Influence of Congested Match Schedules, Pre-Match Well-Being and Level of Opponents on Match Loads during World Rugby Women’s Sevens Series
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Participants
2.3. Procedures
2.3.1. External Load Measures
2.3.2. Internal Load Measures
2.3.3. Well-Being Questionnaire
2.3.4. Level of Opponents
2.4. Statistical Analyses
3. Results
4. Discussion
Practical Applications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ball, S.; Halaki, M.; Orr, R. Movement Demands of Rugby Sevens in Men and Women. J. Strength Cond. Res. 2019, 33, 3475–3490. [Google Scholar] [CrossRef]
- Schuster, J.; Howells, D.; Robineau, J.; Couderc, A.; Natera, A.; Lumley, N.; Gabbett, T.J.; Winkelman, N. Physical-Preparation Recommendations for Elite Rugby Sevens Performance. Int. J. Sports Physiol. Perform. 2018, 13, 255–268. [Google Scholar] [CrossRef] [PubMed]
- Clarke, A.C.; Anson, J.M.; Pyne, D.B. Neuromuscular fatigue and muscle damage after a women’s rugby sevens tournament. Int. J. Sports Physiol. Perform. 2015, 10, 808–814. [Google Scholar] [CrossRef]
- Carreras, D.; Kraak, W.; Planas, A.; Martín, I.; Vaz, L. Analysis of International Rugby Sevens matches during tournaments. Int. J. Perform. Anal. Sport 2013, 13, 833–847. [Google Scholar] [CrossRef]
- Doeven, S.H.; Brink, M.S.; Huijgen, B.C.H.; de Jong, J.; Lemmink, K.A.P.M. High match load’s relation to decreased well-being during an elite women’s rugby sevens tournament. Int. J. Sports Physiol. Perform. 2019, 14, 1036–1042. [Google Scholar] [CrossRef] [PubMed]
- Murray, A.M.; Varley, M.C. Activity profile of international rugby sevens: Effect of score line, opponent, and substitutes. Int. J. Sports Physiol. Perform. 2015, 10, 791–801. [Google Scholar] [CrossRef] [PubMed]
- Boyd, L.J.; Ball, K.; Aughey, R.J. The reliability of minimaxx accelerometers for measuring physical activity in australian football. Int. J. Sports Physiol. Perform. 2011, 6, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Suarez-Arrones, L.; Nuñez, F.J.; Mendez-Villanueva, A.; Portillo, J. Match running performance and exercise intensity in elite female rugby sevens. J. Strength Cond. Res. 2012, 26, 1858–1862. [Google Scholar] [CrossRef]
- Portillo, J.; González-Ravé, J.M.; Juárez, D.; García, J.M.; Suárez-Arrones, L.; Newton, R.U. Comparison of running characteristics and heart rate response of international and national female rugby sevens players during competitive matches. J. Strength Cond. Res. 2014, 28, 2281–2289. [Google Scholar] [CrossRef]
- Foster, C.; Florhaug, J.A.; Franklin, J.; Gottschall, L.; Hrovatin, L.A.; Parker, S.; Doleshal, P.; Dodge, C. A New Approach to Monitoring Exercise Training. J. Strength Cond. Res. 2001, 15, 109–115. [Google Scholar] [CrossRef]
- Conte, D.; Kolb, N.; Scanlan, A.T.; Santolamazza, F. Monitoring training load and well-being during the in-season phase in national collegiate athletic association division i men’s basketball. Int. J. Sports Physiol. Perform. 2018, 13, 1067–1074. [Google Scholar] [CrossRef] [PubMed]
- Lupo, C.; Ungureanu, A.N.; Boccia, G.; Licciardi, A.; Rainoldi, A.; Brustio, P.R. Internal-Training-Load Monitoring, Notational and Time-Motion Analyses, Psychometric Status, and Neuromuscular Responses in Elite Rugby Union. Int. J. Sports Physiol. Perform. 2021, 16, 1–8. [Google Scholar] [CrossRef]
- Marrier, B.; Meur, Y.L.; Leduc, C.; Piscione, J.; Lacome, M.; Igarza, G.; Hausswirth, C.; Morin, J.-B.B.; Robineau, J.; Le Meur, Y.; et al. Training periodization over an elite rugby sevens season: From theory to practice. Int. J. Sports Physiol. Perform. 2019, 14, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sport. Exerc. 2009, 41, 3–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallo, T.F.; Cormack, S.J.; Gabbett, T.J.; Lorenzen, C.H. Pre-training perceived wellness impacts training output in Australian football players. J. Sports Sci. 2016, 34, 1445–1451. [Google Scholar] [CrossRef]
- Clemente, F.M.; Mendes, B.; Nikolaidis, P.T.; Calvete, F.; Carriço, S.; Owen, A.L. Internal training load and its longitudinal relationship with seasonal player wellness in elite professional soccer. Physiol. Behav. 2017, 179, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Govus, A.D.; Coutts, A.; Duffield, R.; Murray, A.; Fullagar, H. Relationship between pretraining subjective wellness measures, player load, and rating-of-perceived-exertion training load in American college football. Int. J. Sports Physiol. Perform. 2018, 13, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Lukonaitienė, I.; Conte, D.; Paulauskas, H.; Pliauga, V.; Kreivytė, R.; Stanislovaitienė, J.; Kamandulis, S. Investigation of readiness and perceived workload in junior female basketball players during a congested match schedule. Biol. Sport 2021, 38, 341–349. [Google Scholar] [CrossRef]
- Ungureanu, A.N.; Brustio, P.R.; Boccia, G.; Rainoldi, A.; Lupo, C. Effects of Presession Well-Being Perception on Internal Training Load in Female Volleyball Players. Int. J. Sports Physiol. Perform. 2020, 16, 622–627. [Google Scholar] [CrossRef]
- Ryan, S.; Coutts, A.J.; Hocking, J.; Kempton, T. Factors Affecting Match Running Performance in Professional Australian Football. Int. J. Sports Physiol. Perform. 2017, 12, 1199–1204. [Google Scholar] [CrossRef]
- Dalton-Barron, N.; Whitehead, S.; Roe, G.; Cummins, C.; Beggs, C.; Jones, B. Time to embrace the complexity when analysing GPS data? A systematic review of contextual factors on match running in rugby league. J. Sports Sci. 2020, 38, 1161–1180. [Google Scholar] [CrossRef]
- Delaney, J.A.; Thornton, H.R.; Duthie, G.M.; Dascombe, B.J. Factors That Influence Running Intensity in Interchange Players in Professional Rugby League. Int. J. Sports Physiol. Perform. 2016, 11, 1047–1052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabbett, T.J. Influence of the Opposing Team on the Physical Demands of Elite Rugby League Match Play. J. Strength Cond. Res. 2013, 27, 1629–1635. [Google Scholar] [CrossRef] [Green Version]
- Kempton, T.; Coutts, A.J. Factors affecting exercise intensity in professional rugby league match-play. J. Sci. Med. Sport 2016, 19, 504–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, L.; Orme, P.; Di Michele, R.; Close, G.L.; Milsom, J.; Morgans, R.; Drust, B.; Morton, J.P. Quantification of seasonal-long physical load in soccer players with different starting status from the English premier league: Implications for maintaining squad physical fitness. Int. J. Sports Physiol. Perform. 2016, 11, 1038–1046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Dependent Variables | AIC | R2 Conditional | p-Value |
---|---|---|---|
sRPE (AU) | −175.013 | 0.046 | 0.225 |
sRPE-ML (AU) | 1097.276 | 0.013 | 0.712 |
TD/min (m/min) | 922.071 | 0.277 | 0.483 |
Walking/min (m/min) | 655.041 | 0.098 | 0.232 |
Jogging/min (m/min) | 723.363 | 0.116 | 0.635 |
Cruising/min (m/min) | 588.858 | 0.078 | 0.220 |
Striding/min (m/min) | 700.532 | 0.204 | 0.021 # |
HIR/min (m/min) | 536.860 | 0.067 | 0.468 |
Sprint/min (m/min) | 648.738 | 0.139 | 0.325 |
ACC/min (n/min) | 120.892 | 0.038 | 0.579 |
DECEL/min (n/min) | 170.747 | 0.190 | 0.292 |
Dependent Variables | AIC | R2 Conditional | p-Value |
---|---|---|---|
Fatigue | −288.993 | 0.304 | <0.001 |
Sleep quality | −196.895 | 0.139 | 0.043 |
Muscle soreness | −251.090 | 0.263 | 0.004 |
Stress levels | −407.567 | 0.780 | 0.275 |
Mood | −386.724 | 0.545 | 0.083 |
Overall wellness | −426.364 | 0.441 | <0.001 |
Dependent Variables | AIC | R2 Conditional | Fixed Effects | Estimate (95% CI) | SE | p-Value |
---|---|---|---|---|---|---|
sRPE (AU) | −113.336 | 0.054 | Fatigue | 0.017 (−0.322, 0.355) | 0.173 | 0.924 |
Sleep | −0.136 (−0.405, 0.134) | 0.138 | 0.328 | |||
Soreness | −0.085 (−0.039, 0.217) | 0.154 | 0.584 | |||
Stress | −0.079 (−0.470, 0.312) | 0.199 | 0.694 | |||
Mood | −0.262 (−0.728, 0.203) | 0.237 | 0.273 | |||
Level of opponents | 0.008 (−0.039, 0.056) | 0.024 | 0.736 | |||
sRPE-ML (AU) | 754.650 | 0.100 | Fatigue | 74.970 (−65.500, 215.480) | 71.690 | 0.299 |
Sleep | −113.260 (−225.100, −1.430) | 57.060 | 0.051 | |||
Soreness | −54.810 (−180.100, 70.510) | 63.940 | 0.394 | |||
Stress | −112.100 (−274.100, 49.900) | 82.650 | 0.179 | |||
Mood | −37.190 (−230.200, 155.780) | 98.450 | 0.707 | |||
Level of opponents | 3.620 (−16.100, 23.310) | 10.040 | 0.719 | |||
TD/min (m/min) | 634.595 | 0.232 | Fatigue | −13.939 (−73.370, 45.490) | 30.320 | 0.647 |
Sleep | −10.443 (−57.040, 36.150) | 23.770 | 0.662 | |||
Soreness | −22.209 (−74.960, 30.540) | 26.910 | 0.412 | |||
Stress | 24.807 (−42.800, 92.420) | 34.490 | 0.475 | |||
Mood | 15.841 (−63.020, 94.710) | 40.240 | 0.695 | |||
Level of opponents | 0.584 (−7.440, 8.610) | 4.090 | 0.887 | |||
Walking/min (m/min) | 446.211 | 0.046 | Fatigue | −5.772 (−22.270, 10.730) | 8.418 | 0.495 |
Sleep | 4.047 (−9.080, 17.180) | 6.700 | 0.548 | |||
Soreness | −6.603 (−21.320, 8.110) | 7.508 | 0.382 | |||
Stress | 0.258 (−18.770, 19.280) | 9.706 | 0.979 | |||
Mood | 0.180 (−22.480, 22.840) | 11.561 | 0.988 | |||
Level of opponents | 1.224 (−1.090, 3.540) | 1.179 | 0.303 | |||
Jogging/min (m/min) | 497.060 | 0.132 | Fatigue | −8.290 (−31.550, 14.980) | 11.870 | 0.487 |
Sleep | −4.650 (−23.010, 13.700) | 9.360 | 0.621 | |||
Soreness | −3.910 (−24.560, 16.740) | 10.540 | 0.712 | |||
Stress | 13.680 (−12.950, 40.320) | 13.590 | 0.318 | |||
Mood | −4.880 (−36.180, 26.430) | 15.970 | 0.761 | |||
Level of opponents | 1.020 (−2.170, 4.200) | 1.630 | 0.534 | |||
Cruising/min (m/min) | 415.451 | 0.026 | Fatigue | −2.035 (−15.360, 11.290) | 6.799 | 0.766 |
Sleep | −3.774 (−14.380, 6.830) | 5.411 | 0.488 | |||
Soreness | −1.830 (−13.720, 10.060) | 6.064 | 0.764 | |||
Stress | 4.776 (−10.590, 20.140) | 7.839 | 0.544 | |||
Mood | 1.457 (−16.840, 19.760) | 9.338 | 0.876 | |||
Level of opponents | 0.157 (−1.710, 2.020) | 0.952 | 0.869 | |||
Striding/min (m/min) | 481.644 | 0.206 | Fatigue | 5.930 (−14.740, 26.605) | 10.550 | 0.576 |
Sleep | −3.020 (−19.250, 13.217) | 8.280 | 0.717 | |||
Soreness | −3.270 (−21.620, 15.068) | 9.360 | 0.728 | |||
Stress | 13.390 (−10.170, 36.955) | 12.020 | 0.269 | |||
Mood | 3.170 (−24.370, 30.703) | 14.050 | 0.823 | |||
Level of opponents | −1.880 (−4.690, 0.917) | 1.430 | 0.192 | |||
HIR/min (m/min) | 379.950 | 0.086 | Fatigue | −6.593 (−17.010, 3.820) | 5.313 | 0.219 |
Sleep | −1.592 (−9.880, 6.700) | 4.229 | 0.708 | |||
Soreness | −3.325 (−12.610, 5.960) | 4.739 | 0.485 | |||
Stress | 5.204 (−6.800, 17.210) | 6.126 | 0.398 | |||
Mood | 5.654 (−8.650, 19.960) | 7.297 | 0.441 | |||
Level of opponents | 0.115 (−1.340, 1.570) | 0.744 | 0.877 | |||
Sprint/min (m/min) | 445.249 | 0.146 | Fatigue | −0.144 (−16.330, 16.040) | 8.258 | 0.986 |
Sleep | −1.463 (−14.210, 11.280) | 6.504 | 0.823 | |||
Soreness | −7.444 (−21.800, 6.920) | 7.327 | 0.313 | |||
Stress | −11.816 (−30.320, 6.680) | 9.439 | 0.215 | |||
Mood | 14.583 (−7.120, 36.280) | 11.071 | 0.192 | |||
Level of opponents | 0.523 (−1.680, 2.730) | 1.126 | 0.644 | |||
ACC/min (n/min) | 99.437 | 0.098 | Fatigue | 0.387 (−1.092, 1.866) | 0.755 | 0.610 |
Sleep | 0.414 (−0.757, 1.586) | 0.598 | 0.491 | |||
Soreness | −0.805 (−2.120, 0.510) | 0.671 | 0.234 | |||
Stress | −0.377 (−2.076, 1.323) | 0.867 | 0.665 | |||
Mood | 1.422 (−0.586, 3.430) | 1.025 | 0.170 | |||
Level of opponents | −0.010 (−0.214, 0.195) | 0.104 | 0.926 | |||
DECEL/min (n/min) | 136.354 | 0.148 | Fatigue | −0.617 (−2.535, 1.302) | 0.979 | 0.531 |
Sleep | −0.258 (−1.269, 1.785) | 0.779 | 0.741 | |||
Soreness | −1.657 (−3.368, 0.055) | 0.873 | 0.062 | |||
Stress | 1.428 (−0.784, 3.640) | 1.129 | 0.210 | |||
Mood | 0.959 (−1.676, 3.593) | 1.344 | 0.478 | |||
Level of opponents | 0.031 (−0.238, 0.300) | 0.137 | 0.822 |
Dependent Variables | AIC | R2 Conditional | Fixed Effects | Estimate (95% CI) | SE | p-Value |
---|---|---|---|---|---|---|
sRPE (AU) | −120.659 | 0.045 | Overall wellness | −0.535 (−1.111, 0.041) | 0.294 | 0.073 |
Level of opponents | 0.007 (−0.040, 0.054) | 0.024 | 0.776 | |||
sRPE-ML (AU) | 750.707 | 0.047 | Overall wellness | −229.910 (−474.300, 14.500) | 124.68 | 0.069 |
Level of opponents | 3.600 (−16.400, 23.600) | 10.190 | 0.725 | |||
TD/min (m/min) | 629.666 | 0.237 | Overall wellness | −15.177 (−122.150, 91.800) | 54.580 | 0.782 |
Level of opponents | −0.268 (−8.260, 7.730) | 4.080 | 0.948 | |||
Walking/min (m/min) | 440.221 | 0.018 | Overall wellness | −6.610 (−34.900. 21.690) | 14.435 | 0.649 |
Level of opponents | 1.270 (−1.040, 3.580) | 1.179 | 0.284 | |||
Jogging/min (m/min) | 491.835 | 0.120 | Overall wellness | −16.350 (−57.670, 24.970) | 21.080 | 0.441 |
Level of opponents | 0.635 (−2.540, 3.810) | 1.620 | 0.697 | |||
Cruising/min (m/min) | 408.974 | 0.020 | Overall wellness | −5.602 (−28.520, 17.320) | 11.696 | 0.634 |
Level of opponents | −0.006 (−1.850, 1.840) | 0.942 | 0.995 | |||
Striding/min (m/min) | 475.585 | 0.221 | Overall wellness | 11.860 (−24.960, 48.675) | 18.790 | 0.530 |
Level of opponents | −2.220 (−4.990, 0.547) | 1.410 | 0.121 | |||
HIR/min (m/min) | 377.979 | 0.024 | Overall wellness | −4.588 (−23.090, 13.920) | 9.442 | 0.629 |
Level of opponents | −0.015 (−1.500, 1.470) | 0.759 | 0.984 | |||
Sprint/min (m/min) | 440.206 | 0.111 | Overall wellness | −0.774 (−29.640, 28.090) | 14.728 | 0.958 |
Level of opponents | 0.696 (−1.530, 2.920) | 1.134 | 0.541 | |||
ACC/min (n/min) | 94.742 | 0.061 | Overall wellness | 1.432 (−1.173, 4.037) | 1.329 | 0.285 |
Level of opponents | 0.003 (−0.203, 0.209) | 0.105 | 0.975 | |||
DECEL/min (n/min) | 137.087 | 0.136 | Overall wellness | 0.297 (−3.221, 3.815) | 1.795 | 0.869 |
Level of opponents | −0.011 (−0.279, 0.258) | 0.137 | 0.937 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conte, D.; Guerriero, A.; Lupo, C.; Schultz Arruda, A.F.; Kamarauskas, P. Influence of Congested Match Schedules, Pre-Match Well-Being and Level of Opponents on Match Loads during World Rugby Women’s Sevens Series. Int. J. Environ. Res. Public Health 2021, 18, 12132. https://doi.org/10.3390/ijerph182212132
Conte D, Guerriero A, Lupo C, Schultz Arruda AF, Kamarauskas P. Influence of Congested Match Schedules, Pre-Match Well-Being and Level of Opponents on Match Loads during World Rugby Women’s Sevens Series. International Journal of Environmental Research and Public Health. 2021; 18(22):12132. https://doi.org/10.3390/ijerph182212132
Chicago/Turabian StyleConte, Daniele, Aristide Guerriero, Corrado Lupo, Ademir Felipe Schultz Arruda, and Paulius Kamarauskas. 2021. "Influence of Congested Match Schedules, Pre-Match Well-Being and Level of Opponents on Match Loads during World Rugby Women’s Sevens Series" International Journal of Environmental Research and Public Health 18, no. 22: 12132. https://doi.org/10.3390/ijerph182212132
APA StyleConte, D., Guerriero, A., Lupo, C., Schultz Arruda, A. F., & Kamarauskas, P. (2021). Influence of Congested Match Schedules, Pre-Match Well-Being and Level of Opponents on Match Loads during World Rugby Women’s Sevens Series. International Journal of Environmental Research and Public Health, 18(22), 12132. https://doi.org/10.3390/ijerph182212132