Changes in Tobacco Use Patterns among Veterans in San Diego during the Recent Peak of the COVID-19 Pandemic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Extraction and Variables Used
2.2. Data Analytic Plan
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gallo, L.C.; Roesch, S.C.; Fortmann, A.L.; Carnethon, M.R.; Penedo, F.J.; Perreira, K.; Birnbaum-Weitzman, O.; Wassertheil-Smoller, S.; Castañeda, S.F.; Talavera, G.A.; et al. Associations of chronic stress burden, perceived stress, and traumatic stress with cardiovascular disease prevalence and risk factors in the Hispanic Commu-nity Health Study/Study of Latinos Sociocultural Ancillary Study. Psychosom. Med. 2014, 76, 468–475. [Google Scholar] [CrossRef] [Green Version]
- Webb, M.S.; Carey, M.P. Tobacco smoking among low-income Black women: Demographic and psychosocial correlates in a community sample. Nicotine Tob. Res. 2008, 10, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Welch, A.E.; Jasek, J.P.; Caramanica, K.; Chiles, M.C.; Johns, M. Cigarette smoking and 9/11-related posttraumatic stress dis-order among World Trade Center Health Registry enrollees, 2003–2012. Prev. Medicine. 2015, 73, 94–99. [Google Scholar] [CrossRef]
- Flory, K.; Hankin, B.L.; Kloos, B.; Cheely, C.; Turecki, G. Alcohol and Cigarette Use and Misuse among Hurricane Katrina Survivors: Psychosocial Risk and Protective Factors. Subst. Use Misuse 2009, 44, 1711–1724. [Google Scholar] [CrossRef] [Green Version]
- Osaki, Y.; Maesato, H.; Minobe, R.; Kinjo, A.; Kuwabara, Y.; Imamoto, A.; Myoga, Y.; Matsushita, S.; Higuchi, S. Changes in smoking behavior among victims after the great East Japan earthquake and tsunami. Environ. Health Prev. Med. 2020, 25, 1–8. [Google Scholar] [CrossRef] [PubMed]
- WHO Website. 2021. Available online: https://covid19.who.int/ (accessed on 1 January 2021).
- Covid-19 in San Diego County. Available online: https://www.sandiegocounty.gov/content/sdc/hhsa/programs/phs/community_epidemiology/dc/2019-nCoV/status.html (accessed on 11 September 2021).
- Shah, S.; Mohammad, D.; Qureshi, M.; Abbas, M.Z.; Aleem, S. Prevalence, Psychological Responses and Associated Corre-lates of Depression, Anxiety and Stress in a Global Population, During the Coronavirus Disease (COVID-19) Pandemic. Community Ment. Health J. 2021, 57, 101–110. [Google Scholar] [CrossRef]
- Abouzid, M.; Collaborators, E.; El-Sherif, D.M.; Eltewacy, N.K.; Dahman, N.B.H.; Okasha, S.A.; Ghozy, S.; Islam, S.M.S. Influence of COVID-19 on lifestyle behaviors in the Middle East and North Africa Region: A survey of 5896 individuals. J. Transl. Med. 2021, 19, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Arai, Y.; Oguma, Y.; Abe, Y.; Takayama, M.; Hara, A.; Urushihara, H.; Takebayashi, T. Behavioral changes and hygiene practices of older adults in Japan during the first wave of COVID-19 emergency. BMC Geriatr. 2021, 21, 1–9. [Google Scholar] [CrossRef]
- Bar-Zeev, Y.; Shauly, M.; Lee, H.; Neumark, Y. Changes in Smoking Behaviour and Home-Smoking Rules during the Initial COVID-19 Lockdown Period in Israel. Int. J. Environ. Res. Public Health 2021, 18, 1931. [Google Scholar] [CrossRef]
- Busse, H.; Buck, C.; Stock, C.; Zeeb, H.; Pischke, C.; Fialho, P.; Wendt, C.; Helmer, S. Engagement in Health Risk Behaviours before and during the COVID-19 Pandemic in German University Students: Results of a Cross-Sectional Study. Int. J. Environ. Res. Public Health 2021, 18, 1410. [Google Scholar] [CrossRef]
- Guignard, R.; Andler, R.; Quatremère, G.; Pasquereau, A.; du Roscoät, E.; Arwidson, P.; Berlin, I.; Nguyen-Thanh, V. Changes in smoking and alcohol consumption during COVID-19-related lockdown: A cross-sectional study in France. Eur. J. Public Health 2021, 31, 1076–1083. [Google Scholar] [CrossRef] [PubMed]
- Jackson, S.E.; Garnett, C.; Shahab, L.; Oldham, M.; Brown, J. Association of the COVID-19 lockdown with smoking, drinking and attempts to quit in England: An analysis of 2019–20 data. Addiction 2021, 116, 1233–1244. [Google Scholar] [CrossRef]
- Siddiqi, K.; Siddiqui, F.; Khan, A.; Ansaari, S.; Kanaan, M.; Khokhar, M.; Islam, Z.; Mishu, M.P.; Bauld, L. The Impact of COVID-19 on Smoking Patterns in Pakistan: Findings from a Longitudinal Survey of Smokers. Nicotine Tob. Res. 2021, 23, 765–769. [Google Scholar] [CrossRef]
- Klemperer, E.M.; West, J.C.; Peasley-Miklus, C.; Villanti, A.C. Change in Tobacco and Electronic Cigarette Use and Motivation to Quit in Response to COVID-19. Nicotine & tobacco research: Official journal of the Society for Research on Nicotine and Tobacco. Nicotine Tob. Res. 2020, 22, 1662–1663. [Google Scholar]
- Yach, D. Tobacco Use Patterns in Five Countries during the COVID-19 Lockdown. Nicotine Tob. Res. 2020, 22, 1671–1672. [Google Scholar] [CrossRef]
- Yingst, J.M.; Krebs, N.M.; Bordner, C.R.; Hobkirk, A.L.; Allen, S.I.; Foulds, J. Tobacco Use Changes and Perceived Health Risks among Current Tobacco Users during the COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2021, 18, 1795. [Google Scholar] [CrossRef]
- Malta, D.C.; Szwarcwald, C.L.; Barros, M.B.A.; Gomes, C.S.; Machado, Í.E.; Souza Júnior, P.R.B.; Romero, D.E.; Lima, M.G.; Damacena, G.N.; Pina, M.F.; et al. The COVID-19 Pandemic and changes in adult Brazilian lifestyles: A cross-sectional study, 2020. Epidemiol. Serv. Saude. 2020, 29, e2020407. [Google Scholar] [CrossRef]
- Mistry, S.K.; Ali, A.M.; Rahman, A.; Yadav, U.N.; Gupta, B.; Rahman, M.A.; Huque, R. Changes in Tobacco Use Patterns During COVID-19 and Their Correlates among Older Adults in Bangladesh. Int. J. Environ. Res. Public Health 2021, 18, 1779. [Google Scholar] [CrossRef] [PubMed]
- Vanderbruggen, N.; Matthys, F.; Van Laere, S.; Zeeuws, D.; Santermans, L.; Ameele, S.V.D.; Crunelle, C.L. Self-Reported Alcohol, Tobacco, and Cannabis Use during COVID-19 Lockdown Measures: Results from a Web-Based Survey. Eur. Addict. Res. 2020, 26, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Gold, A.K.; Hoyt, D.L.; Milligan, M.; Hiserodt, M.L.; Samora, J.; Leyro, T.M.; Zvolensky, M.J.; Otto, M.W. The role of fear of COVID-19 in motivation to quit smoking and reductions in cigarette smoking: A preliminary investigation of at-risk cigarette smokers. Cogn. Behav. Ther. 2021, 50, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Ho, L.L.K.; Li, W.H.C.; Cheung, A.T.; Xia, W.; Wang, M.P.; Cheung, D.Y.T.; Lam, T.H. Impact of COVID-19 on the Hong Kong Youth Quitline Service and Quitting Behaviors of Its Users. Int. J. Environ. Res. Public Health 2020, 17, 8397. [Google Scholar] [CrossRef]
- Niedzwiedz, C.L.; Green, M.J.; Benzeval, M.; Campbell, D.; Craig, P.; Demou, E.; Leyland, A.; Pearce, A.; Thomson, R.; Whitley, E.; et al. Mental health and health behaviours before and during the initial phase of the COVID-19 lockdown: Longitudinal analyses of the UK Household Longitudinal Study. J. Epidemiol. Community Health 2021, 75, 224–231. [Google Scholar] [CrossRef]
- Yang, H.; Ma, J. How the COVID-19 pandemic impacts tobacco addiction: Changes in smoking behavior and associations with well-being. Addict. Behav. 2021, 119, 106917. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention COVID Data Tracker, Trends in Number of COVID-19 Cases and Deaths in the US Reported to CDC, by State/Territory. Available online: https://covid.cdc.gov/covid-data-tracker/#trends_dailytrendscases (accessed on 10 June 2021).
- Garcia, S. Southern California ICU Capacity Drops to 0% as State Reports 379 New Deaths, Shattering Record. Available online: https://abc7news.com/icu-capacity-southern-california-socal-coronavirus-deaths/8856574/ (accessed on 10 June 2021).
- Kruse, C.S.; Kothman, K.; Anerobi, K.; Abanaka, L. Adoption Factors of the Electronic Health Record: A Systematic Review. JMIR Med Informatics 2016, 4, e19. [Google Scholar] [CrossRef]
- Denaxas, S.C.; Morley, K. Big biomedical data and cardiovascular disease research: Opportunities and challenges. Eur. Hear. J. Qual. Care Clin. Outcomes 2015, 1, 9–16. [Google Scholar] [CrossRef]
- Mayne, S.L.; Hannan, C.; Davis, M.; Young, J.F.; Kelly, M.K.; Powell, M.; Dalembert, G.; McPeak, K.E.; Jenssen, B.P.; Fiks, A.G. COVID-19 and Adolescent Depression and Suicide Risk Screening Outcomes. Pediatrics 2021, 148, e2021051507. [Google Scholar] [CrossRef]
- Chandran, K.; Mazer-Amirshahi, M.; Shankar, N.; Desale, S.; Nelson, L.; Mete, M. Impact of COVID-19 pandemic on emergency department substance use screens and overdose presentations. Am. J. Emerg. Med. 2021, 50, 472–476. [Google Scholar] [CrossRef]
- Guijon, O.L.; Morphew, T.; Ehwerhemuepha, L.; Galant, S.P. Evaluating the impact of coronavirus disease 2019 on asthma morbidity. Ann. Allergy, Asthma Immunol. 2021, 127, 91–99. [Google Scholar] [CrossRef]
- Lemke, S.; Boden, M.T.; Kearney, L.K.; Krahn, D.D.; Neuman, M.J.; Schmidt, E.M.; Trafton, J.A. Measurement-based management of mental health quality and access in VHA: SAIL mental health domain. Psychol. Serv. 2017, 14, 1–12. [Google Scholar] [CrossRef]
- The ICD-10 Classification of Mental and Behavioural Disorders Clinical Descriptions and Diagnostic Guidelines. Available online: https://www.who.int/classifications/icd/en/bluebook.pdf (accessed on 7 December 2020).
- De Boni, R.B.; Balanzá-Martínez, V.; Mota, J.C.; Cardoso, T.D.A.; Ballester, P.; Atienza-Carbonell, B.; Bastos, F.I.; Kapczinski, F. Depression, Anxiety, and Lifestyle Among Essential Workers: A Web Survey From Brazil and Spain During the COVID-19 Pandemic. J. Med. Internet Res. 2020, 22, e22835. [Google Scholar] [CrossRef]
- Raj, A.; Johns, N.E.; Barker, K.M.; Silverman, J.G. Time from COVID-19 shutdown, gender-based violence exposure, and mental health outcomes among a state representative sample of California residents. EClinicalMedicine 2020, 26, 100520. [Google Scholar] [CrossRef] [PubMed]
- Sokol, R.L.; Grummon, A.H. COVID-19 and Parent Intention to Vaccinate Their Children Against Influenza. Pediatrics 2020, 146, e2020022871. [Google Scholar] [CrossRef] [PubMed]
- Weber, E.; Miller, S.J.; Astha, V.; Janevic, T.; Benn, E. Characteristics of telehealth users in NYC for COVID-related care during the coronavirus pandemic. J. Am. Med. Inform. Assoc. 2020, 27, 1949–1954. [Google Scholar] [CrossRef] [PubMed]
- Carreras, G.; Lugo, A.; Stival, C.; Amerio, A.; Odone, A.; Pacifici, R.; Gallus, S.; Gorini, G. Impact of COVID-19 lockdown on smoking consumption in a large representative sample of Italian adults. Tob. Control. 2021. Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Ozcelik, N.; Kara, B.Y. Effect of coronaphobia on smoking habits. J. Addict. Dis. 2021, 39, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Grogan, S.; Walker, L.; McChesney, G.; Gee, I.; Gough, B.; Cordero, M.I. How has COVID-19 lockdown impacted smoking? A thematic analysis of written accounts from UK smokers. Psychol. Health 2020, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Sepulveda-Loyola, W.; Rodríguez-Sánchez, I.; Perez-Rodriguez, P.; Ganz, F.; Torralba, R.; Oliveira, D.; Rodríguez-Mañas, L. Impact of social isolation due to COVID-19 on health in older people: Mental and physical effects and recommendations. J. Nutr. Health 2020, 24, 938–947. [Google Scholar] [CrossRef]
- De la Vega, R.; Ruíz-Barquín, R.; Boros, S.; Szabo, A. Could attitudes toward COVID-19 in Spain render men more vulnerable than women? Glob. Public Health 2020, 15, 1278–1291. [Google Scholar] [CrossRef] [PubMed]
- Haischer, M.H.; Beilfuss, R.; Hart, M.R.; Opielinski, L.; Wrucke, D.; Zirgaitis, G.; Uhrich, T.D.; Hunter, S.K. Who is wearing a mask? Gender-, age-, and location-related differences during the COVID-19 pandemic. PLoS ONE 2020, 15, e0240785. [Google Scholar] [CrossRef]
- Bwire, G.M. Coronavirus: Why Men are More Vulnerable to Covid-19 than Women? SN Compr. Clin. Med. 2020, 2, 874–876. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, Z.; Wang, Y.; Zhou, Y.; Ma, Y.; Zuo, W. Single-Cell RNA Expression Profiling of ACE2, the putative receptor of Wuhan COVID-19. BioRxiv 2020. [Google Scholar] [CrossRef]
- Ghazeeri, G.; Abdullah, L.; Abbas, O. Immunological Differences in Women Compared with Men: Overview and Contributing Factors. Am. J. Reprod. Immunol. 2011, 66, 163–169. [Google Scholar] [CrossRef]
- Conway, K.P.; Green, V.R.; Kasza, K.A.; Silveira, M.L.; Borek, N.; Kimmel, H.L.; Sargent, J.D.; Stanton, C.; Lambert, E.; Hilmi, N.; et al. Co-occurrence of tobacco product use, substance use, and mental health problems among adults: Findings from Wave 1 (2013–2014) of the Population Assessment of Tobacco and Health (PATH) Study. Drug Alcohol Depend. 2017, 177, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Lasser, K.; Boyd, J.W.; Woolhandler, S.; Himmelstein, D.U.; McCormick, D.; Bor, D.H. Smoking and mental illness: A population-based prevalence study. JAMA 2000, 284, 2606–2610. [Google Scholar] [CrossRef]
- Weinberger, A.H.; Funk, A.P.; Goodwin, R.D. A review of epidemiologic research on smoking behavior among persons with alcohol and illicit substance use disorders. Prev. Med. 2016, 92, 148–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bejerot, S.; Humble, M. Low prevalence of smoking among patients with obsessive-compulsive disorder. Compr. Psychiatry 1999, 40, 268–272. [Google Scholar] [CrossRef]
- Serafini, G.; Gonda, X.; Pompili, M.; Rihmer, Z.; Amore, M.; Engel-Yeger, B. The relationship between sensory processing patterns, alexithymia, traumatic childhood experiences, and quality of life among patients with unipolar and bipolar disorders. Child Abus. Negl. 2016, 62, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Trinidad, D.R.; Pérez-Stable, E.J.; White, M.M.; Emery, S.L.; Messer, K. A Nationwide Analysis of US Racial/Ethnic Disparities in Smoking Behaviors, Smoking Cessation, and Cessation-Related Factors. Am. J. Public Health 2011, 101, 699–706. [Google Scholar] [CrossRef] [PubMed]
- Gil, R.M.; Marcelin, J.R.; Zuniga-Blanco, B.; Marquez, C.; Mathew, T.; A Piggott, D. COVID-19 Pandemic: Disparate Health Impact on the Hispanic/Latinx Population in the United States. J. Infect. Dis. 2020, 222, 1592–1595. [Google Scholar] [CrossRef]
- Fitzpatrick, K.M.; Harris, C.; Drawve, G. Fear of COVID-19 and the mental health consequences in America. Psychol. Trauma Theory Res. Pract. Policy 2020, 12 (Suppl. 1), S17–S21. [Google Scholar] [CrossRef]
- French, M.T.; Mortensen, K.; Timming, A.R. Psychological Distress and Coronavirus Fears during the Initial Phase of the COVID-19 Pandemic in the United States. J. Ment. Health Policy Econ. 2020, 23, 93–100. [Google Scholar]
- Bower, J.K.; Patel, S.; Rudy, J.E.; Felix, A.S. Addressing Bias in Electronic Health Record-based Surveillance of Cardiovascular Disease Risk: Finding the Signal through the Noise. Curr. Epidemiol. Rep. 2017, 4, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, B.A.; Bhavsar, N.A.; Phelan, M.; Pencina, M.J. Controlling for Informed Presence Bias Due to the Number of Health Encounters in an Electronic Health Record. Am. J. Epidemiol. 2016, 184, 847–855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramirez, A.V.; Ojeaga, M.; Espinoza, V.; Hensler, B.; Honrubia, V. Telemedicine in Minority and Socioeconomically Disadvantaged Communities Amidst COVID-19 Pandemic. Otolaryngol. Neck Surg. 2021, 164, 91–92. [Google Scholar] [CrossRef]
- Nadkarni, A.; Hasler, V.; AhnAllen, C.G.; Amonoo, H.L.; Green, D.W.; Levy-Carrick, N.C.; Mittal, L. Telehealth during COVID-19—Does Everyone Have Equal Access? Am. J. Psychiatry 2020, 177, 1093–1094. [Google Scholar] [CrossRef] [PubMed]
- U.S. Census Bureau QuickFacts: San Diego City, California. Available online: https://www.census.gov/quickfacts/fact/table/sandiegocitycalifornia/PST045219 (accessed on 20 July 2021).
- Casey, J.A.; Schwartz, B.S.; Stewart, W.F.; Adler, N.E. Using Electronic Health Records for Population Health Research: A Review of Methods and Applications. Annu. Rev. Public Health 2016, 37, 61–81. [Google Scholar] [CrossRef] [Green Version]
- Richesson, R.L.; Marsolo, K.S.; Douthit, B.J.; Staman, K.; Ho, P.M.; Dailey, D.; Boyd, A.D.; McTigue, K.M.; Ezenwa, M.O.; Schlaeger, J.M.; et al. Enhancing the use of EHR systems for pragmatic embedded research: Lessons from the NIH Health Care Systems Research Collaboratory. J. Am. Med. Inform. Assoc. 2021. Epub ahead of print. [Google Scholar] [CrossRef]
- Kohane, I.S.; Aronow, B.J.; Avillach, P.; Beaulieu-Jones, B.K.; Bellazzi, R.; Bradford, R.L.; Brat, G.A.; Cannataro, M.; Cimino, J.J.; García-Barrio, N.; et al. What Every Reader Should Know About Studies Using Electronic Health Record Data but May Be Afraid to Ask. J. Med. Internet Res. 2021, 23, e22219. [Google Scholar] [CrossRef]
- Kozlowski, L.T.; Porter, C.Q.; Orleans, C.; Pope, M.A.; Heatherton, T. Predicting smoking cessation with self-reported measures of nicotine dependence: FTQ, FTND, and HSI. Drug Alcohol Depend. 1994, 34, 211–216. [Google Scholar] [CrossRef]
- Hersh, W.R.; Weiner, M.G.; Embi, P.J.; Logan, J.R.; Payne, P.R.; Bernstam, E.V.; Lehmann, H.P.; Hripcsak, G.; Hartzog, T.H.; Cimino, J.J.; et al. Caveats for the Use of Operational Electronic Health Record Data in Comparative Effectiveness Research. Med. Care 2013, 51, S30–S37. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.S.; Bastarache, L.; Weiner, M.G. Aggregating Electronic Health Record Data for COVID-19 Research—Caveat Emptor. JAMA Netw. Open 2021, 4, e2117175. [Google Scholar] [CrossRef]
- McMurry, R.; Lenehan, P.; Awasthi, S.; Silvert, E.; Puranik, A.; Pawlowski, C.; Venkatakrishnan, A.; Anand, P.; Agarwal, V.; O’Horo, J.C.; et al. Real-time analysis of a mass vaccination effort confirms the safety of FDA-authorized mRNA COVID-19 vaccines. Med 2021, 2, 965–978.e5. [Google Scholar] [CrossRef]
- Thompson, M.G.; Stenehjem, E.; Grannis, S.; Ball, S.W.; Naleway, A.L.; Ong, T.C.; DeSilva, M.B.; Natarajan, K.; Bozio, C.H.; Lewis, N.; et al. Effectiveness of Covid-19 Vaccines in Ambulatory and Inpatient Care Settings. N. Engl. J. Med. 2021, 385, 1355–1371. [Google Scholar] [CrossRef]
- Wan, E.Y.F.; Chui, C.S.L.; Lai, F.T.T.; Chan, E.W.Y.; Li, X.; Yan, V.K.C.; Gao, L.; Yu, Q.; Lam, I.C.H.; Chun, R.K.C.; et al. Bell’s palsy following vaccination with mRNA (BNT162b2) and inactivated (CoronaVac) SARS-CoV-2 vaccines: A case series and nested case-control study. Lancet Infect. Dis. 2021. Epub ahead of print. [Google Scholar] [CrossRef]
- Bardenheier, B.H.; Gravenstein, S.; Blackman, C.; Gutman, R.; Sarkar, I.N.; Feifer, R.A.; White, E.M.; McConeghy, K.; Nanda, A.; Bosco, E.; et al. Adverse Events Following One Dose of mRNA COVID-19 Vaccination Among US Nursing Home Residents With and Without a Previous SARS-CoV-2 Infection. J. Am. Med. Dir. Assoc. 2021, 22, 2228–2232. [Google Scholar] [CrossRef] [PubMed]
- Fornaro, M.; De Prisco, M.; Billeci, M.; Ermini, E.; Young, A.H.; Lafer, B.; Soares, J.C.; Vieta, E.; Quevedo, J.; de Bartolomeis, A.; et al. Implications of the COVID-19 pandemic for people with bipolar disorders: A scoping review. J. Affect. Disord. 2021, 295, 740–751. [Google Scholar] [CrossRef] [PubMed]
- Ciapponi, A.; Bardach, A.; Mazzoni, A.; Alconada, T.; Anderson, A.S.; Argento, F.J.; Ballivian, J.; Bok, K.; Comandé, D.; Erbelding, E.; et al. Safety of components and platforms of COVID-19 vaccines considered for use in pregnancy: A rapid review. Vaccine 2021, 39, 5891–5908. [Google Scholar] [CrossRef]
- Son, M.; Gallagher, K.; Lo, J.Y.; Lindgren, E.; Burris, H.H.; Dysart, K.; Greenspan, J.; Culhane, J.F.; Handley, S.C. Coronavirus Disease 2019 (COVID-19) Pandemic and Pregnancy Outcomes in a U.S. Population. Obstet. Gynecol. 2021, 138, 542–551. [Google Scholar] [CrossRef]
- Cotton, D.M.; Liu, L.; Vinson, D.R.; Ballard, D.W.; Sax, D.R.; Hofmann, E.R.; Lin, J.S.; Durant, E.J.; Kene, M.V.; Casey, S.D.; et al. Clinical characteristics of COVID-19 patients evaluated in the emergency department: A retrospective cohort study of 801 cases. J. Am. Coll. Emerg. Physicians Open 2021, 2, e12538. [Google Scholar] [CrossRef]
- Buikema, A.R.; Buzinec, P.; Paudel, M.L.; Andrade, K.; Johnson, J.C.; Edmonds, Y.M.; Jhamb, S.K.; Chastek, B.; Raja, H.; Cao, F.; et al. Racial and ethnic disparity in clinical outcomes among patients with confirmed COVID-19 infection in a large US electronic health record database. EClinicalMedicine 2021, 39, 101075. [Google Scholar] [CrossRef]
- Navar, A.M.; Purinton, S.N.; Hou, Q.; Taylor, R.J.; Peterson, E.D. The impact of race and ethnicity on outcomes in 19,584 adults hospitalized with COVID-19. PLoS ONE 2021, 16, e0254809. [Google Scholar] [CrossRef] [PubMed]
- Blok, A.C.; Ignacio, R.V.; Geraci, M.C.; Kim, H.M.; Barnett, P.G.; Duffy, S.A. Provider and clinical setting characteristics associated with tobacco pharmacotherapy dispensed in the Veterans Health Administration. Tob. Induc. Dis. 2021, 19, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Fond, G.; Nemani, K.; Etchecopar-Etchart, D.; Loundou, A.; Goff, D.C.; Lee, S.W.; Lancon, C.; Auquier, P.; Baumstarck, K.; Llorca, P.-M.; et al. Association Between Mental Health Disorders and Mortality Among Patients With COVID-19 in 7 Countries. JAMA Psychiatry 2021, 78, 1208. [Google Scholar] [CrossRef] [PubMed]
- Brooks, C.G.; Spencer, J.R.; Sprafka, J.M.; Roehl, K.A.; Ma, J.; Londhe, A.A.; He, F.; Cheng, A.; Brown, C.A.; Page, J. Pediatric BMI changes during COVID-19 pandemic: An electronic health record-based retrospective cohort study. EClinicalMedicine 2021, 38, 101026. [Google Scholar] [CrossRef]
- Kremer, G. Motivierende Gesprächsführung und Kurzinterventionen in der ärztlichen Praxis [Motivational interviewing and brief interventions by general practitioners]. Z. Arztl. Qualitatssich. 2002, 96, 276–280. [Google Scholar] [PubMed]
Variable | Pre-COVID (1 November 2019–18 March 2020) | Early COVID (19 March 2020–15 November 2020) | Peak COVID (16 November 2020–28 February 2021) |
---|---|---|---|
Visits (61,852) | 21,809 | 25,233 | 14,810 |
Age—mean (SD) | 57.4 (17.3) | 55.2 (17.5) | 56.6 (17.4) |
Sex—% male | 87.8% | 86.4% | 87.5% |
Racial/ethnic group—% white | 55.2% | 53.3% | 55.3% |
Daily tobacco user | 9.5% | 10.0% | 9.2% |
Non-daily tobacco user | 4.3% | 4.5% | 4.2% |
SMI | 4.2% | 4.6% | 4.8% |
MDD | 12.9% | 13.1% | 13.3% |
PTSD | 19.1% | 20.3% | 19.8% |
AD | 9.3% | 9.7% | 9.1% |
SUD | 8.1% | 9.0% | 8.9% |
Predictor | Subgroup | Relative Risk Ratio (RRR) | 95% c.i. | Std. Err. |
---|---|---|---|---|
Intercept | 0.23 | 0.21, 0.26 | 0.01 | |
Non-Daily Tobacco Use | ||||
Time | Pre-COVID | 1.21 | 1.00, 1.45 | 0.11 |
Peak | 0.74 | 0.61, 0.90 | 0.07 | |
Race/ethnicity | Black | 1.31 | 1.19, 1.46 | 0.07 |
Asian | 0.80 | 0.69, 0.92 | 0.06 | |
Latinx | 1.12 | 0.93, 1.34 | 0.11 | |
Other | 1.07 | 0.95, 1.22 | 0.07 | |
Sex | 0.31 | 0.21, 0.46 | 0.06 | |
Time × Sex | 1.21 | 1.00, 1.46 | 0.12 | |
Age | 0.97 | 0.96, 0.97 | 0.01 | |
Time × Age | 1.00 | 1.00, 1.01 | 0.01 | |
SMI | 1.86 | 0.87, 3.94 | 0.71 | |
MDD | 0.95 | 0.84, 1.07 | 0.06 | |
AD | 0.98 | 0.87, 1.12 | 0.06 | |
PTSD | 1.08 | 0.98, 1.19 | 0.05 | |
SUD | 2.33 | 2.08, 2.61 | 0.13 | |
Daily Tobacco Use | ||||
Time | Pre-COVID | 1.04 | 0.90, 1.19 | 0.07 |
Peak | 0.86 | 0.74, 0.99 | 0.06 | |
Race/ethnicity | Black | 1.02 | 0.95, 1.10 | 0.04 |
Asian | 0.63 | 0.57, 0.70 | 0.03 | |
Latinx | 0.97 | 0.85, 1.10 | 0.07 | |
Other | 0.53 | 0.47, 0.59 | 0.03 | |
Sex | 0.79 | 0.61, 1.01 | 0.10 | |
Time × Sex | 0.89 | 0.79, 1.01 | 0.06 | |
Age | 0.98 | 0.98, 0.99 | 0.01 | |
Time × Age | 1.00 | 1.00, 1.00 | 0.01 | |
SMI | 2.16 | 1.31, 3.55 | 0.55 | |
MDD | 1.09 | 1.00, 1.18 | 0.04 | |
AD | 0.74 | 0.67, 0.82 | 0.04 | |
PTSD | 1.03 | 0.96, 1.10 | 0.04 | |
SUD | 4.00 | 3.72, 4.30 | 0.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fatollahi, J.J.; Bentley, S.; Doran, N.; Brody, A.L. Changes in Tobacco Use Patterns among Veterans in San Diego during the Recent Peak of the COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2021, 18, 11923. https://doi.org/10.3390/ijerph182211923
Fatollahi JJ, Bentley S, Doran N, Brody AL. Changes in Tobacco Use Patterns among Veterans in San Diego during the Recent Peak of the COVID-19 Pandemic. International Journal of Environmental Research and Public Health. 2021; 18(22):11923. https://doi.org/10.3390/ijerph182211923
Chicago/Turabian StyleFatollahi, Javad J., Sean Bentley, Neal Doran, and Arthur L. Brody. 2021. "Changes in Tobacco Use Patterns among Veterans in San Diego during the Recent Peak of the COVID-19 Pandemic" International Journal of Environmental Research and Public Health 18, no. 22: 11923. https://doi.org/10.3390/ijerph182211923
APA StyleFatollahi, J. J., Bentley, S., Doran, N., & Brody, A. L. (2021). Changes in Tobacco Use Patterns among Veterans in San Diego during the Recent Peak of the COVID-19 Pandemic. International Journal of Environmental Research and Public Health, 18(22), 11923. https://doi.org/10.3390/ijerph182211923