Correlation between Neck Circumference and Other Anthropometric Measurements in Eight Latin American Countries. Results from ELANS Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Population
2.3. Study Sample and Sampling
2.4. Data Collection Procedure
2.5. Data Management and Analysis Plan
3. Results
3.1. General Characteristics of the Population
3.2. Bivariate Analysis
3.3. Correlation
3.4. Cut-Off, Se, Sp, and AUC
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Patel, S.A.; Ali, M.K.; Alam, D.; Yan, L.L.; Levitt, N.S.; Bernabe-Ortiz, A.; Checkley, W.; Wu, Y.; Irazola, V.; Gutierrez, L.; et al. Obesity and its Relation With Diabetes and Hypertension: A Cross-Sectional Study Across 4 Geographical Regions. Glob. Heart 2016, 11, 71–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daniels, S.R.; Morrison, J.A.; Sprecher, D.L.; Khoury, P.; Kimball, T.R. Association of Body Fat Distribution and Cardiovascular Risk Factors in Children and Adolescents. Circulation 1999, 99, 541–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhattacharya, A.; Pal, B.; Mukherjee, S.; Roy, S.K. Assessment of nutritional status using anthropometric variables by multivariate analysis. BMC Public Health 2019, 19, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeller, M.; Steg, P.G.; Ravisy, J.; Lorgis, L.; Laurent, Y.; Sicard, P.; Janin-Manificat, L.; Beer, J.C.; Makki, H.; Lagrost, A.C.; et al. Relation Between Body Mass Index, Waist Circumference, and Death After Acute Myocardial Infarction. Circulation 2008, 118, 482–490. [Google Scholar] [CrossRef] [Green Version]
- Pouliot, M.C.; Després, J.P.; Lemieux, S.; Moorjani, S.; Bouchard, C.; Tremblay, A.; Nadeau, A.; Lupien, P.J. Waist circumference and abdominal sagittal diameter: Best simple anthropometric indexes of abdominal visceral adipose tissue accumulation and related cardiovascular risk in men and women. Am. J. Cardiol. 1994, 73, 460–468. [Google Scholar] [CrossRef]
- Murray, S. Is waist-to-hip ratio a better marker of cardiovascular risk than body mass index? CMAJ Can. Med. Assoc. J. 2006, 174, 308. [Google Scholar] [CrossRef] [Green Version]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C. Harmonizing the Metabolic Syndrome A Joint Interim Statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [Green Version]
- Verma, M.; Rajput, M.; Sahoo, S.S.; Kaur, N. Neck Circumference: Independent Predictor for Overweight and Obesity in Adult Population. Indian J. Community Med. Off. Publ. Indian Assoc. Prev. Soc. Med. 2017, 42, 209–213. [Google Scholar] [CrossRef]
- Ferretti, R.d.; Cintra, I.d.; Passos, M.A.Z.; Ferrari, G.L.d.; Fisberg, M. Elevated neck circumference and associated factors in adolescents. BMC Public Health 2015, 15, 208–217. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.R.; Lovejoy, J.C.; Greenway, F.; Ryan, D.; deJonge, L.; de la Bretonne, J.; Volafova, J.; Bray, G.A. Contributions of total body fat, abdominal subcutaneous adipose tissue compartments, and visceral adipose tissue to the metabolic complications of obesity. Metabolism 2001, 50, 425–435. [Google Scholar] [CrossRef]
- Stabe, C.; Vasques AC, J.; Lima MM, O.; Tambascia, M.A.; Pareja, J.C.; Yamanaka, A.; Geloneze, B. Neck circumference as a simple tool for identifying the metabolic syndrome and insulin resistance: Results from the Brazilian Metabolic Syndrome Study. Clin. Endocrinol. 2013, 78, 874–881. [Google Scholar] [CrossRef]
- Kurtoglu, S.; Hatipoglu, N.; Mazicioglu, M.M.; Kondolot, M. Neck circumference as a novel parameter to determine metabolic risk factors in obese children. Eur. J. Clin. Investig. 2012, 42, 623–630. [Google Scholar] [CrossRef]
- Joshipura, K.; Muñoz-Torres, F.; Vergara, J.; Palacios, C.; Pérez, C.M. Neck Circumference May Be a Better Alternative to Standard Anthropometric Measures. J. Diabetes Res. 2016, 2016–2023. [Google Scholar] [CrossRef] [Green Version]
- Hingorjo, M.R.; Qureshi, M.A.; Mehdi, A. Neck circumference as a useful marker of obesity: A comparison with body mass index and waist circumference. JPMA. J. Pak. Med. Assoc. 2012, 62, 36–40. [Google Scholar]
- Fisberg, M.; Kovalskys, I.; Gomez, G.; Rigotti, A.; Cortés, L.Y.; Herrera-Cuenca, M.; Yépez, M.C.; Pareja, R.G.; Guajardo, V.; Zimberg, I.Z.; et al. Latin American Study of Nutrition and Health (ELANS): Rationale and study design. BMC Public Health 2016, 16, 93–103. [Google Scholar] [CrossRef]
- World Health Organization. Training Course on Child Growth Assessment; WHO Child Growth Standards: Geneve, Switzerland, 2008. [Google Scholar]
- Norton, K.I.; Olds, T. Anthropometrica: A Textbook of Body Measurement for Sports and Health Courses; UNSW Press: Sydney, Australia, 1996. [Google Scholar]
- Namazi, N.; Larijani, B.; Surkan, P.J.; Azadbakht, L. The association of neck circumference with risk of metabolic syndrome and its components in adults: A systematic review and meta-analysis. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 657–674. [Google Scholar] [CrossRef]
- Ben-Noun, L.; Sohar, E.; Laor, A. Neck Circumference as a Simple Screening Measure for Identifying Overweight and Obese Patients. Obes. Res. 2001, 9, 470–477. [Google Scholar] [CrossRef]
- Selvan, C.; Dutta, D.; Thukral, A.; Nargis, T.; Kumar, M.; Mukhopadhyay, S.; Chowdhury, S. Neck height ratio is an important predictor of metabolic syndrome among Asian Indians. Indian J. Endocrinol. Metab. 2016, 20, 831. [Google Scholar] [CrossRef]
- Qureshi, N.K.; Hossain, T.; Hassan, M.I.; Akter, N.; Rahman, M.M.; Sultana, M.M.; Ashrafuzzaman, S.M.; Latif, Z.A. Neck circumference as a marker of overweight and obesity and cutoff values for Bangladeshi adults. Indian J. Endocrinol. Metab. 2017, 21, 803. [Google Scholar] [CrossRef]
- Pareja Joaquín, E.M. Quintana Salinas M.R. Relación Entre Circunferencia De Cuello Con La Obesidad Central Y Sobrepeso En Adultos Jóvenes Que Asisten Al Centro Médico Mala—Essalud, 2016; Universidad Nacional Mayor de San Marcos: Lima, Peru, 2019. [Google Scholar]
- Baena, C.P.; Lotufo, P.A.; Fonseca, M.G.; Santos, I.S.; Goulart, A.C.; Benseñor, I.M. Neck Circumference Is Independently Associated with Cardiometabolic Risk Factors: Cross-Sectional Analysis from ELSA-Brasil. Metab. Syndr. Relat. Disord. 2016, 14, 145–153. [Google Scholar] [CrossRef]
- Petreça, D.R.; Menezes, E.C.; Sandreschi, P.F.; Fank, F.; Mazo, G.Z. Neck circumference as a discriminator of obesity in older women enrolled in a physical activity program. Braz. J. Kinanthropometry Hum. Perform. 2017, 19, 710–719. [Google Scholar] [CrossRef] [Green Version]
- Coutinho, C.A.; Longui, C.A.; Monte, O.; Conde, W.; Kochi, C. Measurement of Neck Circumference and Its Correlation with Body Composition in a Sample of Students in São Paulo, Brazil. Horm. Res. Paediatr. 2014, 82, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Kawaguchi, Y.; Fukumoto, S.; Inaba, M.; Koyama, H.; Shoji, T.; Shoji, S.; Nishizawa, Y. Different Impacts of Neck Circumference and Visceral Obesity on the Severity of Obstructive Sleep Apnea Syndrome. Obesity 2011, 19, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Sebo, P.; Herrmann, F.R.; Haller, D.M. Accuracy of anthropometric measurements by general practitioners in overweight and obese patients. BMC Obes. 2017, 4, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Sebo, P.; Haller, D.; Pechère-Bertschi, A.; Bovier, P.; Herrmann, F. Accuracy of doctors’ anthropometric measurements in general practice. Swiss Med. Wkly. 2015, 145, 14115–14128. [Google Scholar] [CrossRef]
Variables | Argentina | Brazil | Chile | Peru | Colombia | Costa Rica | Ecuador | Venezuela | Total |
---|---|---|---|---|---|---|---|---|---|
n = 1266 | n = 2000 | n = 879 | n = 1113 | n = 1230 | n = 798 | n = 800 | n = 1132 | n = 9218 | |
n (%) | |||||||||
Sex | |||||||||
Women | 573 (54.7) | 942 (52.9) | 425 (51.7) | 523 (53.0) | 603 (51.0) | 394 (50.6) | 397 (50.4) | 552 (51.2) | 4409 (52.2) |
Men | 693 (45.3) | 1058 (47.1) | 454 (48.4) | 590 (47.0) | 627 (49.0) | 404 (49.4) | 403 (49.6) | 580 (48.8) | 4809 (47.8) |
Age (years) | |||||||||
15–19 | 152 (12.0) | 235 (11.8) | 118 (13.4) | 165 (14.8) | 148 (12.0) | 121 (15.2) | 128 (16.0) | 156 (13.8) | 1223 (13.3) |
20–34 | 446 (35.2) | 745 (37.3) | 307 (34.9) | 460 (41.3) | 445 (36.2) | 301 (37.7) | 316 (39.5) | 459 (40.6) | 3479 (37.7) |
35–49 | 379 (29.9) | 608 (30.4) | 252 (28.7) | 294 (26.4) | 335 (27.2) | 224 (28.1) | 222 (27.8) | 313 (27.7) | 2627 (28.5) |
50–65 | 289 (22.8) | 412 (20.6) | 202 (23.0) | 194 (17.4) | 302 (24.6) | 152 (19.1) | 134 (16.8) | 204 (18.0) | 1889 (20.5) |
Socioeconomic status | |||||||||
High | 65 (5.1) | 705 (35.3) | 80 (9.1) | 225 (20.2) | 67 (5.5) | 108 (13.5) | 104 (13.0) | 62 (5.5) | 1416 (15.4) |
Medium | 585 (46.2) | 1034 (51.7) | 388 (44.1) | 355 (31.9) | 384 (31.2) | 428 (53.6) | 582 (72.8) | 190 (16.8) | 3946 (42.8) |
Low | 616 (48.7) | 261 (13.1) | 411 (46.8) | 533 (47.9) | 779 (63.3) | 262 (32.8) | 114 (14.3) | 880 (77.7) | 3856 (41.8) |
Education level | |||||||||
Primary school | 955 (75.4) | 968 (48.4) | 572 (65.1) | 257 (23.1) | 799 (65.0) | 651 (81.6) | 664 (83.0) | 777 (68.6) | 5643 (61.2) |
High school | 257 (20.3) | 864 (43.2) | 208 (23.7) | 747 (67.1) | 294(23.9) | 101 (12.7) | 84 (10.5) | 142 (12.5) | 2697 (29.3) |
Undergraduate or higher | 54 (4.3) | 168 (8.4) | 99 (11.3) | 109 (9.8) | 137 (11.1) | 46 (5.8) | 52 (6.5) | 213 (18.8) | 878 (9.5) |
Marital status | |||||||||
Single | 441 (34.8) | 852 (42.6) | 398 (45.3) | 443 (39.8) | 570 (46.3) | 359 (45.0) | 315 (39.4) | 534 (47.2) | 3912 (42.4) |
Marriage | 634 (50.1) | 929 (46.5) | 406 (46.2) | 587 (52.7) | 562 (45.7) | 368 (46.1) | 414 (51.8) | 493 (43.6) | 4393 (47.7) |
Separated, divorced, widowed | 191 (15.1) | 219 (11.0) | 75 (8.5) | 83 (7.5) | 98 (8.0) | 71 (8.9) | 71 (8.9) | 105 (9.3) | 913 (9.9) |
NC (Mean (SD)) | WC (Mean (SD)) | BMI (Mean (SD)) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total | p + | Male | Female | p ++ | Total | p + | Male | Female | p ++ | Total | p + | Male | Female | p ++ | |
Total | 35.6 (4.1) | 37.7 (0.1) | 33.7 (0.0) | <0.001 | 88.3 (14.3) | 89.2 (14.2) | 87.4 (14.4) | <0.001 | 26.9 (5.6) | 26.3 (5.2) | 27.5 (5.9) | <0.001 | |||
Country | <0.001 | <0.001 | <0.001 | ||||||||||||
Argentina | 35.6 (4.0) | 37.7 (0.2) | 33.8 (0.1) | <0.001 | 88.5 (15.5) | 90.2 (15.1) | 87.1 (15.7) | <0.001 | 27.1 (6.0) | 26.7 (5.4) | 27.4 (6.4) | 0.042 | |||
Brazil | 34.8 (4.6) | 36.8 (0.1) | 32.9 (0.1) | <0.001 | 87.6 (14.7) | 88.4 (14.6) | 86.8 (14.8) | 0.021 | 26.7 (5.7) | 26.1 (5.4) | 27.3 (5.9) | <0.001 | |||
Chile | 37.3 (3.9) | 39.5 (0.2) | 35.2 (0.2) | <0.001 | 92.1 (14.3) | 93.9 (13.4) | 90.4 (14.9) | <0.001 | 28.1 (5.5) | 27.6 (4.8) | 28.5 (5.9) | 0.009 | |||
Peru | 35.4 (3.6) | 37.5 (0.1) | 33.5 (0.1) | <0.001 | 87.3 (12.3) | 88.0 (12.4) | 86.7 (12.1) | 0.081 | 26.6 (4.9) | 26.0 (4.7) | 27.3 (5.1) | <0.001 | |||
Colombia | 35.2 (3.5) | 37.2 (0.1) | 33.3 (0.1) | <0.001 | 85.0 (13.1) | 86.3 (13.1) | 83.7 (13.0) | <0.001 | 25.7 (5.0) | 25.0 (4.7) | 26.4 (5.3) | <0.001 | |||
Costa Rica | 36.7 (3.9) | 38.6 (0.2) | 34.7 (0.2) | <0.001 | 91.9 (15.4) | 91.9 (16.0) | 91.9 (14.8) | 0.978 | 27.6 (6.2) | 26.6 (5.6) | 28.7 (6.6) | <0.001 | |||
Ecuador | 35.1 (3.7) | 36.8 (0.2) | 33.4 (0.2) | <0.001 | 87.4 (12.3) | 87.3 (12.0) | 87.5 (12.7) | 0.794 | 26.8 (5.4) | 25.7 (5.0) | 27.8 (5.6) | <0.001 | |||
Venezuela | 36.2 (4.2) | 38.2 (0.2) | 34.3 (0.1) | <0.001 | 88.8 (14.6) | 90.0 (14.3) | 87.7 (14.8) | 0.010 | 27.3 (5.8) | 26.9 (5.4) | 27.6 (6.1) | 0.031 | |||
Age (years) | <0.001 | <0.001 | <0.001 | ||||||||||||
15–19 | 33.8 (3.5) | 35.2 (3.3) | 32.0 (2.9) | <0.001 | 77.0 (11.4) | 77.6 (11.1) | 76.2 (11.6) | 0.026 | 22.9 (4.5) | 22.6 (4.2) | 23.4 (4.9) | 0.002 | |||
20–34 | 35.3 (3.9) | 37.4 (3.5) | 33.2 (3.1) | <0.001 | 85.6 (13.1) | 87.3 (13.0) | 83.9 (12.9) | <0.001 | 26.1 (5.2) | 25.9 (5.0) | 26.3 (5.4) | 0.017 | |||
35–49 | 36.4 (4.2) | 38.7 (3.9) | 34.4 (3.4) | <0.001 | 92.3 (13.7) | 93.9 (13.5) | 90.8 (13.8) | <0.001 | 28.4 (5.6) | 27.8 (5.2) | 29.0 (5.9) | <0.001 | |||
50–65 | 36.4 (4.0) | 38.7 (3.6) | 34.7 (3.4) | <0.001 | 94.9 (13.3) | 96.1 (12.6) | 94.0 (13.8) | <0.001 | 28.8 (5.4) | 27.8 (4.8) | 29.5 (5.7) | <0.001 | |||
Socioeconomic status | 0.269 | 0.280 | 0.579 | ||||||||||||
High | 35.7 (4.2) | 37.6 (4.0) | 33.8 (3.5) | <0.001 | 88.7 (14.2) | 90.6 (14.1) | 86.6 (14.1) | <0.001 | 27.1 (5.5) | 26.8 (5.4) | 27.3 (5.7) | 0.161 | |||
Medium | 35.5 (4.2) | 37.7 (3.8) | 33.5 (3.4) | <0.001 | 88.4 (14.2) | 89.6 (14.4) | 87.2 (13.9) | <0.001 | 26.9 (5.5) | 26.3 (5.2) | 27.4 (5.7) | <0.001 | |||
Low | 35.7 (3.9) | 37.6 (3.7) | 33.9 (3.3) | <0.001 | 88.0 (14.4) | 88.3 (13.9) | 87.7 (14.9) | 0.240 | 26.9 (5.7) | 26.0 (5.1) | 27.7 (6.2) | <0.001 | |||
Educational level | 0.012 | <0.001 | 0.017 | ||||||||||||
Primary school | 36.0 (4.1) | 37.6 (3.9) | 33.9 (3.4) | <0.001 | 88.7 (14.8) | 88.9 (14.7) | 88.5 (14.9) | 0.316 | 27.0 (5.8) | 26.1 (5.3) | 27.9 (6.1) | <0.001 | |||
High school | 35.0 (4.1) | 37.6 (3.7) | 33.4 (3.3) | <0.001 | 87.2 (13.5) | 89.2 (13.4) | 85.5 (13.3) | <0.001 | 26.7 (5.2) | 26.4 (5.0) | 26.9 (5.4) | 0.019 | |||
Undergraduate or higher | 36.0 (4.1) | 38.2 (3.6) | 33.7 (3.2) | <0.001 | 88.4 (13.4) | 91.3 (12.6) | 85.6 (13.6) | <0.001 | 27.0 (5.2) | 27.1 (4.9) | 26.9 (5.5) | 0.543 | |||
Marital status | <0.001 | <0.001 | <0.001 | ||||||||||||
Single | 35.0 (4.0) | 36.9 (3.7) | 33.1 (3.3) | <0.001 | 83.8 (13.9) | 84.8 (13.5) | 82.7 (14.2) | <0.001 | 25.3 (5.5) | 24.9 (5.2) | 25.8 (5.9) | <0.001 | |||
Marriage | 36.0 (4.1) | 38.4 (3.8) | 34.1 (3.3) | <0.001 | 91.4 (13.6) | 93.5 (13.3) | 89.7 (13.7) | <0.001 | 28.0 (5.4) | 27.6 (4.9) | 28.4 (5.7) | <0.001 | |||
Separated, divorced, widowed | 36.0 (4.1) | 38.2 (3.9) | 34.3 (3.5) | <0.001 | 92.0 (14.2) | 93.8 (14.8) | 91.1 (13.9) | 0.008 | 28.3 (5.5) | 27.6 (5.0) | 28.6 (5.7) | 0.008 |
TOTAL | Men | Women | ||||
---|---|---|---|---|---|---|
NC-WC | NC-BMI | NC-WC | NC-BMI | NC-WC | NC-BMI | |
Total | 0.64 | 0.51 | 0.69 | 0.65 | 0.71 | 0.65 |
Country | ||||||
Argentina | 0.71 | 0.56 | 0.73 | 0.60 | 0.80 | 0.77 |
Brazil | 0.55 | 0.41 | 0.58 | 0.52 | 0.59 | 0.50 |
Chile | 0.72 | 0.59 | 0.79 | 0.75 | 0.78 | 0.78 |
Peru | 0.70 | 0.57 | 0.81 | 0.80 | 0.80 | 0.76 |
Colombia | 0.65 | 0.50 | 0.75 | 0.73 | 0.68 | 0.68 |
Costa Rica | 0.64 | 0.59 | 0.69 | 0.80 | 0.79 | 0.79 |
Ecuador | 0.62 | 0.48 | 0.75 | 0.67 | 0.67 | 0.64 |
Venezuela | 0.64 | 0.51 | 0.70 | 0.61 | 0.69 | 0.65 |
Age (years) | ||||||
15–19 | 0.61 | 0.50 | 0.63 | 0.61 | 0.68 | 0.62 |
20–34 | 0.63 | 0.50 | 0.67 | 0.62 | 0.67 | 0.62 |
35–49 | 0.64 | 0.48 | 0.68 | 0.62 | 0.68 | 0.63 |
50–65 | 0.59 | 0.42 | 0.66 | 0.55 | 0.63 | 0.60 |
Socioeconomic status | ||||||
High | 0.61 | 0.49 | 0.62 | 0.56 | 0.63 | 0.58 |
Medium | 0.64 | 0.50 | 0.70 | 0.64 | 0.68 | 0.63 |
Low | 0.66 | 0.54 | 0.76 | 0.70 | 0.73 | 0.70 |
Educational level | ||||||
Primary school | 0.64 | 0.51 | 0.72 | 0.66 | 0.71 | 0.67 |
High school | 0.64 | 0.52 | 0.70 | 0.66 | 0.65 | 0.62 |
Undergraduate or higher | 0.65 | 0.49 | 0.62 | 0.54 | 0.68 | 0.60 |
Marital status | ||||||
Single | 0.65 | 0.54 | 0.71 | 0.67 | 0.70 | 0.65 |
Marriage | 0.64 | 0.48 | 0.68 | 0.60 | 0.68 | 0.64 |
Separated, divorced, widowed | 0.64 | 0.51 | 0.65 | 0.57 | 0.68 | 0.64 |
Men | Women | |||||||
---|---|---|---|---|---|---|---|---|
Cut-Off for NC (cm) | Se (%) | Sp (%) | AUC (CI 95%) (%) | Cut-Off for NC (cm) | Se (%) | Sp (%) | AUC (CI 95%) (%) | |
TOTAL | ||||||||
WC | ||||||||
Overweight | 39.0 | 76.5 | 83.4 | 85.9 (84.6–87.1) | 32.9 | 77.4 | 77.6 | 83.8 (82.6–84.9) |
Obesity | 39.8 | 78.7 | 83.5 | 88.3 (87.0–89.7) | 33.7 | 78.8 | 77.8 | 84.9 (83.8–86.0) |
BMI | ||||||||
Overweight | 37.5 | 73.6 | 78.0 | 82.5 (81.3–83.7) | 33.1 | 73.5 | 78.5 | 82.5 (81.3–83.6) |
Obesity | 39.2 | 75.9 | 79.9 | 83.0 (81.4–84.7) | 34.2 | 80.0 | 75.9 | 84.4 (83.2–85.7) |
Argentina | ||||||||
WC | ||||||||
Overweight | 38.6 | 79.2 | 86.8 | 87.9 (84.6–91.2) | 33.2 | 75.5 | 84.3 | 88.5 (86.0–90.9) |
Obesity | 39.0 | 89.4 | 79.6 | 90.6 (87.4–93.8) | 33.6 | 84.2 | 78.7 | 89.6 (87.3–91.9) |
BMI | ||||||||
Overweight | 38.0 | 64.6 | 82.5 | 76.6 (72.7–80.5) | 33.4 | 76.3 | 82.5 | 87.5 (84.9–90.0) |
Obesity | 39.0 | 75.6 | 76.2 | 78.9 (73.5–84.3) | 34.5 | 81.7 | 80.4 | 89.5 (86.9–92.0) |
Brazil | ||||||||
WC | ||||||||
Overweight | 37.4 | 74.6 | 70.0 | 78.5 (75.2–81.7) | 32.0 | 75.0 | 63.2 | 75.9 (72.9–78.9) |
Obesity | 38.5 | 76.6 | 74.7 | 82.5 (78.9–86.1) | 33.0 | 76.5 | 68.4 | 78.9 (76.2–81.6) |
BMI | ||||||||
Overweight | 37.0 | 70.1 | 68.1 | 75.0 (71.9–78.1) | 32.0 | 74.7 | 56.7 | 72.7 (69.7–75.7) |
Obesity | 37.1 | 77.8 | 63.6 | 76.1 (72.1–80.0) | 33.0 | 77.7 | 57.8 | 76.1 (72.8–79.3) |
Chile | ||||||||
WC | ||||||||
Overweight | 39.4 | 77.0 | 82.2 | 88.4 (85.3–91.6) | 33.5 | 84.4 | 76.9 | 87.9 (84.1–91.6) |
Obesity | 40.2 | 85.3 | 82.9 | 91.9 (89.1–94.7) | 34.8 | 83.6 | 80.0 | 88.7 (85.6–91.7) |
BMI | ||||||||
Overweight | 38.2 | 81.0 | 72.6 | 85.0 (81.2–88.8) | 34.4 | 80.1 | 88.5 | 91.7 (89.1–94.3) |
Obesity | 40.2 | 85.7 | 82.2 | 90.4 (86.8–93.9) | 35.3 | 86.4 | 76.4 | 89.3 (86.5–92.1) |
Perú | ||||||||
WC | ||||||||
Overweight | 38.6 | 84.1 | 86.5 | 91.7 (88.8–94.6) | 32.7 | 76.9 | 87.8 | 89.4 (86.9–91.9) |
Obesity | 39.3 | 96.8 | 83.3 | 95.2 (93.4–97.0) | 33.1 | 86.4 | 76.9 | 89.5 (87.0–91.9) |
BMI | ||||||||
Overweight | 36.9 | 81.3 | 75.9 | 87.3 (84.4–90.3) | 32.8 | 78.7 | 86.1 | 89.3 (86.7–91.9) |
Obesity | 39.1 | 92.0 | 84.0 | 92.6 (89.8–95.3) | 33.8 | 90.3 | 71.3 | 88.1 (85.1–91.0) |
Colombia | ||||||||
WC | ||||||||
Overweight | 38.2 | 79.4 | 79.6 | 88.2 (85.3–91.1) | 32.8 | 78.2 | 71.9 | 81.6 (78.2–84.9) |
Obesity | 39.9 | 77.5 | 86.4 | 89.3 (85.6–93.1) | 33.8 | 88.0 | 58.8 | 84.1 (80.9–87.3) |
BMI | ||||||||
Overweight | 37.0 | 83.8 | 71.5 | 86.3 (83.4–89.1) | 32.5 | 82.7 | 64.7 | 81.3 (78.0–84.7) |
Obesity | 39.1 | 83.1 | 82.9 | 89.9(86.4–93.5) | 33.8 | 86.6 | 73.0 | 87.4 (84.2–90.5) |
Costa Rica | ||||||||
WC | ||||||||
Overweight | 38.9 | 87.3 | 79.2 | 86.9 (83.2–90.7) | 32.6 | 84.7 | 81.9 | 90.5 (87.2–93.9) |
Obesity | 39.6 | 81.8 | 76.8 | 87.2 (82.9–91.5) | 33.5 | 89.0 | 72.5 | 89.1 (86.0–92.3) |
BMI | ||||||||
Overweight | 38.4 | 79.9 | 87.1 | 90.2 (87.2–93.2) | 33.7 | 81.1 | 82.2 | 91.0 (88.1–93.9) |
Obesity | 39.6 | 85.6 | 78.3 | 89.1 (85.2–93.1) | 34.8 | 94.0 | 59.7 | 88.9 (85.6–92.1) |
Ecuador | ||||||||
WC | ||||||||
Overweight | 37.5 | 82.9 | 73.8 | 85.5 (81.4–89.7) | 32.9 | 74.7 | 82.0 | 86.2 (82.5–89.9) |
Obesity | 38.7 | 87.5 | 77.9 | 87.7 (82.2–93.1) | 33.7 | 69.7 | 79.3 | 82.2 (78.1–86.2) |
BMI | ||||||||
Overweight | 36.5 | 82.6 | 74.7 | 86.3 (82.8–89.9) | 32.9 | 74.2 | 73.4 | 79.9 (75.4–84.5) |
Obesity | 38.7 | 75.0 | 80.0 | 83.8 (78.7–88.9) | 34.2 | 79.0 | 83.2 | 84.6 (80.3–88.9) |
Venezuela | ||||||||
WC | ||||||||
Overweight | 39.0 | 80.5 | 81.9 | 86.4 (83.0–89.8) | 33.1 | 76.1 | 82.8 | 86.6 (83.4–89.8) |
Obesity | 39.8 | 82.0 | 80.3 | 87.7 (83.9–91.4) | 33.7 | 83.8 | 77.2 | 86.7 (83.7–89.7) |
BMI | ||||||||
Overweight | 37.6 | 78.3 | 79.1 | 84.6 (81.3–88.0) | 33.3 | 77.1 | 79.3 | 84.3 (81.0–87.6) |
Obesity | 39.8 | 73.3 | 81.1 | 80.1 (75.4–84.9) | 34.4 | 82.4 | 75.9 | 83.7 (80.1–87.3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liria-Domínguez, R.; Pérez-Albela, M.; Vásquez, M.-P.; Gómez, G.; Kovalskys, I.; Fisberg, M.; Cortés, L.Y.; Yépez García, M.C.; Herrera-Cuenca, M.; Rigotti, A.; et al. Correlation between Neck Circumference and Other Anthropometric Measurements in Eight Latin American Countries. Results from ELANS Study. Int. J. Environ. Res. Public Health 2021, 18, 11975. https://doi.org/10.3390/ijerph182211975
Liria-Domínguez R, Pérez-Albela M, Vásquez M-P, Gómez G, Kovalskys I, Fisberg M, Cortés LY, Yépez García MC, Herrera-Cuenca M, Rigotti A, et al. Correlation between Neck Circumference and Other Anthropometric Measurements in Eight Latin American Countries. Results from ELANS Study. International Journal of Environmental Research and Public Health. 2021; 18(22):11975. https://doi.org/10.3390/ijerph182211975
Chicago/Turabian StyleLiria-Domínguez, Reyna, Marcela Pérez-Albela, María-Paz Vásquez, Georgina Gómez, Irina Kovalskys, Mauro Fisberg, Lilia Yadira Cortés, Martha Cecilia Yépez García, Marianella Herrera-Cuenca, Attilio Rigotti, and et al. 2021. "Correlation between Neck Circumference and Other Anthropometric Measurements in Eight Latin American Countries. Results from ELANS Study" International Journal of Environmental Research and Public Health 18, no. 22: 11975. https://doi.org/10.3390/ijerph182211975
APA StyleLiria-Domínguez, R., Pérez-Albela, M., Vásquez, M.-P., Gómez, G., Kovalskys, I., Fisberg, M., Cortés, L. Y., Yépez García, M. C., Herrera-Cuenca, M., Rigotti, A., Ferrari, G., Pareja, R. G., & on behalf of the ELANS Study Group. (2021). Correlation between Neck Circumference and Other Anthropometric Measurements in Eight Latin American Countries. Results from ELANS Study. International Journal of Environmental Research and Public Health, 18(22), 11975. https://doi.org/10.3390/ijerph182211975