, 0.70) | (0.22, 0.85) | (0.42, 0.70) |
12.6 | 26.8 | 1.6 | 10.9 | 23.2 | 1.7 | ||
5.2 | 4.2 | 1.2 | 2.7 | 3.5 | 0.8 | ||
0 | (0.08, 0.65) | (0.20, 0.83) | (0.40, 0.68) | (0.08, 0.65) | (0.20, 0.83) | (0.40, 0.68) | |
7.5 | 47.5 | 4 | 9.7 | 50.7 | 3.8 | ||
3.5 | 8.3 | 2.5 | 2.7 | 7.8 | 1.5 | ||
Scenario 6: Two cohorts have different safety and efficacy profiles. | Dose 1 | (0.03, 0.55) | (0.08, 0.67) | (0.20, 0.78) | (0.10, 0.70) | (0.22, 0.85) | (0.42, 0.70) |
7.4 | 20.5 | 33.7 | 13.5 | 19.6 | 2 | ||
2.6 | 4.6 | 4.6 | 2.8 | 3.1 | 0.8 | ||
0 | (0.01, 0.45) | (0.05, 0.57) | (0.15, 0.68) | (0.08, 0.65) | (0.20, 0.83) | (0.40, 0.68) | |
3 | 13.6 | 21.8 | 11 | 49.3 | 4.6 | ||
3.2 | 4.6 | 5.5 | 2.7 | 7.2 | 1.6 |
Scenario | Cohort A | Cohort B | Overall |
---|---|---|---|
1 | 25.4 | 19.8 | 45.2 |
2 | 24.8 | 19.2 | 44 |
3 | 25.1 | 19.7 | 44.8 |
4 | 23.9 | 18.8 | 42.7 |
5 | 24.9 | 19 | 43.9 |
6 | 25.1 | 18.2 | 43.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horton, B.J.; Wages, N.A.; Gentzler, R.D. Bayesian Design for Identifying Cohort-Specific Optimal Dose Combinations Based on Multiple Endpoints: Application to a Phase I Trial in Non-Small Cell Lung Cancer. Int. J. Environ. Res. Public Health 2021, 18, 11452. https://doi.org/10.3390/ijerph182111452
Horton BJ, Wages NA, Gentzler RD. Bayesian Design for Identifying Cohort-Specific Optimal Dose Combinations Based on Multiple Endpoints: Application to a Phase I Trial in Non-Small Cell Lung Cancer. International Journal of Environmental Research and Public Health. 2021; 18(21):11452. https://doi.org/10.3390/ijerph182111452
Chicago/Turabian StyleHorton, Bethany Jablonski, Nolan A. Wages, and Ryan D. Gentzler. 2021. "Bayesian Design for Identifying Cohort-Specific Optimal Dose Combinations Based on Multiple Endpoints: Application to a Phase I Trial in Non-Small Cell Lung Cancer" International Journal of Environmental Research and Public Health 18, no. 21: 11452. https://doi.org/10.3390/ijerph182111452
APA StyleHorton, B. J., Wages, N. A., & Gentzler, R. D. (2021). Bayesian Design for Identifying Cohort-Specific Optimal Dose Combinations Based on Multiple Endpoints: Application to a Phase I Trial in Non-Small Cell Lung Cancer. International Journal of Environmental Research and Public Health, 18(21), 11452. https://doi.org/10.3390/ijerph182111452