The Effects of Sit-to-Stand Training Combined with Real-Time Visual Feedback on Strength, Balance, Gait Ability, and Quality of Life in Patients with Stroke: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Experimental Procedures
2.2.1. The Sit-to-Stand Training Program with Real-Time Visual Feedback
2.2.2. Sit-to-Stand Training Program
2.2.3. General Physical Therapy
2.3. Outcome Measurements
2.3.1. Muscle Strength Test of Lower Extremities
2.3.2. Balance
2.3.3. Gait
2.3.4. Quality of Life
2.4. Statistical Analysis
3. Results
3.1. Muscle Strength of the Lower Extremities
3.2. Balance
3.3. Gait
3.4. Quality of Life
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- O’Sullivan, S.B.; Schmitz, T.J.; Fulk, G. Physical Rehabilitation, 7th ed.; F.A. Davis Co.: Philadelphia, PA, USA, 2019; pp. 670–671. [Google Scholar]
- Briere, A.; Lauziere, S.; Gravel, D.; Nadeau, S. Perception of weight-bearing distribution during sit-to-stand tasks in hemiparetic and healthy individuals. Stroke 2010, 41, 1704–1708. [Google Scholar] [CrossRef] [Green Version]
- Inness, E.L.; Mansfield, A.; Lakhani, B.; Bayley, M.; Mcllroy, W.E. Impaired reactive stepping among patients ready for discharge from inpatient stroke rehabilitation. Phys. Ther. 2014, 94, 1755–1764. [Google Scholar] [CrossRef]
- Walker, C.; Brouwer, B.J.; Culham, E.G. Use of visual feedback in retraining balance following acute stroke. Phys. Ther. 2000, 80, 886–895. [Google Scholar] [CrossRef] [Green Version]
- Carr, J.H.; Shepherd, R.B.; Nordholm, L.; Lynne, D. Investigation of a new motor assessment scale for stroke patients. Phys. Ther. 1985, 65, 175–180. [Google Scholar] [CrossRef] [Green Version]
- Pang, M.Y.; Eng, J.J.; Dawson, A.S.; McKay, H.A.; Harris, J.E. A community-based fitness and mobility exercise program for older adults with chronic stroke: A randomized controlled trial. J. Am. Geriatr. Soc. 2005, 53, 1667–1674. [Google Scholar] [CrossRef] [Green Version]
- Nichols-Larsen, D.S.; Clark, P.C.; Zeringue, A.; Greenspan, A.; Blanton, S. Factors influencing stroke survivors’ quality of life during subacute recovery. Stroke 2005, 36, 1480–1484. [Google Scholar] [CrossRef]
- Eng, J.J.; Chu, K.S. Reliability and comparison of weight-bearing ability during standing tasks for individuals with chronic stroke. Arch. Phys. Med. Rehabil. 2002, 83, 1138–1144. [Google Scholar] [CrossRef] [Green Version]
- Cheng, P.T.; Liaw, M.Y.; Wong, M.K.; Tang, F.T.; Lee, M.Y.; Lin, P.S. The sit-to-stand movement in stroke patients and its correlation with falling. Arch. Phys. Med. Rehabil. 1998, 79, 1043–1046. [Google Scholar] [CrossRef]
- Monger, C.; Carr, J.H.; Fowler, V. Evaluation of a home-based exercise and training programme to improve sit-to-stand in patients with chronic stroke. Clin. Rehabil. 2002, 16, 361–367. [Google Scholar] [CrossRef]
- Graham, J.V.; Eustace, C.; Brock, K.; Swain, E.; Irwin-Carruthers, S. The Bobath concept in contemporary clinical practice. Top. Stroke Rehabil. 2009, 16, 57–68. [Google Scholar] [CrossRef]
- Shimura, K.; Kasai, T. Effects of proprioceptive neuromuscular facilitation on the initiation of voluntary movement and motor evoked potentials in upper limb muscles. Hum. Mov. Sci. 2002, 21, 101–113. [Google Scholar] [CrossRef]
- Noh, D.K.; Lim, J.Y.; Shin, H.I.; Paik, N.J. The effect of aquatic therapy on postural balance and muscle strength in stroke survivors--a randomized controlled pilot trial. Clin. Rehabil. 2008, 22, 966–976. [Google Scholar]
- Cortes, C.; Ardanza, A.; Molina-Rueda, F.; Cuesta-Gomez, A.; Unzueta, L.; Epelde, G.; Ruiz, O.E.; Mauro, A.D.; Florez, J. Upper limb posture estimation in robotic and virtual reality-based rehabilitation. BioMed Res. Int. 2014, 2014, 821908. [Google Scholar] [CrossRef]
- Husemann, B.; Mller, F.; Krewer, C.; Heller, S.; Koenig, E. Effects of locomotion training with assistance of a robot-driven gait orthosis in hemiparetic patients after stroke: A randomized controlled pilot study. Stroke 2007, 38, 349–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- French, B.; Thomas, L.H.; Leathley, M.J.; Sutton, C.J.; McAdam, J.; Forster, A.; Langhorne, P.; Price, C.I.M.; Walker, A.; Watkins, C. L Repetitive task training for improving functional ability after stroke. Stroke 2009, 40, 98–99. [Google Scholar] [CrossRef]
- Maclean, N.; Pound, P.; Wolfe, C.L.; Rudd, A. Qualitative analysis of stroke patients’ motivation for rehabilitation. BMJ 2000, 321, 1051–1054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quaney, B.M.; He, J.; Timberlake, G.; Dodd, K.; Carr, C. Visuomotor training improves stroke-related ipsilesional upper extremity impairments. Neurorehabil. Neural Repair 2010, 24, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Dozza, M.; Chiari, L.; Peterka, R.J.; Wall, C.; Horak, F.B. What is the most effective type of audio-biofeedback for postural motor learning? Gait. Posture 2011, 34, 313–319. [Google Scholar] [CrossRef]
- Seo, D.K.; Oh, D.W.; Lee, S.H. Effectiveness of ankle visuoperceptual-feedback training on balance and gait functions in hemiparetic patients. J. Korean Phys. Ther. 2010, 22, 35–41. [Google Scholar]
- Sackley, C.M.; Lincoln, N.B. Single blind randomized controlled trial of visual feedback after stroke: Effects on stance symmetry and function. Disabil. Rehabil. 1997, 19, 536–546. [Google Scholar] [CrossRef] [PubMed]
- Yen, C.Y.; Lin, K.H.; Hu, M.H.; Wu, R.M.; Lu, T.W.; Lin, C.H. Effects of virtual reality-augmented balance training on sensory organization and attentional demand for postural control in people with Parkinson disease: A randomized controlled trial. Phys. Ther. 2011, 91, 862–874. [Google Scholar] [CrossRef] [Green Version]
- Tung, F.L.; Yang, Y.R.; Lee, C.C.; Wang, R.Y. Balance outcomes after additional sit-to-stand training in subjects with stroke: A randomized controlled trial. Clin. Rehabil. 2010, 24, 533–542. [Google Scholar] [CrossRef]
- Yagura, H.; Miyai, I.; Seike, Y.; Suzuki, T.; Yangihara, T. Benefit of inpatient multidisciplinary rehabilitation up to 1 year after stroke. Arch. Phys. Med. Rehabil. 2003, 84, 1687–1691. [Google Scholar] [CrossRef]
- Masiero, S.; Avesani, R.; Armani, M.; Verena, P.; Ermani, M. Predictive factors for ambulation in stroke patients in the rehabilitation setting: A multivariate analysis. Clin. Neurol. Neurosurg. 2007, 109, 763–769. [Google Scholar] [CrossRef]
- Rowland, J.T.; Basic, D.; Storey, J.E.; Conforti, D.A. The Rowland Universal Dementia Assessment Scale (RUDAS) and the Folstein MMSE in a multicultural cohort of elderly persons. Int. Psychogeriatr. 2006, 18, 111–120. [Google Scholar] [CrossRef]
- Troyer, A.K. DemTect effective in screening for mild cognitive impairment and mild dementia. Evid. Based Ment. Health 2004, 7, 70. [Google Scholar] [CrossRef]
- Liu, M.; Chen, J.; Fan, W.; Mu, J.; Zhang, J.; Wang, L.; Zhuang, J.; Ni, C. Effects of modified sit-to-stand training on balance control in hemiplegic stroke patients: A randomized controlled trial. Clin. Rehabil. 2016, 30, 627–636. [Google Scholar] [CrossRef]
- Bensoussan, L.; Viton, J.M.; Schieppati, M.; Collado, H.; Bovis, V.M.; Mesure, S.; Delarque, A. Changes in postural control in hemiplegic patients after stroke performing a dual task. Arch. Phys. Med. Rehabil. 2007, 88, 1009–1015. [Google Scholar] [CrossRef]
- Wolfson, L.; Whipple, R.; Judge, J.; Amerman, P.; Derby, C.; King, M. Training balance and strength in the elderly to improve function. J. Am. Geriatr. Soc. 1993, 41, 341–343. [Google Scholar] [CrossRef]
- Pinches, J.; Hoermann, S. Evaluating automated real time feedback and instructions during computerized mirror therapy for upper limb rehabilitation using augmented reflection technology. In Proceedings of the 11th International Conference on Disability, Virtual Reality & Associated Technologies, Los Angeles, CA, USA, 20–22 September 2016. [Google Scholar]
- Camargos, A.C.; Rodrigues-de-Paula-Goulart, F.; Teixeira-Salmela, L.F. The effects of foot position on the performance of the sit-to-stand movement with chronic stroke subjects. Arch. Phys. Med. Rehabil. 2009, 90, 314–319. [Google Scholar] [CrossRef]
- Yang, Y.R.; Chen, I.H.; Liao, K.K.; Huang, C.C.; Wang, R.Y. Cortical reorganization induced by body weight-supported treadmill training in patients with hemiparesis of different stroke durations. Arch. Phys. Med. Rehabil. 2010, 91, 513–518. [Google Scholar] [CrossRef]
- Rocha Ade, S.; Knabben, R.J.; Michaelsen, S.M. Non-paretic lower limb constraint with a step decreases the asymmetry of vertical forces during sit-to-stand at two seat heights in subjects with hemiparesis. Gait. Posture 2010, 32, 457–463. [Google Scholar] [CrossRef]
- American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013. [Google Scholar]
- Mikolajewska, E. The value of the NDT-Bobath method in post-stroke gait training. Adv. Clin. Exp. Med. 2013, 22, 261–272. [Google Scholar]
- Mahony, K.; Hunt, A.; Daley, D.; Sims, S.; Adams, R. Inter-tester reliability and precision of manual muscle testing and hand-held dynamometry in lower limb muscles of children with spina bifida. Phys. Occup. Ther. Pediatr. 2009, 29, 44–59. [Google Scholar] [CrossRef]
- Bohannon, R.W. Test-retest reliability of hand-held dynamometry during a single session of strength assessment. Phys. Ther. 1986, 66, 206–209. [Google Scholar] [CrossRef]
- Park, D.S.; Lee, G. Validity and reliability of balance assessment software using the Nintendo Wii balance board: Usability and validation. J. Neuroeng. Rehabil. 2014, 11, 99. [Google Scholar] [CrossRef] [Green Version]
- Berg, K.; Wood-Dauphinee, S.; Williams, J.I. The Balance Scale: Reliability assessment with elderly residents and patients with an acute stroke. Scand. J. Rehabil. Med. 1995, 2, 27–36. [Google Scholar]
- Berg, K.; Wood-Dauphine, S.; Williams, J.I.; Gayton, D. Measuring balance in the elderly: Preliminary development of an instrument. Physiother. Can. 1989, 41, 304–311. [Google Scholar] [CrossRef]
- Berg, K.O.; Maki, B.E.; Williams, J.I.; Holliday, P.J.; Wood-Dauphinee, S.L. Clinical and laboratory measures of postural balance in an elderly population. Arch. Phys. Med. Rehabil. 1992, 73, 1073–1080. [Google Scholar]
- Podsiadlo, D.; Richardson, S. The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar]
- Dean, C.M.; Richards, C.L.; Malouin, F. Walking speed over 10 metres overestimates locomotor capacity after stroke. Clin. Rehabil. 2001, 15, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Dobkin, B.H. Short-distance walking speed and timed walking distance: Redundant measures for clinical trials? Neurology 2006, 66, 584–586. [Google Scholar] [CrossRef]
- Steffen, T.M.; Hacker, T.A.; Mollinger, L. Age- and gender-related test performance in community-dwelling elderly people: Six-Minute Walk Test, Berg Balance Scale, Timed Up & Go Test, and gait speeds. Phys. Ther. 2002, 82, 128–137. [Google Scholar]
- Williams, L.S.; Weinberger, M.; Harris, L.E.; Clark, D.O.; Biller, J. Development of a stroke-specific quality of life scale. Stroke 1999, 30, 1362–1369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moon, J.A. Study on the Factors Affecting Stroke Quality of Life; Using the Stroke-Specific Quality of Life (SS-QOL). Master’s Thesis, Daegu University, Daegu, Korea, 2003. [Google Scholar]
- Kim, C.M.; Eng, J.J. The relationship of lower-extremity muscle torque to locomotor performance in people with stroke. Phys. Ther. 2003, 83, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Nadeau, S.; Arsenault, A.B.; Gravel, D.; Bourbonnais, D. Analysis of the clinical factors determining natural and maximal gait speeds in adults with a stroke. Am. J. Phys. Med. Rehabil. 1999, 78, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.M.; Eng, J.J. Magnitude and pattern of 3D kinematic and kinetic gait profiles in persons with stroke: Relationship to walking speed. Gait. Posture 2004, 20, 140–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ada, L.; Dorsch, S.; Canning, C.G. Strengthening interventions increase strength and improve activity after stroke: A systematic review. Aust. J. Physiother. 2006, 52, 241–248. [Google Scholar] [CrossRef] [Green Version]
- Eriksrud, O.; Bohannon, R.W. Relationship of knee extension force to independence in sit-to-stand performance in patients receiving acute rehabilitation. Phys. Ther. 2003, 83, 544–551. [Google Scholar] [CrossRef] [Green Version]
- Nuzik, S.; Lamb, A.; VanSant, A.; Hirt, S. Sit-to-stand movement pattern. A kinematic study. Phys. Ther. 1986, 66, 1708–1713. [Google Scholar] [CrossRef] [PubMed]
- Powers, C.M. The influence of altered lower-extremity kinematics on patellofemoral joint dysfunction: A theoretical perspective. J. Orthop. Sports Phys. Ther. 2003, 33, 639–646. [Google Scholar] [CrossRef] [PubMed]
- Dault, M.C.; Yardley, L.; Frank, J.S. Does articulation contribute to modifications of postural control during dual-task paradigms? Brain Res. Cogn. Brain Res. 2003, 16, 434–440. [Google Scholar] [CrossRef]
- Yarossi, M.; Manuweera, T.; Adamovich, S.V.; Tunik, E. The Effects of Mirror Feedback during Target Directed Movements on Ipsilateral Corticospinal Excitability. Front. Hum. Neurosci. 2017, 11, 242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shumway-Cook, A.; Anson, D.; Haller, S. Postural sway biofeedback: Its effect on reestablishing stance stability in hemiplegic patients. Arch. Phys. Med. Rehabil. 1988, 69, 395–400. [Google Scholar]
- Carr, J.H.; Shepherd, R.B. Neurological Rehabilitation, 2nd ed.; Mosby Elsevier: St. Louis, MO, USA, 2011; pp. 857–858. [Google Scholar]
- Obata, H.; Kaeashima, N.; Ohtsuki, T.; Nakazawa, K. Aging effects on posture-related modulation of stretch reflex excitability in the ankle muscles in humans. J. Electromyogr. Kinesiol. 2012, 22, 31–36. [Google Scholar] [CrossRef]
- Aruin, A.S. Enhancing Anticipatory Postural Adjustments: A Novel Approach to Balance Rehabilitation. J. Nov. Physiother. 2016, 6, e144. [Google Scholar] [CrossRef] [PubMed]
- Blanchard, C.; Roll, R.; Roll, J.P.; Kavounoudias, A. Differential contributions of vision, touch and muscle proprioception to the coding of hand movements. PLoS ONE 2013, 8, e62475. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, A.; Taly, A.B.; Gupta, A.; Kumar, S.; Murali, T. Post-stroke balance training: Role of force platform with visual feedback technique. J. Neurol. Sci. 2009, 287, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Detrembleur, C.; Dierick, F.; Stoquart, G.; Chantraine, F.; Lejeune, T. Energy cost, mechanical work, and efficiency of hemiparetic walking. Gait. Posture 2003, 18, 47–55. [Google Scholar] [CrossRef]
- Scianni, A.; Teixeira-Salmela, L.F.; Ada, L. Effect of strengthening exercise in addition to task-specific gait training after stroke: A randomised trial. Int. J. Stroke 2010, 5, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Hornby, T.G.; Straube, D.S.; Kinnaird, C.R.; Holleram, C.L.; Echauz, A.J.; Rodriguez, K.S.; Wagner, E.J.; Narducci, E.A. Importance of specificity, amount, and intensity of locomotor training to improve ambulatory function in patients poststroke. Top. Stroke Rehabil. 2011, 18, 293–307. [Google Scholar] [CrossRef]
- Smania, N.; Picelli, A.; Munari, D.; Geroin, C.; Lanes, P.; Waldner, A.; Gandolfi, M. Rehabilitation procedures in the management of spasticity. Eur. J. Phys. Rehabil. Med. 2010, 46, 423–438. [Google Scholar] [PubMed]
- Lotte, F.; Guan, C.; Ang, K.K. Comparison of designs towards a subject-independent brain-computer interface based on motor imagery. In Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 3–6 September 2009. [Google Scholar]
- Horak, F.B.; Wrisley, D.M.; Frank, J. The Balance Evaluation Systems Test (BESTest) to differentiate balance deficits. Phys. Ther. 2009, 89, 484–498. [Google Scholar] [CrossRef]
- Heller, F.; Beuret-Blanquart, F.; Weber, J. Postural biofeedback and locomotion reeducation in stroke patients. Ann. Readapt. Med. Phys. 2005, 48, 187–195. [Google Scholar] [CrossRef]
- Saposnik, G.; Teasell, R.; Mamdani, M.; Hall, J.; Mcllroy, W.; Cheung, D.; Thorpe, K.E.; Cohen, L.G.; Bayley, M. Stroke Outcome Research Canada (SORCan) Working Group. Effectiveness of virtual reality using Wii gaming technology in stroke rehabilitation: A pilot randomized clinical trial and proof of principle. Stroke 2010, 41, 1477–1484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Peppen, R.P.; Kortsmit, M.; Lindeman, E.; Kwakkel, G. Effects of visual feedback therapy on postural control in bilateral standing after stroke: A systematic review. J. Rehabil. Med. 2006, 38, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Swinnen, S.P. Intermanual coordination: From behavioural principles to neural-network interactions. Nat. Rev. Neurosci. 2002, 3, 348–359. [Google Scholar] [CrossRef]
- Bartur, G.; Pratt, H.; Dickstein, R.; Frenkel-Toledo, S.; Geva, A.; Soroker, N. Electrophysiological manifestations of mirror visual feedback during manual movement. Brain Res. 2015, 1606, 113–124. [Google Scholar] [CrossRef]
- Chen, C.H.; Jeng, M.C.; Fung, C.P.; Doong, J.L.; Chuang, T.Y. benefits of virtual reality for patients in rehabilitation therapy. J. Sport. Rehabil. 2009, 18, 258–268. [Google Scholar] [CrossRef] [PubMed]
- Carey, J.R.; Kimberley, T.J.; Lewis, S.M.; Auerbach, E.J.; Dorsey, L.; Rundquist, P.; Ugurbil, K. Analysis of fMRI and finger tracking training in subjects with chronic stroke. Brain 2002, 125, 773–788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jun, H.J.; Kim, K.J.; Chun, I.A.; Moon, O.K. The relationship between stroke patients’ socio-economic conditions and their quality of life: The 2010 korean community health survey. J. Phys. Ther. Sci. 2015, 27, 781–784. [Google Scholar] [CrossRef] [Green Version]
- Haslam, C.; Holme, A.; Haslam, S.A.; Iyer, A.; Jetten, J.; Williams, W.H. Maintaining group memberships: Social identity continuity predicts well-being after stroke. Neuropsychol. Rehabil. 2008, 18, 671–691. [Google Scholar] [CrossRef] [PubMed]
- Noreau, L.; Desrosiers, J.; Robichaud, L.; Fougeyrollas, P.; Rochette, A.; Viscogliosi, C. Measuring social participation: Reliability of the LIFE-H in older adults with disabilities. Disabil. Rehabil. 2004, 26, 346–352. [Google Scholar] [CrossRef]
- Mayo, N.E.; Bronstein, D.; Scott, S.C.; Finch, L.E.; Miller, S. Necessary and sufficient causes of participation post-stroke: Practical and philosophical perspectives. Qual. Life Res. 2014, 23, 39–47. [Google Scholar] [CrossRef]
- Obembe, A.O.; Eng, J.J. Rehabilitation Interventions for Improving Social Participation after Stroke: A Systematic Review and Meta-analysis. Neurorehabil. Neural Repair 2016, 30, 384–392. [Google Scholar] [CrossRef] [Green Version]
- Globas, C.; Becker, C.; Cerny, J.; Lam, J.M.; Lindemann, U.; Forrester, L.W.; Macko, R.F.; Luft, A.R. Chronic stroke survivors benefit from high-intensity aerobic treadmill exercise: A randomized control trial. Neurorehabil. Neural Repair 2012, 26, 85–95. [Google Scholar] [CrossRef]
- Duncan, P.; Studenski, S.; Richards, L.; Gollub, S.; Lai, S.M.; Reker, D.; Perera, S.; Yates, J.; Koch, V.; Rigler, S.; et al. Randomized clinical trial of therapeutic exercise in subacute stroke. Stroke 2003, 34, 2173–2180. [Google Scholar] [CrossRef] [Green Version]
RVF-STS Program | Sit-to-Stand Training Program | Times |
---|---|---|
Looked at the monitor displaying the participant’s center of pressure on two force boards and observed their training in real-time through the front mirror during sit-to-stand training. | General sit-to-stand training | 12 times per set, 20 min once a day for 6 weeks |
Parameters | RVF-STS Group (n = 15) | Control Group (n = 15) | t(p) |
---|---|---|---|
Gender (male/female) | 6/9 | 7/8 | 0.357(0.724) |
Age (year) | 61.47(11.08) | 59.27(17.00) | 0.412(0.684) |
Height (cm) | 160.53(9.53) | 163.40(9.38) | −0.830(0.413) |
Weight (kg) | 61.50(9.73) | 64.05(17.77) | −0.488(0.629) |
Cause (infarction/hemorrhage) | 11/4 | 10/5 | −0.386(0.702) |
(right/left) | 9/6 | 7/8 | −0.714(0.481) |
(month) | 4.93(1.62) | 4.60(1.60) | 0.567(0.575) |
MMSE-K (score) | 26.73(2.12) | 26.07(1.98) | 0.890(0.381) |
MAS (score) | 0.20(0.41) | 0.13(0.35) | 0.475(0.638) |
Brunnstrome recovery stage (stage) | 4.20(0.68) | 4.40(0.63) | −0.837(0.410) |
Parameters | Pre-Test | Post-Test | SS | df | MS | t(p)/F(p) | |
---|---|---|---|---|---|---|---|
hip flexor (kg) | RVF-STS | 9.66(1.92) a | 12.46(3.07) | −6.017(0.000) | |||
Control | 9.87(1.83) | 11.17(3.s25) | −2.655(0.019) | ||||
Covariate | 195.34 | 1 | 195.34 | ||||
Group | 19.14 | 1 | 19.14 | 6.690(0.015) | |||
Error | 77.25 | 27 | 2.86 | ||||
hip extensor (kg) | RVF-STS | 9.44(1.44) | 11.66(2.62) | −5.503(0.000) | |||
Control | 9.48(2.00) | 10.32(2.76) | −2.178(0.047) | ||||
Covariate | 145.33 | 1 | 145.33 | ||||
Group | 14.48 | 1 | 14.48 | 6.930(0.014) | |||
Error | 56.43 | 27 | 2.09 | ||||
Knee extensor (kg) | RVF-STS | 14.86(1.16) | 19.96(2.60) | −7.650(0.000) | |||
Control | 15.75(1.48) | 17.82(3.50) | −2.495(0.026) | ||||
Covariate | 10.95 | 1 | 10.95 | ||||
Group | 53.80 | 1 | 53.80 | 6.152(0.020) | |||
Error | 236.11 | 27 | 8.74 |
Parameters | Pre-Test | Post-Test | SS | df | MS | t(p)/F(p) | |
---|---|---|---|---|---|---|---|
COP (cm) | RVF-STS | 94.11(11.31) a | 72.93(8.17) | 9.413(0.000) | |||
Control | 95.99(10.84) | 82.10(10.90) | 8.640(0.000) | ||||
Covariate | 1583.03 | 1 | 1583.03 | ||||
Group | 471.68 | 1 | 471.68 | 10.849(0.003) | |||
Error | 1173.88 | 27 | 43.47 | ||||
BBS (score) | RVF-STS | 37.20(10.00) | 51.27(5.56) | −5.503(0.000) | |||
Control | 41.60(8.90) | 47.73(8.62) | −2.178(0.047) | ||||
Covariate | 333.48 | 1 | 333.48 | ||||
Group | 205.76 | 1 | 205.76 | 6.930(0.014) | |||
Error | 1028.24 | 27 | 38.08 |
Parameters | Pre-Test | Post-Test | SS | df | MS | t(p)/F(p) | |
---|---|---|---|---|---|---|---|
TUG (sec) | RVF-STS | 20.70(9.15) a | 16.69(7.91) | 5.525(0.000) | |||
Control | 20.85(7.83) | 19.27(7.85) | 2.447(0.028) | ||||
covariate | 1575.26 | 1 | 1575.26 | ||||
Group | 45.03 | 1 | 45.03 | 7.207(0.012) | |||
Error | 168.72 | 27 | 6.24 | ||||
10MWT (sec) | RVF-STS | 26.05(13.12) | 11.42(2.91) | 4.718(0.000) | |||
Control | 20.24(12.00) | 15.14(9.37) | 2.165(0.048) | ||||
covariate | 274.48 | 1 | 274.48 | ||||
Group | 207.83 | 1 | 207.83 | 5.796(0.023) | |||
Error | 968.12 | 27 | 35.85 |
Parameters | Pre-Test | Post-Test | SS | df | MS | t(p)/F(p) | |
---|---|---|---|---|---|---|---|
SS-QOL (score) | RVF-STS | 149.93(23.28) a | 116.60(16.78) | 12.732(0.000) | |||
Control | 164.87(23.96) | 144.07(23.96) | 8.020(0.000) | ||||
Covariate | 14,086.24 | 1 | 14,086.24 | ||||
Group | 1809.08 | 1 | 1809.08 | 28.050(0.000) | |||
Error | 1741.34 | 27 | 64.49 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hyun, S.-J.; Lee, J.; Lee, B.-H. The Effects of Sit-to-Stand Training Combined with Real-Time Visual Feedback on Strength, Balance, Gait Ability, and Quality of Life in Patients with Stroke: A Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2021, 18, 12229. https://doi.org/10.3390/ijerph182212229
Hyun S-J, Lee J, Lee B-H. The Effects of Sit-to-Stand Training Combined with Real-Time Visual Feedback on Strength, Balance, Gait Ability, and Quality of Life in Patients with Stroke: A Randomized Controlled Trial. International Journal of Environmental Research and Public Health. 2021; 18(22):12229. https://doi.org/10.3390/ijerph182212229
Chicago/Turabian StyleHyun, Seung-Jun, Jin Lee, and Byoung-Hee Lee. 2021. "The Effects of Sit-to-Stand Training Combined with Real-Time Visual Feedback on Strength, Balance, Gait Ability, and Quality of Life in Patients with Stroke: A Randomized Controlled Trial" International Journal of Environmental Research and Public Health 18, no. 22: 12229. https://doi.org/10.3390/ijerph182212229
APA StyleHyun, S.-J., Lee, J., & Lee, B.-H. (2021). The Effects of Sit-to-Stand Training Combined with Real-Time Visual Feedback on Strength, Balance, Gait Ability, and Quality of Life in Patients with Stroke: A Randomized Controlled Trial. International Journal of Environmental Research and Public Health, 18(22), 12229. https://doi.org/10.3390/ijerph182212229