Integrating Self-Report and Psychophysiological Measures in Waterpipe Tobacco Message Testing: A Novel Application of Multi-Attribute Decision Modeling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Message Development and Selection
2.3. Crowdsourced Testing
2.3.1. Setting
2.3.2. Design
2.3.3. Measures
2.4. Psychophysiological Testing
2.4.1. Setting
2.4.2. Design
2.4.3. Measures
2.5. Data Integration and Analysis
3. Results
3.1. Self-Report Data and Rankings
3.2. Psychophysiological Data and Rankings
3.3. Weighting Scenarios Integrating Self-Report and Psychophysiological Data
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kasza, K.A.; Ambrose, B.K.; Conway, K.P.; Borek, N.; Taylor, K.; Goniewicz, M.L.; Cummings, K.M.; Sharma, E.; Pearson, J.L.; Green, V.R.; et al. Tobacco-Product Use by Adults and Youths in the United States in 2013 and 2014. N. Engl. J. Med. 2017, 376, 342–353. [Google Scholar] [CrossRef] [Green Version]
- Mays, D.; Arrazola, R.A.; Tworek, C.; Rolle, I.V.; Neff, L.J.; Portnoy, D.B. Openness to Using Non-cigarette Tobacco Products among U.S. Young Adults. Am. J. Prev. Med. 2016, 50, 528–534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cobb, C.O.; Shihadeh, A.; Weaver, M.F.; Eissenberg, T. Waterpipe tobacco smoking and cigarette smoking: A direct comparison of toxicant exposure and subjective effects. Nicotine Tob. Res. 2011, 13, 78–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shihadeh, A.; Schubert, J.; Klaiany, J.; El Sabban, M.; Luch, A.; Saliba, N.A. Toxicant content, physical properties and biological activity of waterpipe tobacco smoke and its tobacco-free alternatives. Tob. Control 2015, 24, i22–i30. [Google Scholar] [CrossRef] [Green Version]
- El-Zaatari, Z.M.; Chami, H.A.; Zaatari, G.S. Health effects associated with waterpipe smoking. Tob. Control 2015, 24 (Suppl. S1), i31–i43. [Google Scholar] [CrossRef] [Green Version]
- Montazeri, Z.; Nyiraneza, C.; El-Katerji, H.; Little, J. Waterpipe smoking and cancer: Systematic review and meta-analysis. Tob. Control 2017, 26, 92–97. [Google Scholar] [CrossRef]
- Allem, J.P.; Chu, K.H.; Cruz, T.B.; Unger, J.B. Waterpipe promotion and use on instagram: #Hookah. Nicotine Tob. Res. 2017, 19, 1248–1252. [Google Scholar] [CrossRef] [PubMed]
- Ben Taleb, Z.; Laestadius, L.I.; Asfar, T.; Primack, B.A.; Maziak, W. #Hookahlife: The Rise of Waterpipe Promotion on Instagram. Health Educ. Behav. 2019, 46, 106–113. [Google Scholar] [CrossRef]
- Lopez, A.A.; Eissenberg, T.; Jaafar, M.; Afifi, R. Now is the time to advocate for interventions designed specifically to prevent and control waterpipe tobacco smoking. Addict. Behav. 2017, 66, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Villanti, A.C.; Cobb, C.O.; Cohn, A.M.; Williams, V.F.; Rath, J.M. Correlates of hookah use and predictors of hookah trial in U.S. Young adults. Am. J. Prev. Med. 2015, 48, 742–746. [Google Scholar] [CrossRef]
- Villanti, A.C.; Johnson, A.L.; Rath, J.M.; Williams, V.; Vallone, D.M.; Abrams, D.B.; Hedeker, D.; Mermelstein, R.J. Identifying “social smoking” U.S. young adults using an empirically-driven approach. Addict. Behav. 2017, 70, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Villanti, A.C.; Johnson, A.L.; Glasser, A.M.; Rose, S.W.; Ambrose, B.K.; Conway, K.P.; Cummings, K.M.; Stanton, C.A.; Edwards, K.C.; Delnevo, C.D.; et al. Association of Flavored Tobacco Use with Tobacco Initiation and Subsequent Use among US Youth and Adults, 2013–2015. JAMA Netw. Open 2019, 2, e1913804. [Google Scholar] [CrossRef] [PubMed]
- Mays, D.; Tercyak, K.P.; Lipkus, I.M. The effects of brief waterpipe tobacco use harm and addiction education messages among young adult waterpipe tobacco users. Nicotine Tob. Res. 2016, 18, 777–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gardner, K.; Kearns, R.; Woodland, L.; Silveira, M.; Hua, M.; Katz, M.; Takas, K.; McDonald, J. A Scoping Review of the Evidence on Health Promotion Interventions for Reducing Waterpipe Smoking: Implications for Practice. Front. Public Health 2018, 6, 308. [Google Scholar] [CrossRef] [Green Version]
- Jawad, M.; Jawad, S.; Waziry, R.K.; Ballout, R.A.; Akl, E.A. Interventions for waterpipe tobacco smoking prevention and cessation: A systematic review. Sci. Rep. 2016, 6, 25872. [Google Scholar] [CrossRef] [Green Version]
- Maziak, W.; Jawad, M.; Jawad, S.; Ward, K.D.; Eissenberg, T.; Asfar, T. Interventions for waterpipe smoking cessation. Cochrane Database Syst. Rev. 2015, 7. [Google Scholar] [CrossRef] [Green Version]
- Food and Drug Administration; HHS Deeming Tobacco Products To Be Subject to the Federal Food, Drug, and Cosmetic Act, as Amended by the Family Smoking Prevention and Tobacco Control Act; Restrictions on the Sale and Distribution of Tobacco Products and Required Warning Statements for Toba. Fed. Regist. 2016, 81, 28973–29106.
- Farrelly, M.C.; Duke, J.C.; Nonnemaker, J.; MacMonegle, A.J.; Alexander, T.N.; Zhao, X.; Delahanty, J.C.; Rao, P.; Allen, J.A. Association Between The Real Cost Media Campaign and Smoking Initiation Among Youths—United States, 2014–2016. MMWR Morb. Mortal. Wkly. Rep. 2017, 66, 47–50. [Google Scholar] [CrossRef]
- Commissioner of the Press Announcements FDA to Expand Public Education Campaign to Focus on Prevention of Youth e-Cigarette Use. Available online: https://www.fda.gov/news-events/press-announcements/fda-expand-public-education-campaign-focus-prevention-youth-e-cigarette-use (accessed on 10 August 2018).
- Phan, L.; Villanti, A.C.; Leshner, G.; Wagener, T.L.; Stevens, E.M.; Johnson, A.C.; Mays, D. Development and pretesting of hookah tobacco public education messages for young adults. Int. J. Environ. Res. Public Health 2020, 17, 8752. [Google Scholar] [CrossRef]
- Leshner, G.; Phan, L.; Stevens, E.M.; Johnson, A.; Villanti, A.; Kim, N.; Kim, S.; Ma, H.; Seo, J.; Sun, F.; et al. Psychophysiological Responses to Hookah Tobacco Public Education Messages Among Young Adults. Health Psychol. in press.
- Crosby, K.; Santiago, S.; Talbert, E.C.; Roditis, M.L.; Resch, G. Bringing “The Real Cost” to Life Through Breakthrough, Evidence-Based Advertising. Am. J. Prev. Med. 2019, 56, S16–S23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, X.; Alexander, T.N.; Hoffman, L.; Jones, C.; Delahanty, J.; Walker, M.; Berger, A.T.; Talbert, E. Youth Receptivity to FDA’s The Real Cost Tobacco Prevention Campaign: Evidence From Message Pretesting. J. Health Commun. 2016, 21, 1153–1160. [Google Scholar] [CrossRef] [Green Version]
- Potter, R.F.; Bolls, P.D. Psychophysiological Measurement and Meaning: Cognitive and Emotional Processing of Media; Routledge: New York, NY, USA, 2012; ISBN 0415994144. [Google Scholar]
- Cacioppo, J.T.; Gardner, W.L. Emotion. Annu. Rev. Psychol. 1999, 50, 191–214. [Google Scholar] [CrossRef] [PubMed]
- Larsen, J.T.; Berntson, G.G.; Poehlmann, K.M.; Ito, T.A.; Cacioppo, J.T. The psychophysiology of emotion. In Handbook of Emotions; Lewis, M., Haviland-Jones, J.M., Barrett, L.F., Eds.; The Guilford Press: New York, NY, USA, 2008; pp. 180–195. [Google Scholar]
- Atkin, C.K.; Rice, R.E. Advances In Public Communication Campaigns. In The International Encyclopedia of Media Studies; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2012. [Google Scholar]
- Lang, A. Using the limited capacity model of motivated mediated message processing to design effective cancer communication messages. J. Commun. 2006, 56, S57–S80. [Google Scholar] [CrossRef]
- Clayton, R.B.; Keene, J.R.; Leshner, G.; Lang, A.; Bailey, R.L. Smoking Status Matters: A Direct Comparison of Smokers’ and Nonsmokers’ Psychophysiological and Self-Report Responses to Secondhand Smoke Anti-Tobacco PSAs. Health Commun. 2020, 35, 925–934. [Google Scholar] [CrossRef]
- Yang, J.B.; Singh, M.G. An Evidential Reasoning Approach for Multiple-Attribute Decision Making with Uncertainty. IEEE Trans. Syst. Man Cybern. 1994, 24, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Platts, K.W.; Probert, D.R.; Cáez, L. Make vs. buy decisions: A process incorporating multi-attribute decision-making. Int. J. Prod. Econ. 2002, 77, 247–257. [Google Scholar] [CrossRef]
- Tamosaitiene, J.; Turskis, Z.; Kazimieras, E.; Kaklauskas, A.; Tamošaitien, J. Multi-Attribute Decision-Making Model by Applying Grey Numbers. Informatica 2009, 20, 305–320. [Google Scholar]
- Medić, N.; Anišić, Z.; Lalic, B.; Marjanovic, U.; Brezocnik, M. Hybrid fuzzy multi-attribute decision making model for evaluation of advanced digital technologies in manufacturing: Industry 4.0 perspective. Adv. Prod. Eng. Manag. 2019, 14, 483–493. [Google Scholar] [CrossRef]
- Bohanec, M.; Zupan, B.; Rajkovič, V. Applications of qualitative multi-attribute decision models in health care. Int. J. Med. Inform. 2000, 58–59, 191–205. [Google Scholar] [CrossRef]
- Huskey, R.; Wilcox, S.; Clayton, R.B.; Keene, J.R. The limited capacity model of motivated mediated message processing: Meta-analytically summarizing two decades of research. Ann. Int. Commun. Assoc. 2020, 44, 322–349. [Google Scholar] [CrossRef]
- Lipkus, I.M.; Mays, D.; Tercyak, K.P. Characterizing young adults’ susceptibility to waterpipe tobacco use and their reactions to messages about product harms and addictiveness. Nicotine Tob. Res. 2017, 19, 1216–1223. [Google Scholar] [CrossRef] [PubMed]
- Ramôa, C.P.; Shihadeh, A.; Salman, R.; Eissenberg, T. Group waterpipe tobacco smoking increases smoke toxicant concentration. Nicotine Tob. Res. 2016, 18, 770–776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, A.C.; Lipkus, I.; Tercyak, K.P.; Luta, G.; Rehberg, K.; Phan, L.; Abroms, L.C.; Mays, D. Development and Pretesting of Risk-Based Mobile Multimedia Message Content for Young Adult Hookah Use. Health Educ. Behav. 2019, 46, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Cobb, C.; Ward, K.D.; Maziak, W.; Shihadeh, A.L.; Eissenberg, T. Waterpipe tobacco smoking: An emerging health crisis in the United States. Am. J. Health Behav. 2010, 34, 275–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leavens, E.L.S.; Meier, E.; Brett, E.I.; Stevens, E.M.; Tackett, A.P.; Villanti, A.C.; Wagener, T.L. Polytobacco use and risk perceptions among young adults: The potential role of habituation to risk. Addict. Behav. 2019, 90, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Akl, E.A.; Ward, K.D.; Bteddini, D.; Khaliel, R.; Alexander, A.C.; Lotfi, T.; Alaouie, H.; Afifi, R.A. The allure of the waterpipe: A narrative review of factors affecting the epidemic rise in waterpipe smoking among young persons globally. Tob. Control 2015, 24, i13–i21. [Google Scholar] [CrossRef]
- Villanti, A.C.; Johnson, A.L.; Ambrose, B.K.; Cummings, K.M.; Stanton, C.A.; Rose, S.W.; Feirman, S.P.; Tworek, C.; Glasser, A.M.; Pearson, J.L.; et al. Flavored Tobacco Product Use in Youth and Adults: Findings From the First Wave of the PATH Study (2013–2014). Am. J. Prev. Med. 2017, 53, 139–151. [Google Scholar] [CrossRef]
- Chandler, J.; Shapiro, D. Conducting Clinical Research Using Crowdsourced Convenience Samples. Annu. Rev. Clin. Psychol. 2016, 12, 53–81. [Google Scholar] [CrossRef] [Green Version]
- Mason, W.; Suri, S. Conducting behavioral research on Amazon’s Mechanical Turk. Behav. Res. Methods 2012, 44, 1–23. [Google Scholar] [CrossRef]
- Zhao, X.; Nan, X. Influence of Self-Affirmation on Responses to Gain- Versus Loss-Framed Antismoking Messages. Hum. Commun. Res. 2010, 36, 493–511. [Google Scholar] [CrossRef]
- Dillard, J.P.; Shen, L. On the Nature of Reactance and its Role in Persuasive Health Communication. Commun. Monogr. 2005, 72, 144–168. [Google Scholar] [CrossRef]
- Macmillan, N.A.; Creelman, C.D. Detection Theory: A User’s Guide; Psychology Press: Hove, UK, 2004. [Google Scholar]
- Tzeng, G.H.; Huang, J.-J. Multiple Attribute Decision Making: Methods and Applications; Chapman and Hall: Boca Raton, FL, USA, 2011. [Google Scholar]
- Villanti, A.C.; LePine, S.E.; West, J.C.; Cruz, T.B.; Stevens, E.M.; Tetreault, H.J.; Unger, J.B.; Wackowski, O.A.; Mays, D. Identifying message content to reduce vaping: Results from online message testing trials in young adult tobacco users. Addict. Behav. 2021, 115, 106778. [Google Scholar] [CrossRef] [PubMed]
- Leshner, G.; Stevens, E.M.; Cohn, A.M.; Kim, S.; Kim, N.; Wagener, T.L.; Villanti, A.C. Cognitive and affective responses to marijuana prevention and educational messaging. Drug Alcohol Depend. 2021, 225, 108788. [Google Scholar] [CrossRef]
- Kraemer, J.D.; Strasser, A.A.; Lindblom, E.N.; Niaura, R.S.; Mays, D. Crowdsourced data collection for public health: A comparison with nationally representative, population tobacco use data. Prev. Med. 2017, 102, 93–99. [Google Scholar] [CrossRef]
Crowdsourced (Self-Report) | Psychophysiological (Lab) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Receptivity | Engagement | Attitude | Negative Emotion | Total | Heart Rate Deceleration | Recognition Accuracy | Visual Attention | Total | ||||||||||
Message | Mean (SE) | Rank | Mean (SE) | Rank | Mean (SE) | Rank | Mean (SE) | Rank | Sum of Attribute Ranks | Rank | Mean (SD) | Rank | Mean (SD) | Rank | Mean (SD) | Rank | Sum of Attribute Ranks | Rank |
H1 | 5.29 (0.16) | 1 | 5.77 (0.14) | 4 | 4.86 (0.18) | 3 | 2.20 (0.11) | 2 | 10 | 1 | 2.82 (0.50) | 3 | 0.871 (0.03) | 4 | 1220.72 (730.11) | 12 | 18 | 12 |
H2 | 4.92 (0.19) | 6 | 5.94 (0.16) | 1 | 4.53 (0.20) | 7 | 2.04 (0.12) | 3 | 17 | 5 | 2.87 (0.57) | 5 | 0.677 (0.03) | 3 | 1375.4 (779.43) | 1 | 14 | 1 |
HS1 | 5.15 (0.19) | 2 | 5.74 (0.16) | 6 | 4.85 (0.20) | 4 | 2.04 (0.12) | 3 | 15 | 4 | 2.45 (0.57) | 6 | 0.698 (0.03) | 6 | 1287.5 (786.94) | 10 | 25 | 10 |
HS2 | 5.04 (0.17) | 4 | 5.78 (0.15) | 3 | 4.98 (0.19) | 2 | 2.23 (0.11) | 1 | 10 | 1 | 2.16 (0.47) | 8 | 0.878 (0.02) | 8 | 1298.62 (763.33) | 6 | 15 | 6 |
HF1 | 4.89 (0.18) | 7 | 5.74 (0.15) | 6 | 4.64 (0.19) | 5 | 1.99 (0.12) | 6 | 24 | 7 | 2.24 (0.51) | 7 | 0.765 (0.03) | 7 | 1293.23 (765.70) | 8 | 22 | 8 |
HF2 | 5.10 (0.19) | 3 | 5.77 (0.16) | 4 | 5.01 (0.20) | 1 | 2.01 (0.12) | 5 | 13 | 3 | 2.60 (0.52) | 4 | 0.798 (0.03) | 5 | 1335.34 (796.33) | 3 | 12 | 3 |
A1 | 5.01 (0.17) | 5 | 5.81 (0.14) | 2 | 4.54 (0.18) | 6 | 1.88 (0.11) | 8 | 21 | 6 | 1.65 (0.51) | 10 | 0.769 (0.03) | 10 | 1317.9 (781.80) | 4 | 20 | 4 |
A2 | 4.71 (0.16) | 8 | 5.63 (0.14) | 10 | 4.51 (0.18) | 9 | 1.99 (0.11) | 6 | 33 | 8 | 1.98 (0.47) | 9 | 0.803 (0.03) | 9 | 1289.96 (781.45) | 9 | 21 | 9 |
AS1 | 4.50 (0.18) | 11 | 5.56 (0.16) | 11 | 4.53 (0.20) | 7 | 1.81 (0.12) | 10 | 39 | 9 | 1.64 (0.45) | 11 | 0.517 (0.04) | 11 | 1317.12 (764.58) | 5 | 28 | 5 |
AS2 | 4.10 (0.17) | 12 | 5.73 (0.14) | 8 | 4.23 (0.18) | 12 | 1.73 (0.11) | 12 | 44 | 12 | 2.88 (0.51) | 2 | 0.643 (0.03) | 2 | 1295.01 (745.07) | 7 | 20 | 7 |
AF1 | 4.57 (0.17) | 10 | 5.38 (0.15) | 12 | 4.47 (0.19) | 11 | 1.83 (0.12) | 9 | 42 | 11 | 3.03 (0.52) | 1 | 0.798 (0.03) | 1 | 1344.93 (806.43) | 2 | 7 | 2 |
AF2 | 4.63 (0.18) | 9 | 5.64 (0.15) | 9 | 4.48 (0.20) | 10 | 1.74 (0.12) | 11 | 39 | 9 | 1.47 (0.43) | 12 | 0.727 (0.03) | 12 | 1261.06 (752.70) | 11 | 31 | 11 |
Equal Attribute Ranks (4 Self-Report, 3 Lab) | Equal Study Weights (Total Self-Report Rank, Total Lab Rank) | Prefer Self-Report (Individual Self-Report Attribute Ranks, Total Lab Rank) | Prefer Lab (Total Self-Report Rank, Individual Lab Attribute Ranks) | |||||
---|---|---|---|---|---|---|---|---|
Message | Summary Score | Rank | Summary Score | Rank | Summary Score | Rank | Summary Score | Rank |
H1 | 4.0 | 3 | 6.5 | 5 * | 4.4 | 4 | 4.75 | 4 * |
H2 | 4.4 | 4 | 3.0 | 1 * | 3.6 | 3 | 4.75 | 4 * |
HS1 | 5.7 | 5 | 7.0 | 7 * | 5 | 5 * | 7.25 | 7 * |
HS2 | 3.6 | 1 * | 3.5 | 3 | 3.2 | 1 * | 4.00 | 2 |
HF1 | 6.6 | 7 | 7.5 | 9 | 6.4 | 7 | 7.25 | 7 * |
HF2 | 3.6 | 1 * | 3.0 | 1 * | 3.2 | 1 * | 3.75 | 1 |
A1 | 5.9 | 6 | 5.0 | 4 | 5 | 5 * | 6.50 | 6 |
A2 | 7.7 | 9 | 8.5 | 10 | 8.4 | 8 | 7.25 | 7 * |
AS1 | 9.6 | 11 | 7.0 | 7 * | 8.8 | 9 * | 9.25 | 11 |
AS2 | 9.1 | 10 | 9.5 | 11 | 10.2 | 12 | 8.00 | 10 |
AF1 | 7.0 | 8 | 6.5 | 5 * | 8.8 | 9 * | 4.50 | 3 |
AF2 | 10.0 | 12 | 10.0 | 12 | 10 | 11 | 10.00 | 12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stevens, E.M.; Villanti, A.C.; Leshner, G.; Wagener, T.L.; Keller-Hamilton, B.; Mays, D. Integrating Self-Report and Psychophysiological Measures in Waterpipe Tobacco Message Testing: A Novel Application of Multi-Attribute Decision Modeling. Int. J. Environ. Res. Public Health 2021, 18, 11814. https://doi.org/10.3390/ijerph182211814
Stevens EM, Villanti AC, Leshner G, Wagener TL, Keller-Hamilton B, Mays D. Integrating Self-Report and Psychophysiological Measures in Waterpipe Tobacco Message Testing: A Novel Application of Multi-Attribute Decision Modeling. International Journal of Environmental Research and Public Health. 2021; 18(22):11814. https://doi.org/10.3390/ijerph182211814
Chicago/Turabian StyleStevens, Elise M., Andrea C. Villanti, Glenn Leshner, Theodore L. Wagener, Brittney Keller-Hamilton, and Darren Mays. 2021. "Integrating Self-Report and Psychophysiological Measures in Waterpipe Tobacco Message Testing: A Novel Application of Multi-Attribute Decision Modeling" International Journal of Environmental Research and Public Health 18, no. 22: 11814. https://doi.org/10.3390/ijerph182211814
APA StyleStevens, E. M., Villanti, A. C., Leshner, G., Wagener, T. L., Keller-Hamilton, B., & Mays, D. (2021). Integrating Self-Report and Psychophysiological Measures in Waterpipe Tobacco Message Testing: A Novel Application of Multi-Attribute Decision Modeling. International Journal of Environmental Research and Public Health, 18(22), 11814. https://doi.org/10.3390/ijerph182211814