Effects of Isolated Soy Protein Supplementation Combined with Aerobic Exercise Training on Improving Body Composition, Anthropometric Characteristics and Cardiopulmonary Endurance in Women: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Subjects
2.3. Anthropometric Measurements and Body Composition
2.4. Physical Fitness Test
2.5. Aerobic Exercise Training
2.6. Sample Size Calculation
2.7. Randomization and Allocation Concealment
2.8. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hertzler, S.R.; Lieblein-Boff, J.C.; Weiler, M.; Allgeier, C. Plant Proteins: Assessing Their Nutritional Quality and Effects on Health and Physical Function. Nutrients 2020, 12, 3704. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, S.B.; Tarnopolsky, M.A.; MacDonald, M.J.; MacDonald, J.R.; Armstrong, D.; Phillips, S.M. Consumption of fluid skim milk promotes greater muscle protein accretion after resistance exercise than does consumption of an isonitrogenous and isoenergetic soy-protein beverage. Am. J. Clin. Nutr. 2007, 85, 1031–1040. [Google Scholar] [CrossRef]
- Rizzo, G. The Antioxidant Role of Soy and Soy Foods in Human Health. Antioxidants 2020, 9, 635. [Google Scholar] [CrossRef]
- Kerksick, C.M.; Jagim, A.; Hagele, A.; Jäger, R. Plant Proteins and Exercise: What Role Can Plant Proteins Have in Promoting Adaptations to Exercise? Nutrients 2021, 13, 1962. [Google Scholar] [CrossRef]
- Ramdath, D.D.; Padhi, E.M.; Sarfaraz, S.; Renwick, S.; Duncan, A.M. Beyond the Cholesterol-Lowering Effect of Soy Protein: A Review of the Effects of Dietary Soy and Its Constituents on Risk Factors for Cardiovascular Disease. Nutrients 2017, 9, 324. [Google Scholar] [CrossRef] [Green Version]
- Barańska, A.; Błaszczuk, A.; Kanadys, W.; Baczewska, B.; Jędrych, M.; Wawryk-Gawda, E.; Polz-Dacewicz, M. Effects of Soy Protein Containing of Isoflavones and Isoflavones Extract on Plasma Lipid Profile in Postmenopausal Women as a Potential Prevention Factor in Cardiovascular Diseases: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2021, 13, 2531. [Google Scholar] [CrossRef] [PubMed]
- Velasquez, M.T.; Bhathena, S.J. Role of dietary soy protein in obesity. Int. J. Med. Sci. 2007, 4, 72–82. [Google Scholar] [CrossRef] [Green Version]
- Blanco Mejia, S.; Messina, M.; Li, S.S.; Viguiliouk, E.; Chiavaroli, L.; Khan, T.A.; Srichaikul, K.; Mirrahimi, A.; Sievenpiper, J.L.; Kris-Etherton, P.; et al. A Meta-Analysis of 46 Studies Identified by the FDA Demonstrates that Soy Protein Decreases Circulating LDL and Total Cholesterol Concentrations in Adults. J. Nutr. 2019, 149, 968–981. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.M.; Zhang, Y.B.; Chi, M.H. Soy Protein Supplementation Reduces Clinical Indices in Type 2 Diabetes and Metabolic Syndrome. Yonsei Med. J. 2016, 57, 681–689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moradi, M.; Daneshzad, E.; Azadbakht, L. The effects of isolated soy protein, isolated soy isoflavones and soy protein containing isoflavones on serum lipids in postmenopausal women: A systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr. 2020, 60, 3414–3428. [Google Scholar] [CrossRef] [PubMed]
- Kashima, H.; Uemoto, S.; Eguchi, K.; Endo, M.Y.; Miura, A.; Kobayashi, T.; Fukuba, Y. Effect of soy protein isolate preload on postprandial glycemic control in healthy humans. Nutrition 2016, 32, 965–969. [Google Scholar] [CrossRef]
- Huecker, M.; Sarav, M.; Pearlman, M.; Laster, J. Protein supplementation in sport: Source, timing, and intended benefits. Curr. Nutr. Rep. 2019, 8, 382–396. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Du, Y.; Oh, C.; No, J. Effects of Soy Foods in Postmenopausal Women: A Focus on Osteosarcopenia and Obesity. J. Obes. Metab. Syndr. 2020, 29, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Paul, G.; Mendelson, G.J. Evidence supports the use of soy protein to promote cardiometabolic health and muscle development. J. Am. Coll. Nutr. 2015, 34 (Suppl. 1), 56–59. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.M.; Ho, S.C.; Chen, Y.M.; Ho, Y.P. A mild favorable effect of soy protein with isoflavones on body composition—A 6-month double-blind randomized placebo-controlled trial among Chinese postmenopausal women. Int. J. Obes. 2010, 34, 309–318. [Google Scholar] [CrossRef] [Green Version]
- Dahjio, Y.; Noubiap, J.J.; Azabji-Kenfack, M.; Essouma, M.; Loni, G.E.; Onana, A.E.; Dehayem, M.; Mvom, A.; Tadjore, M.N.; Sobngwi, E. Impact of a 12-week aerobic exercise training program on anthropometric and metabolic parameters of a group of type 2 diabetes Cameroonian women aged ≥50 years. Ann. Transl. Med. 2016, 4, 364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brightwell, C.R.; Markofski, M.M.; Moro, T.; Fry, C.S.; Porter, C.; Volpi, E.; Rasmussen, B.B. Moderate-intensity aerobic exercise improves skeletal muscle quality in older adults. Transl. Sports Med. 2019, 2, 109–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seals, D.R.; Nagy, E.E.; Moreau, K.L. Aerobic exercise training and vascular function with ageing in healthy men and women. J. Physiol. 2019, 597, 4901–4914. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, L.; Zhang, X.; Yao, Y.; Sun, Y.; Qi, L. Effects of different durations of aerobic exercise on the cardiovascular health in untrained women: A meta-analysis and meta-regression. J. Sports Med. Phys. Fit. 2017, 58, 1525–1536. [Google Scholar]
- El-Lithy, A.; El-Mazny, A.; Sabbour, A.; El-Deeb, A. Effect of aerobic exercise on premenstrual symptoms, haematological and hormonal parameters in young women. J. Obstet. Gynaecol. 2015, 35, 389–392. [Google Scholar] [CrossRef] [PubMed]
- Kannan, P.; Chapple, C.M.; Miller, D.; Claydon-Mueller, L.; Baxter, G.D. Effectiveness of a treadmill-based aerobic exercise intervention on pain, daily functioning, and quality of life in women with primary dysmenorrhea: A randomized controlled trial. Contemp. Clin. Trials 2019, 81, 80–86. [Google Scholar] [CrossRef]
- Dehnavi, Z.M.; Jafarnejad, F.; Goghary, S.S. The effect of 8 weeks aerobic exercise on severity of physical symptoms of premenstrual syndrome: A clinical trial study. BMC Womens Health 2018, 18, 80. [Google Scholar]
- Akbaş, E.; Erdem, E.U. Effectiveness of Group Aerobic Training on Menstrual Cycle Symptoms in Primary Dysmenorrhea. Med. J. Bakirkoy 2019, 15, 209–216. [Google Scholar] [CrossRef]
- Brown, J.C.; Kontos, D.; Schnall, M.D.; Wu, S.; Schmitz, K.H. The Dose–Response Effects of Aerobic Exercise on Body Composition and Breast Tissue among Women at High Risk for Breast Cancer: A Randomized Trial. Cancer. Prev. Res. 2016, 9, 581–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribeiro, V.B.; Kogure, G.S.; Lopes, I.P.; Silva, R.C.; Pedroso, D.C.C.; de Melo, A.S.; de Souza, H.C.D.; Ferriani, R.A.; Miranda Furtado, C.L.; Dos Reis, R.M. Effects of continuous and intermittent aerobic physical training on hormonal and metabolic profile, and body composition in women with polycystic ovary syndrome: A randomized controlled trial. Clin. Endocrinol. 2020, 93, 173–186. [Google Scholar] [CrossRef] [PubMed]
- Stasiulis, A.; Mockienė, A.; Vizbaraitė, D.; Mockus, P. Aerobic exercise-induced changes in body composition and blood lipids in young women. Medicina 2010, 46, 129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kostrzewa-Nowak, D.; Nowak, R.; Jastrzębski, Z.; Zarębska, A.; Bichowska, M.; Drobnik-Kozakiewicz, I.; Radzimiński, Ł.; Leońska-Duniec, A.; Ficek, K.; Cięszczyk, P. Effect of 12-week-long aerobic training programme on body composition, aerobic capacity, complete blood count and blood lipid profile among young women. Biochem. Med. 2015, 25, 103–113. [Google Scholar] [CrossRef]
- De Luca, V.; Minganti, C.; Borrione, P.; Grazioli, E.; Cerulli, C.; Guerra, E.; Bonifacino, A.; Parisi, A. Effects of concurrent aerobic and strength training on breast cancer survivors: A pilot study. Public Health 2016, 136, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Marzolini, S.; Oh, P.I.; Brooks, D. Effect of combined aerobic and resistance training versus aerobic training alone in individuals with coronary artery disease: A meta-analysis. Eur. J. Prev. Cardiol. 2012, 19, 81–94. [Google Scholar] [CrossRef]
- Earnest, C.P.; Johannsen, N.M.; Swift, D.L.; Gillison, F.B.; Mikus, C.R.; Lucia, A.; Kramer, K.; Lavie, C.J.; Church, T.S. Aerobic and strength training in concomitant metabolic syndrome and type 2 diabetes. Med. Sci. Sports Exerc. 2014, 46, 1293–1301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bateman, L.A.; Slentz, C.A.; Willis, L.H.; Shields, A.T.; Piner, L.W.; Bales, C.W.; Houmard, J.A.; Kraus, W.E. Comparison of aerobic versus resistance exercise training effects on metabolic syndrome (from the Studies of a Targeted Risk Reduction Intervention Through Defined Exercise—STRRIDE-AT/RT). Am. J. Cardiol. 2011, 108, 838–844. [Google Scholar] [CrossRef] [Green Version]
- Riebe, D.; Ehrman, J.K.; Liguori, G.; Magal, M. ACSM’s Guidelines for Exercise Testing and Prescription, 10th ed.; Wolters Kluwer: Philadelphia, PA, USA, 2016. [Google Scholar]
- Moore, D.R.; Robinson, M.J.; Fry, J.L.; Tang, J.E.; Glover, E.I.; Wilkinson, S.B.; Prior, T.; Tarnopolsky, M.A.; Phillips, S.M. Ingested protein dose response of muscle and albumin protein synthesis after resistance exercise in young men. Am. J. Clin. Nutr. 2009, 89, 161–168. [Google Scholar] [CrossRef]
- Yang, Y.; Breen, L.; Burd, N.A.; Hector, A.J.; Churchward-Venne, T.A.; Josse, A.R.; Tarnopolsky, M.A.; Phillips, S.M. Resistance exercise enhances myofibrillar protein synthesis with graded intakes of whey protein in older men. Br. J. Nutr. 2012, 108, 1780–1788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shenoy, S.; Dhawan, M.; Sandhu, J.S. Four Weeks of Supplementation with Isolated Soy Protein Attenuates Exercise-Induced Muscle Damage and Enhances Muscle Recovery in Well Trained Athletes: A Randomized Trial. Asian J. Sports Med. 2016, 7, e33528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, J.E.; Moore, D.R.; Kujbida, G.W.; Tarnopolsky, M.A.; Phillips, S.M. Ingestion of whey hydrolysate, casein, or soy protein isolate: Effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. J. Appl. Physiol. 2009, 107, 987–992. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.L.; Lee, M.C.; Hsu, Y.J.; Huang, W.C.; Huang, C.C.; Huang, S.W. Isolated Soy Protein Supplementation and Exercise Improve Fatigue-Related Biomarker Levels and Bone Strength in Ovariectomized Mice. Nutrients 2018, 10, 1792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.C.; Huang, W.C.; Chiu, C.C.; Chang, Y.K.; Huang, C.C. Whey protein improves exercise performance and biochemical profiles in trained mice. Med. Sci. Sports Exerc. 2014, 46, 1517–1524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howe, S.M.; Hand, T.M.; Manore, M.M. Exercise-trained men and women: Role of exercise and diet on appetite and energy intake. Nutrients 2014, 6, 4935–4960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Khoury, D.; Antoine-Jonville, S. Intake of nutritional supplements among people exercising in gyms in Beirut City. J. Nutr. Metab. 2012, 2012, 703490. [Google Scholar] [CrossRef] [PubMed]
- Guideline, I.H. Integrated addendum to ICH E6 (R1): Guideline for good clinical practice E6 (R2). Curr. Step 2015, 2, 1–60. [Google Scholar]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef] [PubMed]
- Mayorga-Vega, D.; Aguilar-Soto, P.; Viciana, J. Criterion-Related Validity of the 20-M Shuttle Run Test for Estimating Cardiorespiratory Fitness: A Meta-Analysis. J. Sports Sci. Med. 2015, 14, 536–547. [Google Scholar] [PubMed]
- Alemdaroğlu, U. Investigation of the performance responses of yo-yo and shuttle run tests with the treadmill run test in young soccer players. Pamukkale. Spor. Bilimleri. Dergisi. 2012, 3, 104–112. [Google Scholar]
- Harvey, A.L. Quantifying and comparing activity in group exercise classes: A literature review. J. Fit. Res. 2012, 1, 50–65. [Google Scholar]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Kim, J.; Shin, W. How to do random allocation (randomization). Clin. Orthop. Surg. 2014, 6, 103–109. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.H.; Wei, L.; Chan, W.P.; Hsu, C.Y.; Huang, S.W.; Wang, H.; Lin, Y.N. Effects of protein supplementation on aerobic training-induced gains in cardiopulmonary fitness, muscle mass, and functional performance in chronic stroke: A randomized controlled pilot study. Clin. Nutr. 2020, 39, 2743–2750. [Google Scholar] [CrossRef]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Ferguson-Stegall, L.; McCleave, E.; Ding, Z.; Doerner, P.G., III; Liu, Y.; Wang, B.; Healy, M.; Kleinert, M.; Dessard, B.; Lassiter, D.G.; et al. Aerobic exercise training adaptations are increased by postexercise carbohydrate-protein supplementation. J. Nutr. Metab. 2011, 2011, 623182. [Google Scholar] [CrossRef] [Green Version]
- Suh, K.Y.; Lee, D.T. Effects of a high protein diet and aerobic exercise on body weight changes and blood lipids in slightly overweight women. Nutr. Sci. 2005, 8, 28–34. [Google Scholar]
- Mu, Y.; Kou, T.; Wei, B.; Lu, X.; Liu, J.; Tian, H.; Zhang, W.; Liu, B.; Li, H.; Cui, W.; et al. Soy Products Ameliorate Obesity-Related Anthropometric Indicators in Overweight or Obese Asian and Non-Menopausal Women: A Meta-Analysis of Randomized Controlled Trials. Nutrients 2019, 11, 2790. [Google Scholar] [CrossRef] [Green Version]
- Lynch, H.M.; Buman, M.P.; Dickinson, J.M.; Ransdell, L.B.; Johnston, C.S.; Wharton, C.M. No Significant Differences in Muscle Growth and Strength Development When Consuming Soy and Whey Protein Supplements Matched for Leucine Following a 12 Week Resistance Training Program in Men and Women: A Randomized Trial. Int. J. Environ. Res. Public Health 2020, 17, 3871. [Google Scholar] [CrossRef] [PubMed]
- Josse, A.R.; Tang, J.E.; Tarnopolsky, M.A.; Phillips, S.M. Body composition and strength changes in women with milk and resistance exercise. Med. Sci. Sports Exerc. 2010, 42, 1122–1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasiakos, S.M.; McLellan, T.M.; Lieberman, H.R. The Effects of Protein Supplements on Muscle Mass, Strength, and Aerobic and Anaerobic Power in Healthy Adults: A Systematic Review. Sports Med. 2015, 45, 111–131. [Google Scholar] [CrossRef] [PubMed]
Contents | AET + ISP |
---|---|
Per Serving (20 g/pack) | |
Calories | 72 kcal |
Protein | 11.6 g |
Fat | 0.4 g |
Carbohydrate | 5.5 g |
Sodium | 87 mg |
AET (N = 8) | AET + ISP (N = 8) | p | |
---|---|---|---|
Age (years) | 38.00 ± 5.88 | 34.25 ± 5.34 | 0.203 † |
Height (cm) | 162.25 ± 4.50 | 158.25 ± 4.74 | 0.105 † |
Body weight (kg) | 55.69 ± 7.30 | 59.06 ± 11.72 | 0.501 † |
BMI (kg/m2) | 21.11 ± 2.18 | 23.55 ± 4.38 | 0.180 † |
PLBM (%) | 66.74 ± 4.45 | 64.62 ± 7.13 | 0.488 † |
PBF (%) | 28.99 ± 4.30 | 31.20 ± 7.07 | 0.462 † |
Circumference (cm) | |||
Chest | 85.63 ± 4.71 | 88.13 ± 8.20 | 0.467 † |
Arm | 25.88 ± 2.89 | 28.13 ± 4.74 | 0.271 † |
Waist | 70.44 ± 6.17 | 75.06 ± 7.76 | 0.208 † |
Hip | 91.94 ± 4.97 | 95.75 ± 8.39 | 0.370 ‡ |
Thigh | 51.63 ± 3.80 | 52.63 ± 7.92 | 0.752 † |
Calf | 33.81 ± 1.81 | 36.56 ± 3.76 | 0.083 † |
Skinfold thickness (mm) | |||
Triceps | 18.38 ± 4.57 | 23.13 ± 8.31 | 0.225 ‡ |
Suprailiac | 18.00 ± 5.10 | 24.44 ± 7.48 | 0.064 † |
Thigh | 23.13 ± 4.26 | 29.25 ± 11.09 | 0.268 ‡ |
Physical Fitness | |||
Sit-up test (times) | 25 ± 3 | 25 ± 7 | 0.823 † |
Push-up test (times) | 22 ± 6 | 25 ± 5 | 0.302 † |
Sit-and-reach distance test (cm) | 26 ± 3 | 28 ± 5 | 0.295 † |
20 m MST (m) | 583 ± 271 | 598 ± 274 | 0.914 † |
AET | AET + ISP | p | Effect Size | |||||
---|---|---|---|---|---|---|---|---|
Before | After | Change | Before | After | Change | |||
Body weight (kg) | 55.69 ± 7.30 | 55.56 ± 7.25 | −0.23% | 59.06 ± 11.72 | 57.98 ± 11.52 | −1.83% | 0.043 † | 0.99 |
PLBM (%) | 66.74 ± 4.45 | 66.93 ± 4.13 | 0.28% | 64.62 ± 7.13 | 66.04 ± 7.79 | 2.20% | 0.043 ‡ | 0.89 |
BMI (kg/m2) | 21.11 ± 2.18 | 21.06 ± 2.10 | −0.24% | 23.55 ± 4.38 | 23.13 ± 4.35 | −1.78% | 0.035 † | 1.04 |
PBF (%) | 28.99 ± 4.30 | 28.79 ± 4.02 | −0.69% | 31.20 ± 7.07 | 30.04 ± 7.01 | −3.72% | 0.026 † | 1.18 |
AET | AET + ISP | p | Effect Size | |||||
---|---|---|---|---|---|---|---|---|
Before | After | Change | Before | After | Change | |||
Circumference (cm) | ||||||||
Chest | 85.63 ± 4.71 | 86.04 ± 4.71 | 0.48% | 88.13 ± 8.20 | 87.60 ± 7.80 | −0.60% | 0.342 † | 0.47 |
Arm | 25.88 ± 2.89 | 25.88 ± 2.80 | 0.00% | 28.13 ± 4.74 | 28.31 ± 5.04 | 0.64% | 0.877 † | 0.24 |
Waist | 70.44 ± 6.17 | 72.39 ± 5.68 | 2.77% | 75.06 ± 7.76 | 73.56 ± 8.33 | −2.00% | 0.025 † | 1.19 |
Hip | 91.94 ± 4.97 | 92.75 ± 4.57 | 0.88% | 95.75 ± 8.39 | 94.44 ± 7.66 | −1.37% | <0.001 † | 1.84 |
Thigh | 51.63 ± 3.80 | 49.98 ± 4.01 | −3.20% | 52.63 ± 7.92 | 51.25 ± 6.83 | −2.62% | 0.665 † | 0.23 |
Calf | 33.81 ± 1.81 | 33.85 ± 1.65 | 0.12% | 36.56 ± 3.76 | 36.23 ± 3.54 | −0.90% | 0.268 † | 0.64 |
Skinfold thickness (mm) | ||||||||
Triceps | 18.38 ± 4.57 | 17.88 ± 3.91 | −2.72% | 23.13 ± 8.31 | 21.75 ± 7.55 | −5.97% | 0.158 ‡ | 0.24 |
Suprailiac | 18.00 ± 5.10 | 15.88 ± 3.98 | −11.78% | 24.44 ± 7.48 | 20.51 ± 6.23 | −16.08% | 0.297 † | 0.53 |
Thigh | 23.13 ± 4.26 | 22.63 ± 5.04 | −2.16% | 29.25 ± 11.09 | 25.90 ± 9.92 | −11.45% | 0.107 † | 0.85 |
AET | AET + ISP | p† | Effect Size | |||||
---|---|---|---|---|---|---|---|---|
Before | After | Change | Before | After | Change | |||
Sit-up test (times) | 25 ± 3 | 30 ± 8 | 20.00% | 25 ± 7 | 30 ± 8 | 20.00% | 0.921 | 0.01 |
Push-up test (times) | 22 ± 6 | 27 ± 10 | 22.73% | 25 ± 5 | 31 ± 6 | 24.00% | 0.665 | 0.03 |
Sit-and-reach distance test (cm) | 26 ± 3 | 35 ± 10 | 34.62% | 28 ± 5 | 34 ± 8 | 21.43% | 0.309 | 0.44 |
20 m MST (m) | 583 ± 271 | 663 ± 293 | 13.72% | 598 ± 274 | 735 ± 323 | 22.91% | 0.216 | 0.53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Hsueh, Y.-T.; Hsu, Y.-J.; Lee, M.-C.; Chang, C.-H.; Ho, C.-S.; Huang, C.-C. Effects of Isolated Soy Protein Supplementation Combined with Aerobic Exercise Training on Improving Body Composition, Anthropometric Characteristics and Cardiopulmonary Endurance in Women: A Pilot Study. Int. J. Environ. Res. Public Health 2021, 18, 11798. https://doi.org/10.3390/ijerph182211798
Li F, Hsueh Y-T, Hsu Y-J, Lee M-C, Chang C-H, Ho C-S, Huang C-C. Effects of Isolated Soy Protein Supplementation Combined with Aerobic Exercise Training on Improving Body Composition, Anthropometric Characteristics and Cardiopulmonary Endurance in Women: A Pilot Study. International Journal of Environmental Research and Public Health. 2021; 18(22):11798. https://doi.org/10.3390/ijerph182211798
Chicago/Turabian StyleLi, Fang, Ying-Ting Hsueh, Yi-Ju Hsu, Mon-Chien Lee, Chun-Hao Chang, Chin-Shan Ho, and Chi-Chang Huang. 2021. "Effects of Isolated Soy Protein Supplementation Combined with Aerobic Exercise Training on Improving Body Composition, Anthropometric Characteristics and Cardiopulmonary Endurance in Women: A Pilot Study" International Journal of Environmental Research and Public Health 18, no. 22: 11798. https://doi.org/10.3390/ijerph182211798
APA StyleLi, F., Hsueh, Y.-T., Hsu, Y.-J., Lee, M.-C., Chang, C.-H., Ho, C.-S., & Huang, C.-C. (2021). Effects of Isolated Soy Protein Supplementation Combined with Aerobic Exercise Training on Improving Body Composition, Anthropometric Characteristics and Cardiopulmonary Endurance in Women: A Pilot Study. International Journal of Environmental Research and Public Health, 18(22), 11798. https://doi.org/10.3390/ijerph182211798