Development and Validation of a Graded Motor Imagery Intervention for Phantom Limb Pain in Patients with Amputations (GraMI Protocol): A Delphi Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Characteristics of the Research Group
2.3. Intervention Design
2.4. Ethical Considerations
2.5. Sample Determination
2.6. Participants
2.7. Survey Process
2.8. Statistical Analysis
3. Results
3.1. Expert Panel
3.2. Validation
4. Discussion
Limitations and Strengths
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Zaheer, A.; Malik, A.N.; Masood, T.; Fatima, S. Effects of phantom exercises on pain, mobility, and quality of life among lower limb amputees; a randomized controlled trial. BMC Neurol. 2021, 21, 416. [Google Scholar] [CrossRef]
- Batsford, S.; Ryan, C.G.; Martin, D.J. Non-pharmacological conservative therapy for phantom limb pain: A systematic review of randomised controlled trials. Physiother. Theory Pract. 2017, 33, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Bowering, K.J.; O’Connell, N.; Tabor, A.; Catley, M.; Leake, H.B.; Moseley, L.; Stanton, T. The Effects of Graded Motor Imagery and Its Components on Chronic Pain: A Systematic Review and Meta-Analysis. J. Pain 2013, 14, 3–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-pallero, M.Á.; Cardona, D.; Rueda-ruzafa, L. Central nervous system stimulation therapies in phantom limb pain: A systematic review of clinical trials. Neural. Regen. Res. 2022, 17, 59–64. [Google Scholar]
- Makin, T.R. Phantom limb pain: Thinking outside the (mirror) box. Brain 2021, 144, 1929–1932. [Google Scholar] [CrossRef] [PubMed]
- Finn, S.B.; Perry, B.N.; Clasing, J.E.; Walters, L.S.; Jarzombek, S.L.; Curran, S.; Rouhanian, M.; Keszler, M.S.; Hussey-Andersen, L.K.; Weeks, S.R.; et al. A randomized, Controlled Trial of Mirror Therapy for Upper Extremity Phantom limb Pain in Male amputees. Front. Neurol. 2017, 8, 267. [Google Scholar] [CrossRef] [Green Version]
- Campo-Prieto, P.; Rodríguez-Fuentes, G. Effectiveness of mirror therapy in phantom limb pain: A literature review. Neurologia, 2018; in press. [Google Scholar]
- Maciver, K.; Lloyd, D.M.; Kelly, S.; Roberts, N.; Nurmikko, T.; Maciver, K. Phantom limb pain, cortical reorganization and the therapeutic effect of mental imagery. Brain 2008, 131, 2181–2191. [Google Scholar] [CrossRef]
- Hinkel, M. Graded Motor Imagery for the Treatment of Phantom Limb Pain. Arch. Phys. Med. Rehabil. 2017, 98, e72. [Google Scholar] [CrossRef]
- Limakatso, K.; Parker, R. Treatment Recommendations for Phantom Limb Pain in People with Amputations: An Expert Consensus Delphi Study. PMR 2021, 13, 1–10. [Google Scholar] [CrossRef]
- Morales-Osorio, M.A.; Mejía, J.M. Imaginería motora graduada en el síndrome de miembro fantasma con dolor. Rev. Soc. Española Dolor 2012, 19, 209–216. [Google Scholar]
- Polli, A.; Moseley, G.L.; Gioia, E.; Beames, T.; Baba, A.; Agostini, M.; Tonin, P.; Turolla, A. Graded motor imagery for patients with stroke: A non-randomized controlled trial of a new approach. Eur. J. Phys. Rehabil. Med. 2017, 53, 14–23. [Google Scholar] [CrossRef]
- Coslett, H.B.; Medina, J.; Kliot, D.; Burkey, A.R. Mental motor imagery indexes pain: The hand laterality task. Eur. J. Pain. 2010, 14, 1007–1013. [Google Scholar] [CrossRef] [PubMed]
- Moseley, G.L. Graded motor imagery for pathologic pain: A randomized controlled trial. Neurology 2006, 67, 2129–2134. [Google Scholar] [CrossRef] [PubMed]
- Mekonen, C. Graded Motor Imagery to address pain and motor dysfunction from phantom limb pain, complex regional pain syndrome, chronic musculoskeletal pain, and stroke. J. Nurse Life Care Plan. 2019, 19, 45–51. [Google Scholar]
- Foell, J.; Bekrater-Bodmann, R.; Diers, M.; Flor, H. Mirror therapy for phantom limb pain: Brain changes and the role of body representation. Eur. J. Pain 2014, 18, 729. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, V.S.; Rogers-Ramachandran, D.; Cobb, S. Touching the phantom limb. Nature 1995, 377, 489–490. [Google Scholar] [CrossRef] [PubMed]
- Osinski, T. Imaginería motora graduada. Colloids Surf. A Physicochem. Eng. Asp. 2019, 39, 1–10. [Google Scholar]
- Limakatso, K.; Madden, V.J.; Manie, S.; Parker, R. The effectiveness of graded motor imagery for reducing phantom limb pain in amputees: A randomised controlled trial. Physiotherapy 2020, 109, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Tilak, M.; Isaac, S.A.; Fletcher, J.; Vasanthan, L.T.; Subbaiah, R.S.; Babu, A.; Bhide, R.; Tharion, G. Mirror Therapy and Transcutaneous Electrical Nerve Stimulation for Management of Phantom Limb Pain in Amputees—A Single Blinded Randomized Controlled Trial. Physiother. Res. Int. 2015, 21, 109–115. [Google Scholar] [CrossRef]
- Brunelli, S.; Morone, G.; Iosa, M.; Ciotti, C.; De Giorgi, R.; Foti, C.; Traballesi, M. Efficacy of Progressive Muscle Relaxation, Mental Imagery, and Phantom Exercise Training on Phantom Limb: A Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2015, 96, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Rothgangel, A.; Braun, S.; Winkens, B.; Beurskens, A.; Smeets, R. Traditional and augmented reality mirror therapy for patients with chronic phantom limb pain (PACT study): Results of a three-group, multicentre single-blind randomized controlled trial. Clin. Rehabil. 2018, 32, 1591–1608. [Google Scholar] [CrossRef] [PubMed]
- Landeta, J. Current validity of the Delphi method in social sciences. Technol. Forecast. Soc. Chang. 2006, 73, 467–482. [Google Scholar] [CrossRef]
- Avella, J.R. Delphi panels: Research design, procedures, advantages, and challenges. Int. J. Dr. Stud. 2016, 11, 305–321. [Google Scholar] [CrossRef]
- Varela-Ruiz, M.; Díaz-Bravo, L.; García-Durán, R. Description and uses of the Delphi method in health sciences research. Investigación en Educación Médica 2012, 1, 90–95. [Google Scholar]
- De Villiers, M.R.; de Villiers, P.J.T.; Kent, A.P. The Delphi technique in health sciences education research. Med. Teach. 2005, 27, 639–643. [Google Scholar] [CrossRef]
- Stoilos, G.; Stamou, G.; Pan, J.Z. International Journal of Approximate Reasoning Fuzzy extensions of OWL: Logical properties and reduction to Fuzzy Description Logics q. Int. J. Approx. Reason. 2010, 51, 656–679. [Google Scholar] [CrossRef] [Green Version]
- Sharma, G. Pros and cons of different sampling techniques Gaganpreet. Int. J. Appl. Res. 2017, 3, 749–752. [Google Scholar]
- Cruz-Ramírez, M.; Martínez-Cepena, M.C. Origen y desarrollo de un índice de competencia experta: El coeficiente k. Rev. Latinoam. Metodol. Investig. Soc. 2019, 10, 40–56. [Google Scholar]
- Sociedad Española De Pedagogía. ¿Cómo organizar un congreso científico de calidad?: Claves y variables del éxito del XV Congreso Nacional y V Iberoamericano de Pedagogía. Bordón. Rev. Pedagog. 2013, 65, 39–55. [Google Scholar]
- Management, A. 2014. Available online: https://www.econstor.eu/ (accessed on 30 August 2021).
- Osinski, I.C.; Bruno, A.S. Categorías de respuesta en escalas tipo likert. Psicothema 1998, 10, 623–631. [Google Scholar]
- Herrador Colmenero, L.; Perez Marmol, J.M.; Martí-García, C.; Querol Zaldivar, M.D.L.Á.; Tapia Haro, R.M.; Castro Sánchez, A.M.; Aguilar-Ferrándiz, M.E. Effectiveness of mirror therapy, motor imagery, and virtual feedback on phantom limb pain following amputation: A systematic review. Prosthet. Orthot. Int. 2018, 42, 288–298. [Google Scholar] [CrossRef] [PubMed]
- Mercier, C.; Sirigu, A. Training with Virtual Visual Feedback to Alleviate Phantom Limb Pain. Neurorehabilit. Neural Repair. 2015, 23, 587–594. [Google Scholar] [CrossRef] [PubMed]
- Anaforoğlu Külünkoğlu, B.; Erbahçeci, F.; Alkan, A. A comparison of the effects of mirror therapy and phantom exercises on phantom limb pain. Turk. J. Med. Sci. 2019, 49, 101–109. [Google Scholar] [CrossRef]
- Makin, T.R.; Scholz, J.; Slater, D.H.; Johansen-Berg, H.; Tracey, I. Reassessing cortical reorganization in the primary sensorimotor cortex following arm amputation. Brain 2015, 138, 2140–2146. [Google Scholar] [CrossRef] [Green Version]
- Jiang, G.; Yin, X.; Li, C.; Li, L.; Zhao, L.; Evans, A.C.; Jiang, T.; Wu, J.; Wang, J. The Plasticity of Brain Gray Matter and White Matter following Lower Limb Amputation. Neural Plast. 2015, 2015, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Alawieh, A.; Zhao, J.; Feng, W. Factors affecting post-stroke motor recovery: Implications on neurotherapy after brain injury. Behav. Brain Res. 2018, 340, 94–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoesz, M.R.; Zhang, M.; Weisser, V.D.; Prather, S.C.; Mao, H.; Sathian, K. Neural networks active during tactile form perception: Common and differential activity during macrospatial and microspatial tasks. Int. J. Psychophysiol. 2003, 50, 41–49. [Google Scholar] [CrossRef]
- Brodie, E.E.; Whyte, A.; Niven, C.A. Analgesia through the looking-glass? A randomized controlled trial investigating the effect of viewing a “virtual” limb upon phantom limb pain, sensation and movement. Eur. J. Pain 2007, 11, 428–436. [Google Scholar] [CrossRef]
High | Medium | Low | |
---|---|---|---|
Theoretical analysis performed by the expert | 0.3 | 0.2 | 0.1 |
Experience gained | 0.5 | 0.4 | 0.2 |
Studies on the subject by Spanish authors | 0.05 | 0.05 | 0.05 |
Studies on the subject by international authors | 0.05 | 0.05 | 0.05 |
Own knowledge | 0.05 | 0.05 | 0.05 |
Expert intuition | 0.05 | 0.05 | 0.05 |
Value of K | Strength of Concordance |
---|---|
<0.20 | Poor |
0.21–0.40 | Weak |
0.41–0.60 | Moderate |
0.61–0.80 | Good |
0.81–1.00 | Very good |
Participant | Kc | Ka | K |
---|---|---|---|
1 | 0.7 | 0.9 | 0.80 medium |
2 | 0.8 | 0.9 | 0.85 high |
3 | 1 | 0.9 | 0.95 high |
4 | 0.8 | 1 | 0.90 high |
5 | 0.7 | 0.9 | 0.8 medium |
6 | 0.7 | 0.9 | 0.8 medium |
7 | 0.7 | 0.9 | 0.8 medium |
8 | 0.9 | 0.8 | 0.85 high |
9 | 0.8 | 0.8 | 0.8 medium |
10 | 0.7 | 0.9 | 0.8 medium |
11 | 0.7 | 0.8 | 0.75 medium |
12 | 0.7 | 0.8 | 0.75 medium |
13 | 0.7 | 0.9 | 0.80 medium |
14 | 0.9 | 1 | 0.95 high |
15 | 0.7 | 0.9 | 0.80 medium |
Mean | 0.77 | 0.89 | 0.83 high |
R1 Intensity | R2 Intensity | R1 Frequency | R2 Frequency | R1 Duration | R2 Duration | R1 Progression | R2 Progression | |
---|---|---|---|---|---|---|---|---|
Mean | 6.16 | 6.53 | 5.84 | 6.46 | 6.5 | - | 6.69 | - |
Median | 6 | 7 | 7 | 7 | 7 | - | 7 | - |
Maximum | 7 | 7 | 7 | 7 | 7 | - | 7 | - |
Minimum | 4 | 6 | 2 | 3 | 4 | - | 6 | - |
Standard deviation | 0.89 | 0.52 | 1.72 | 1.09 | 0.87 | - | 0.48 | - |
Quartile 1 | 6 | 6 | 6 | 6 | 6 | - | 6 | - |
Quartile 3 | 7 | 7 | 7 | 7 | 7 | - | 7 | - |
IQR | 1 | 1 | 1 | 1 | 1 | - | 1 | - |
RIR (%) | 16.6% | 14.28% | 14.28% | 14.28% | 14.28% | - | 14.28% | - |
R1 Intensity | R2 Intensity | R1 Frequency | R2 Frequency | R1 Duration | R2 Duration | R1 Progression | R2 Progression | |
---|---|---|---|---|---|---|---|---|
Mean | 6.07 | 6.77 | 6.07 | 6.54 | 6.7 | - | 6.7 | - |
Median | 6 | 7 | 6 | 7 | 7 | - | 7 | - |
Maximum | 7 | 7 | 7 | 7 | 7 | - | 7 | - |
Minimum | 3 | 6 | 3 | 4 | 6 | - | 6 | - |
Standard deviation | 1.18 | 0.44 | 1.18 | 0.88 | 0.63 | - | 0.63 | - |
Quartile 1 | 6 | 7 | 6 | 7 | 7 | - | 7 | - |
Quartile 3 | 7 | 7 | 7 | 7 | 7 | - | 7 | - |
IQR | 1 | 0 | 1 | 1 | 0 | - | 0 | - |
RIR (%) | 16.6% | 0% | 16.6% | 14.28% | 0% | - | 0% | - |
R1 Intensity | R2 Intensity | R1 Frequency | R2 Frequency | R1 Duration | R2 Duration | R1 Progression | R2 Progression | |
---|---|---|---|---|---|---|---|---|
Mean | 6.15 | 6.77 | 6.4 | - | 6.7 | - | 6.7 | - |
Median | 7 | 7 | 7 | - | 7 | - | 7 | - |
Maximum | 7 | 7 | 7 | - | 7 | - | 7 | - |
Minimum | 3 | 4 | 4 | - | 6 | - | 5 | - |
Standard deviation | 1.34 | 0.44 | 0.96 | - | 0.48 | - | 0.64 | - |
Quartile 1 | 6 | 7 | 6 | - | 6 | - | 7 | - |
Quartile 3 | 7 | 7 | 7 | - | 7 | - | 7 | - |
IQR | 1 | 1 | 1 | - | 1 | - | 0 | - |
RIR (%) | 14.28% | 14.28% | 14.28% | - | 14.28% | - | 0% | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rierola-Fochs, S.; Varela-Vásquez, L.A.; Merchán-Baeza, J.A.; Minobes-Molina, E. Development and Validation of a Graded Motor Imagery Intervention for Phantom Limb Pain in Patients with Amputations (GraMI Protocol): A Delphi Study. Int. J. Environ. Res. Public Health 2021, 18, 12240. https://doi.org/10.3390/ijerph182212240
Rierola-Fochs S, Varela-Vásquez LA, Merchán-Baeza JA, Minobes-Molina E. Development and Validation of a Graded Motor Imagery Intervention for Phantom Limb Pain in Patients with Amputations (GraMI Protocol): A Delphi Study. International Journal of Environmental Research and Public Health. 2021; 18(22):12240. https://doi.org/10.3390/ijerph182212240
Chicago/Turabian StyleRierola-Fochs, Sandra, Luz Adriana Varela-Vásquez, Jose Antonio Merchán-Baeza, and Eduard Minobes-Molina. 2021. "Development and Validation of a Graded Motor Imagery Intervention for Phantom Limb Pain in Patients with Amputations (GraMI Protocol): A Delphi Study" International Journal of Environmental Research and Public Health 18, no. 22: 12240. https://doi.org/10.3390/ijerph182212240
APA StyleRierola-Fochs, S., Varela-Vásquez, L. A., Merchán-Baeza, J. A., & Minobes-Molina, E. (2021). Development and Validation of a Graded Motor Imagery Intervention for Phantom Limb Pain in Patients with Amputations (GraMI Protocol): A Delphi Study. International Journal of Environmental Research and Public Health, 18(22), 12240. https://doi.org/10.3390/ijerph182212240