Vulnerability and Resilience of Urban Traffic to Precipitation in China
Abstract
:1. Introduction
2. Study Area and Data Preprocessing
2.1. Study Area
2.2. Data Preprocessing
2.2.1. Collection and Preprocessing of the Traffic Data
2.2.2. Collection and Preprocessing of Rainfall Data
3. Proposed Methods
3.1. Traffic Vulnerability Index
3.2. Traffic Resilience Index
4. Research Results
4.1. Traffic Vulnerability in 39 Cities
4.2. Traffic Resilience in 39 Cities
4.3. Normalization Evaluation
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, J.; Siri, J.; Remais, J.; Cheng, Q.; Zhang, H.; Chan, K.K.Y.; Sun, Z.; Zhao, Y.; Cong, N.; Li, X.; et al. The Tsinghua–Lancet Commission on Healthy Cities in China: Unlocking the power of cities for a healthy China. Lancet 2018, 391, 2140–2184. [Google Scholar] [CrossRef] [Green Version]
- Zijlema, W.L.; Klijs, B.; Stolk, R.P.; Rosmalen, J. (Un)Healthy in the City: Respiratory, Cardiometabolic and Mental Health Associated with Urbanity. PLoS ONE 2015, 10, e0143910. [Google Scholar] [CrossRef]
- Hou, B.; Nazroo, J.; Banks, J.; Marshall, A. Are cities good for health? A study of the impacts of planned urbanization in China. Int. J. Epidemiol. 2019, 48, 1083–1090. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yu, Y. Increasing health inequality in China: An empirical study with ordinal data. J. Econ. Inequal. 2016, 14, 41–61. [Google Scholar] [CrossRef]
- Wu, T.; Perrings, C.; Kinzig, A.; Collins, J.P.; Minteer, B.A.; Daszak, P. Economic growth, urbanization, globalization, and the risks of emerging infectious diseases in China: A review. Ambio 2017, 46, 18–29. [Google Scholar] [CrossRef]
- Wang, H.; Naghavi, M.; Allen, C.; Barber, R.M.; Bhutta, Z.A.; Carter, A.; Casey, D.C.; Charlson, F.J.; Chen, A.Z.; Coates, M.M.; et al. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1459–1544. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Promoting Health in the Urban Context; WHO Healthy Cities Project: Copenhagen, Denmark, 1988. [Google Scholar]
- Central People’s Government of the People’s Republic of China. Central Committee of the Communist Party of China and the State Council Issued Healthy CHINA 2030 Planning Outline. 2016. Available online: http://www.gov.cn/xinwen/2016-10/25/content_5124174.htm (accessed on 25 October 2020).
- China Health Commission. Notice on Launching the Pilot Work of Healthy Cities. 2016. Available online: http://www.nhc.gov.cn/jkj/s5898/201611/f1cb9ed675274c0fab49a87410ce9e20.shtml (accessed on 25 October 2020).
- Ministry of Housing and Urban-Rural Development of China. Letter of the Ministry of Housing and Urban-Rural Develop-ment on Supporting 2020 Urban Physical Examination. Available online: http://www.mohurd.gov.cn/wjfb/202006/t20200618_245945.html (accessed on 16 June 2020).
- Fernández, R.Á.; Caraballo, S.C.; López, F.C. A probabilistic approach for determining the influence of urban traffic management policies on energy consumption and greenhouse gas emissions from a battery electric vehicle. J. Clean. Prod. 2019, 236, 117604. [Google Scholar] [CrossRef]
- Yang, M.; Ma, T.; Sun, C. Evaluating the impact of urban traffic investment on SO2 emissions in China cities. Energy Policy 2018, 113, 20–27. [Google Scholar] [CrossRef]
- Rossi, I.A.; Vienneau, D.; Ragettli, M.S.; Flückiger, B.; Röösli, M. Estimating the health benefits associated with a speed limit reduction to thirty kilometres per hour: A health impact assessment of noise and road traffic crashes for the Swiss city of Lausanne. Environ. Int. 2020, 145, 106126. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Hu, D. Study on the vehicle routing problem considering congestion and emission factors. Int. J. Prod. Res. 2019, 57, 6115–6129. [Google Scholar] [CrossRef]
- Chang, Y.S.; Lee, Y.J.; Choi, S.S.B. Is there more traffic congestion in larger cities? -Scaling analysis of the 101 largest U.S. urban centers-. Transp. Policy 2017, 59, 54–63. [Google Scholar] [CrossRef]
- Evans, B.; Chen, A.S.; Djordjević, S.; Webber, J.; Gómez, A.G.; Stevens, J. Investigating the Effects of Pluvial Flooding and Climate Change on Traffic Flows in Barcelona and Bristol. Sustainability 2020, 12, 2330. [Google Scholar] [CrossRef] [Green Version]
- Markolf, S.A.; Hoehne, C.; Fraser, A.; Chester, M.V.; Underwood, B. Transportation resilience to climate change and extreme weather events–Beyond risk and robustness. Transp. Policy 2019, 74, 174–186. [Google Scholar] [CrossRef]
- Dulal, H.B. Making cities resilient to climate change: Identifying “win–win” interventions. Local Environ. 2017, 22, 106–125. [Google Scholar] [CrossRef]
- Coconea, L.; Bellini, E. Advanced Traffic Management Systems supporting resilient smart cities. Transp. Res. Procedia 2019, 41, 556–558. [Google Scholar] [CrossRef]
- Kasmalkar, I.G.; Serafin, K.A.; Miao, Y.; Bick, I.A.; Ortolano, L.; Ouyang, D.; Suckale, J. When floods hit the road: Resilience to flood-related traffic disruption in the San Francisco Bay Area and beyond. Sci. Adv. 2020, 6, eaba2423. [Google Scholar] [CrossRef]
- Central People’s Government of the People’s Republic of China. Central Committee of the Communist Party of China and the State Council Issued Outline of Building a Powerful Transportation Country. 2019. Available online: http://www.gov.cn/zhengce/2019-09/19/content_5431432.htm (accessed on 25 October 2020).
- Zhang, W.; Li, R.; Shang, P.; Liu, H. Impact Analysis of Rainfall on Traffic Flow Characteristics in Beijing. Int. J. Intell. Transp. Syst. Res. 2019, 17, 150–160. [Google Scholar] [CrossRef]
- Zhang, J.; Song, G.; Gong, D.; Gao, Y.; Yu, L.; Guo, J. Analysis of rainfall effects on road travel speed in Beijing, China. IET Intell. Transp. Syst. 2018, 12, 93–102. [Google Scholar] [CrossRef]
- Chung, Y. Assessment of non-recurrent congestion caused by precipitation using archived weather and traffic flow data. Transp. Policy 2012, 19, 167–173. [Google Scholar] [CrossRef]
- Baidu Map. Report on Urban Traffic in China in 2019. 2020. Available online: http://huiyan.baidu.com/cms/report/2019annualtrafficreport/index.html (accessed on 9 January 2020).
- Baidu Map. Report on Urban Traffic in China in 2018. 2019. Available online: http://huiyan.baidu.com/cms/report/2018annualtrafficreport/index.html (accessed on 14 January 2020).
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J. Integrated Multi-satellitE Retrievals for GPM (IMERG) technical documentation. NASA/GSFC Code 2015, 612, 2019. [Google Scholar]
- Ministry of Housing and Urban-Rural Development of China. China’s Main Cities Road Network Density Monitoring Report. 2020. Available online: http://files.in5.cn/202005/2020%E5%B9%B4%E5%BA%A6%E4%B8%AD%E5%9B%BD%E4%B8%BB%E8%A6%81%E5%9F%8E%E5%B8%82%E9%81%93%E8%B7%AF%E7%BD%91%E5%AF%86%E5%BA%A6%E7%9B%91%E6%B5%8B%E6%8A%A5%E5%91%8A.pdf (accessed on 14 January 2021).
- Rahman, M.; Najaf, P.; Fields, M.G.; Thill, J.-C. Traffic congestion and its urban scale factors: Empirical evidence from American urban areas. Int. J. Sustain. Transp. 2021, 1–16. [Google Scholar] [CrossRef]
- Zhu, J.; Dai, Q.; Deng, Y.; Zhang, A.; Zhang, Y.; Zhang, S. Indirect Damage of Urban Flooding: Investigation of Flood-Induced Traffic Congestion Using Dynamic Modeling. Water 2018, 10, 622. [Google Scholar] [CrossRef] [Green Version]
- Hussain, E.; Ahmed, S.I.; Ali, M.S. Modeling the effects of rainfall on vehicular traffic. J. Mod. Transp. 2018, 26, 133–146. [Google Scholar] [CrossRef] [Green Version]
- Nosratabadi, S.; Mosavi, A.; Keivani, R.; Ardabili, S.; Aram, F. State of the Art Survey of Deep Learning and Machine Learning Models for Smart Cities and Urban Sustainability. In Proceedings of the International Conference on Global Research and Education, Balatonfüred, Hungary, 4–7 September 2019; Springer: New York, NY, USA, 2020; pp. 228–238. [Google Scholar]
- Moroke, T.; Schoeman, C.; Schoeman, I. Developing a neighbourhood sustainability assessment model: An approach to sustainable urban development. Sustain. Cities Soc. 2019, 48, 101433. [Google Scholar] [CrossRef]
- Shen, L.; Du, L.; Yang, X.; Du, X.; Wang, J.; Hao, J. Sustainable Strategies for Transportation Development in Emerging Cities in China: A Simulation Approach. Sustainability 2018, 10, 844. [Google Scholar] [CrossRef] [Green Version]
- Havko, J.; Titko, M.; Kováčová, J. Vulnerability of the City Infrastructure as a Part of the Resilient City Concept. Procedia Eng. 2017, 192, 307–312. [Google Scholar] [CrossRef]
- Zhu, S.; Li, D.; Feng, H.; Gu, T.; Hewage, K.; Sadiq, R. Smart city and resilient city: Differences and connections. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2020, 10, 1388. [Google Scholar] [CrossRef]
City | Vulnerability Index k | p | City | Vulnerability Index k | p |
---|---|---|---|---|---|
Beijing | 0.1096 | 0.0031 | Xuzhou | 0.0168 | 0.4035 |
Shanghai | 0.0250 | 0.0665 | Yangzhou | 0.0174 | 0.0136 |
Guangzhou | 0.0420 | 0.0000 | Nantong | 0.0104 | 0.2566 |
Shenzhen | 0.0361 | 0.0000 | Hefei | 0.0363 | 0.0077 |
Qingdao | 0.0826 | 0.0083 | Changzhou | 0.0186 | 0.0009 |
Zhengzhou | 0.0180 | 0.3479 | Wuxi | 0.0110 | 0.5536 |
Xi’an | 0.0119 | 0.4312 | Jiaxing | 0.0126 | 0.1619 |
Nanjing | 0.0085 | 0.1489 | Shaoxing | 0.0213 | 0.0187 |
Suzhou | 0.0170 | 0.0370 | Jinhua | 0.0106 | 0.2019 |
Chengdu | 0.0514 | 0.0024 | Taizhou | 0.0043 | 0.2781 |
Wuhan | 0.0840 | 0.0000 | Wenzhou | 0.0110 | 0.1246 |
Hangzhou | 0.0314 | 0.0003 | Guiyang | 0.0542 | 0.0091 |
Ningbo | 0.0207 | 0.0305 | Fuzhou | 0.0357 | 0.0145 |
Chongqing | 0.0835 | 0.0524 | Quanzhou | 0.0388 | 0.1404 |
Changsha | 0.0342 | 0.0039 | Huizhou | 0.0045 | 0.5502 |
Dongguan | 0.0412 | 0.0000 | Foshan | 0.0152 | 0.1044 |
Taiyuan | 0.0062 | 0.8545 | Nanning | 0.0206 | 0.0265 |
Yantai | 0.0306 | 0.1570 | Zhuhai | 0.0283 | 0.0012 |
Jinan | 0.0577 | 0.1303 | Haikou | 0.0262 | 0.0003 |
Lanzhou | 0.0533 | 0.0024 |
Name | Pattern | Form | Network Density (km/km2) |
---|---|---|---|
Beijing | Blocks | 5.7 | |
Wuhan | multi-central cluster | 6.0 | |
Lanzhou | valley-shaped linear type | 4.2 | |
Chongqing | multi-central cluster | 6.7 | |
Guiyang | multi-central cluster, “S” type | 6.2 | |
Qingdao | multi-central cluster | 5.4 |
City Name | Recovery Time (Hour) | City Name | Recovery Time (Hour) |
---|---|---|---|
Shanghai | 1.250 | Hefei | 0.675 |
Beijing | 0.450 | Huizhou | 0.643 |
Shenzhen | 0.412 | Quanzhou | 0.611 |
Guangzhou | 0.200 | Changzhou | 0.529 |
Changsha | 0.804 | Guiyang | 0.500 |
Zhengzhou | 0.633 | Jinhua | 0.486 |
Nanjing | 0.511 | Yantai | 0.451 |
Dongguan | 0.462 | Fuzhou | 0.440 |
Suzhou | 0.444 | Taiyuan | 0.400 |
Chengdu | 0.444 | Wuxi | 0.378 |
Wuhan | 0.441 | Yangzhou | 0.367 |
Qingdao | 0.359 | Taizhou | 0.357 |
Ningbo | 0.333 | Zhuhai | 0.353 |
Chongqing | 0.250 | Shaoxing | 0.333 |
Xi’an | 0.233 | Haikou | 0.326 |
Hangzhou | 0.083 | Wenzhou | 0.281 |
Lanzhou | 0.938 | Foshan | 0.214 |
Nanning | 0.848 | Jiaxing | 0.120 |
Jinan | 0.731 | Nantong | 0.034 |
Xuzhou | 0.682 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Liu, Y.; Xiao, Y.; Sun, W.; Zhang, C.; Wang, Y.; Bai, Y. Vulnerability and Resilience of Urban Traffic to Precipitation in China. Int. J. Environ. Res. Public Health 2021, 18, 12342. https://doi.org/10.3390/ijerph182312342
Zhang M, Liu Y, Xiao Y, Sun W, Zhang C, Wang Y, Bai Y. Vulnerability and Resilience of Urban Traffic to Precipitation in China. International Journal of Environmental Research and Public Health. 2021; 18(23):12342. https://doi.org/10.3390/ijerph182312342
Chicago/Turabian StyleZhang, Min, Yufu Liu, Yixiong Xiao, Wenqi Sun, Chen Zhang, Yong Wang, and Yuqi Bai. 2021. "Vulnerability and Resilience of Urban Traffic to Precipitation in China" International Journal of Environmental Research and Public Health 18, no. 23: 12342. https://doi.org/10.3390/ijerph182312342
APA StyleZhang, M., Liu, Y., Xiao, Y., Sun, W., Zhang, C., Wang, Y., & Bai, Y. (2021). Vulnerability and Resilience of Urban Traffic to Precipitation in China. International Journal of Environmental Research and Public Health, 18(23), 12342. https://doi.org/10.3390/ijerph182312342