Identifying Clinical and MRI Characteristics Associated with Quality of Life in Patients with Anterior Cruciate Ligament Injury: Prognostic Factors for Long-Term
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Clinical Measurements
2.4. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sepulveda, F.; Sanchez, L.; Amy, E.; Micheo, W. Anterior Cruciate Ligament Injury: Return to Play, Function and Long-Term Considerations. Curr. Sports Med. Rep. 2017, 16, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Villafañe, J.H.; Valdes, K.; Pedersini, P.; Berjano, P. Osteoarthritis: A call for research on central pain mechanism and personalized prevention strategies. Clin. Rheumatol. 2018, 38, 583–584. [Google Scholar] [CrossRef]
- Wellsandt, E.; Zeni, J.; Axe, M.; Snyder-Mackler, L. Hip joint biomechanics in those with and without post-traumatic knee osteoarthritis after anterior cruciate ligament injury. Clin. Biomech. 2017, 50, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Spindler, K.P.; Wright, R.W. Anterior cruciate ligament tear. N. Engl. J. Med. 2008, 359, 2135–2142. [Google Scholar] [CrossRef] [Green Version]
- Filbay, S.; Culvenor, A.; Ackerman, I.; Russell, T.; Crossley, K. Quality of life in anterior cruciate ligament-deficient individuals: A systematic review and meta-analysis. Br. J. Sports Med. 2015, 49, 1033–1041. [Google Scholar] [CrossRef]
- Filbay, S.R.; Grindem, H. Evidence-based recommendations for the management of anterior cruciate ligament (ACL) rupture. Best Pr. Res. Clin. Rheumatol. 2019, 33, 33–47. [Google Scholar] [CrossRef]
- Van Dyck, P.; Vanhoenacker, F.M.; Lambrecht, V.; Wouters, K.; Gielen, J.L.; Dossche, L.; Parizel, P.M. Prospective Comparison of 1.5 and 3.0-T MRI for Evaluating the Knee Menisci and ACL. J. Bone Jt. Surg. 2013, 95, 916–924. [Google Scholar] [CrossRef] [PubMed]
- Svantesson, E.; Senorski, E.H.; Webster, K.E.; Karlsson, J.; Diermeier, T.; Rothrauff, B.B.; Meredith, S.J.; Rauer, T.; Irrgang, J.J.; Spindler, K.P.; et al. Clinical outcomes after anterior cruciate ligament injury: Panther symposium ACL injury clinical outcomes consensus group. Knee Surg. Sports Traumatol. Arthrosc. 2020, 28, 2415–2434. [Google Scholar] [CrossRef] [PubMed]
- Tayton, E.; Verma, R.; Higgins, B.; Gosal, H. A correlation of time with meniscal tears in anterior cruciate ligament deficiency: Stratifying the risk of surgical delay. Knee Surg. Sports Traumatol. Arthrosc. 2008, 17, 30–34. [Google Scholar] [CrossRef]
- Delincé, P.; Ghafil, D. Anterior cruciate ligament tears: Conservative or surgical treatment? A critical review of the literature. Knee Surg. Sports Traumatol. Arthrosc. 2011, 20, 48–61. [Google Scholar] [CrossRef] [PubMed]
- Frobell, R.B.; Roos, E.; Roos, H.P.; Ranstam, J.; Lohmander, S. A Randomized Trial of Treatment for Acute Anterior Cruciate Ligament Tears. N. Engl. J. Med. 2010, 363, 331–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villafañe, J.H.; Bishop, M.D.; Pedersini, P.; Berjano, P. Physical Activity and Osteoarthritis: Update and Perspectives. Pain Med. 2019, 20, 1461–1463. [Google Scholar] [CrossRef]
- van Melick, N.; van Cingel, R.E.; Brooijmans, F.; Neeter, C.; van Tienen, T.; Hullegie, W.; Nijhuis-van der Sanden, M.W. Evi-dence-based clinical practice update: Practice guidelines for anterior cruciate ligament rehabilitation based on a system-atic review and multidisciplinary consensus. Br. J. Sports. Med. 2016, 50, 1506–1515. [Google Scholar] [CrossRef] [Green Version]
- Gokeler, A.; Neuhaus, D.; Benjaminse, A.; Grooms, D.R.; Baumeister, J. Principles of Motor Learning to Support Neuroplasticity After ACL Injury: Implications for Optimizing Performance and Reducing Risk of Second ACL Injury. Sports Med. 2019, 49, 853–865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marotta, N.; Demeco, A.; de Scorpio, G.; Indino, A.; Iona, T.; Ammendolia, A. Late Activation of the Vastus Medialis in Deter-mining the Risk of Anterior Cruciate Ligament Injury in Soccer Players. J. Sport. Rehabil. 2019, 7, 952–955. [Google Scholar]
- de Sire, A.; Demeco, A.; Marotta, N.; Moggio, L.; Palumbo, A.; Iona, T.; Ammendolia, A. Anterior Cruciate Ligament Injury Pre-vention Exercises: Could a Neuromuscular Warm-Up Improve Muscle Pre-Activation before a Soccer Game? A Proof-of-Principle Study on Professional Football Players. Appl. Sci. 2021, 11, 4958. [Google Scholar] [CrossRef]
- de Sire, A.; Marotta, N.; Demeco, A.; Moggio, L.; Paola, P.; Marotta, M.; Iona, T.; Invernizzi, M.; Leigheb, M.; Ammendolia, A. Electromyographic Assessment of Anterior Cruciate Ligament Injury Risk in Male Tennis Players: Which Role for Visu-al Input? A Proof-of-Concept Study. Diagnostics 2021, 11, 997. [Google Scholar] [CrossRef] [PubMed]
- Medina, J.M.; McLeod, T.C.V.; Howell, S.; Kingma, J.J. Timing of neuromuscular activation of the quadriceps and hamstrings prior to landing in high school male athletes, female athletes, and female non-athletes. J. Electromyogr. Kinesiol. 2008, 18, 591–597. [Google Scholar] [CrossRef]
- Sanchez Romero, E.A.; Fernandez Carnero, J.; Villafane, J.H.; Calvo-Lobo, C.; Ochoa Saez, V.; Burgos Caballero, V.; Laguarta Val, S.; Pedersini, P.; Pecos Martin, D. Prevalence of Myofascial Trigger Points in Patients with Mild to Moderate Painful Knee Osteoarthritis: A Secondary Analysis. J. Clin. Med. 2020, 9, 2561. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Romero, E.A.; Pecos-Martín, D.; Calvo-Lobo, C.; García-Jiménez, D.; Ochoa-Sáez, V.; Burgos-Caballero, V.; Fernán-dez-Carnero, J. Clinical features and myofascial pain syndrome in older adults with knee osteoarthritis by sex and age distribution: A cross-sectional study. Knee 2019, 26, 165–173. [Google Scholar] [CrossRef]
- Filbay, S.R.; Roos, E.; Frobell, R.B.; Roemer, F.; Ranstam, J.; Lohmander, S. Delaying ACL reconstruction and treating with exercise therapy alone may alter prognostic factors for 5-year outcome: An exploratory analysis of the KANON trial. Br. J. Sports Med. 2017, 51, 1622–1629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayala-Mejias, J.; Garcia-Gonzalez, B.; Alcocer-Perez-España, L.; Berjano, P.; Villafañe, J. Relationship between Widening and Position of the Tunnels and Clinical Results of Anterior Cruciate Ligament Reconstruction to Knee Osteoarthritis: 30 Patients at a Minimum Follow-Up of 10 Years. J. Knee Surg. 2016, 30, 501–508. [Google Scholar] [CrossRef]
- Filbay, S.R.; Crossley, K.M.; Ackerman, I.N. Activity preferences, lifestyle modifications and re-injury fears influence long-er-term quality of life in people with knee symptoms following anterior cruciate ligament reconstruction: A qualitative study. J. Physiother. 2016, 62, 103–110. [Google Scholar] [CrossRef] [Green Version]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Ob-servational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. J. Clin. Epidemiol. 2008, 11, 260–265. [Google Scholar]
- Bin Abd Razak, H.R.; Sayampanathan, A.A.; Koh, T.H.; Tan, H.C. Diagnosis of ligamentous and meniscal pathologies in patients with anterior cruciate ligament injury: Comparison of magnetic resonance imaging and arthroscopic findings. Ann. Transl. Med. 2015, 3, 243. [Google Scholar]
- Li, K.; Li, J.; Zheng, X.; Marot, V.; Murgier, J.; Cavaignac, E.; Huang, W. Increased lateral meniscal slope is associated with greater incidence of lateral bone contusions in noncontact ACL injury. Knee Surg. Sports Traumatol. Arthrosc. 2019, 28, 2000–2008. [Google Scholar] [CrossRef]
- Bouguennec, N.; Robinson, J.; Douiri, A.; Graveleau, N.; Colombet, P.D. Two-year postoperative MRI appearances of anterior cruciate ligament hamstrings autografts are not correlated with functional outcomes, anterior laxity, or patient age. Bone Jt. Open 2021, 2, 569–575. [Google Scholar] [CrossRef] [PubMed]
- Moreira, J.; Almeida, M.; Lunet, N.; Gutierres, M. Ramp lesions: A systematic review of MRI diagnostic accuracy and treatment efficacy. J. Exp. Orthop. 2020, 7, 1–14. [Google Scholar] [CrossRef]
- Pedersen, D.R.; El-Khoury, G.Y.; Thedens, D.R.; Saad-Eldine, M.; Phisitkul, P.; Amendola, A. Bone contusion progression from traumatic knee injury: Association of rate of contusion resolution with injury severity. Open Access J. Sports Med. 2017, ume 8, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Kon, E.; Ronga, M.; Filardo, G.; Farr, J.; Madry, H.; Milano, G.; Andriolo, L.; Shabshin, N. Bone marrow lesions and subchondral bone pathology of the knee. Knee Surg. Sports Traumatol. Arthrosc. 2016, 24, 1797–1814. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.; Sheng, B.; Li, J.; Xiao, Z.; Yuan, M.; Yang, H.; Lv, F.; Lv, F. Mechanisms of non-contact anterior cruciate ligament injury as determined by bone contusion location and severity. Quant. Imaging Med. Surg. 2021, 11, 3263–3273. [Google Scholar] [CrossRef]
- Simon, D.; Mascarenhas, R.; Saltzman, B.M.; Rollins, M.; Bach, B.R.; MacDonald, P. The Relationship between Anterior Cruciate Ligament Injury and Osteoarthritis of the Knee. Adv. Orthopedics. 2015, 2015, 928301. [Google Scholar] [CrossRef]
- Gillquist, J.; Messner, K. Anterior Cruciate Ligament Reconstruction and the Long Term Incidence of Gonarthrosis. Sports Med. 1999, 27, 143–156. [Google Scholar] [CrossRef] [PubMed]
- Grindem, H.; Snyder-Mackler, L.; Moksnes, H.; Engebretsen, L.; Risberg, M.A. Simple decision rules can reduce reinjury risk by 84% after ACL recon-struction: The Delaware-Oslo ACL cohort study. Br. J. Sports Med. 2016, 50, 804–808. [Google Scholar] [CrossRef]
- Kyritsis, P.; Bahr, R.; Landreau, P.; Miladi, R.; Witvrouw, E. Likelihood of ACL graft rupture: Not meeting six clinical discharge criteria before return to sport is associated with a four times greater risk of rupture. Br. J. Sports Med. 2016, 50, 946–951. [Google Scholar] [CrossRef]
- Sugimoto, D.; Myer, G.D.; Foss, K.D.B.; Hewett, T.E. Dosage Effects of Neuromuscular Training Intervention to Reduce Anterior Cruciate Ligament Injuries in Female Athletes: Meta- and Sub-Group Analyses. Sports Med. 2013, 44, 551–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Øiestad, B.E.; Juhl, C.B.; Eitzen, I.; Thorlund, J.B. Knee extensor muscle weakness is a risk factor for development of knee osteo-arthritis. A systematic review and meta-analysis. Osteoarthr. Cartil. 2015, 23, 171–177. [Google Scholar] [CrossRef] [Green Version]
- Risberg, M.A.; Grindem, H.; Øiestad, B.E. We Need to Implement Current Evidence in Early Rehabilitation Programs to Improve Long-Term Outcome After Anterior Cruciate Ligament Injury. J. Orthop. Sports Phys. Ther. 2016, 46, 710–713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toomey, C.M.; Whittaker, J.; Nettel-Aguirre, A.; Reimer, R.A.; Woodhouse, L.J.; Ghali, B.; Doyle-Baker, P.K.; Emery, C.A. Higher Fat Mass Is Associated With a History of Knee Injury in Youth Sport. J. Orthop. Sports Phys. Ther. 2017, 47, 80–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitehead, T.S. Failure of Anterior Cruciate Ligament Reconstruction. Clin. Sports Med. 2013, 32, 177–204. [Google Scholar] [CrossRef] [PubMed]
- Tayfur, B.; Charuphongsa, C.; Morrissey, D.; Miller, S.C. Neuromuscular Function of the Knee Joint Following Knee Injuries: Does It Ever Get Back to Normal? A Systematic Review with Meta-Analyses. Sports Med. 2020, 51, 321–338. [Google Scholar] [CrossRef] [PubMed]
- Skou, S.T.; Roos, E.M. Physical therapy for patients with knee and hip osteoarthritis: Supervised, active treatment is current best practice. Clin. Exp. Rheumatol. 2019, 37 Suppl. S120, 112–117. [Google Scholar]
- Villafañe, J.H.; Isgrò, M.; Borsatti, M.; Berjano, P.; Pirali, C.; Negrini, S. Effects of action observation treatment in recovery after total knee replacement: A prospective clinical trial. Clin. Rehabil. 2016, 31, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Kise, N.J.; Risberg, M.A.; Stensrud, S.; Ranstam, J.; Engebretsen, L.; Roos, E.M. Exercise therapy versus arthroscopic partial me-niscectomy for degenerative meniscal tear in middle aged patients: Randomised controlled trial with two year fol-low-up. BMJ 2016, 20, i3740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMunn, A.; Nazroo, J.; Breeze, E. Inequalities in health at older ages: A longitudinal investigation of the onset of illness and survival effects in England. Age Ageing 2009, 38, 181–187. [Google Scholar] [CrossRef] [Green Version]
- Sousa, A.C.; Guerra, R.O.; Thanh Tu, M.; Phillips, S.P.; Guralnik, J.M.; Zunzunegui, M.V. Lifecourse adversity and physical per-formance across countries among men and women aged 65–74. PLoS ONE 2014, 7, e102299. [Google Scholar]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Study Investigators. Primary prevention of cardiovascular disease with a Mediterranean diet. N. Engl. J. Med. 2013, 4, 1279–1290. [Google Scholar] [CrossRef] [Green Version]
Variable | Surgery (n = 195) |
---|---|
Age (years) | 43.3 ± 10.3 |
Gender, (n (%)) | |
Male | 156 (80%) |
Female | 39 (20%) |
Height (m) | 175.6 ± 7.6 |
Weight (kg) | 75.4 ± 13.5 |
IKDC (total) | 87.1 ± 11.6 |
Follow up (years) | 8.4 ± 2.6 |
ACL injury, (n (%)) | |
Partial tears | 39 (20%) |
Total tears | 156 (80%) |
PCL injury, (n (%)) | |
Yes | 3 (1.5%) |
No | 192 (98.5%) |
MCL injury, (n (%)) | |
Yes | 58 (29.7%) |
No | 137 (70.3%) |
ECL injury, (n (%)) | |
Yes | 11 (5.6%) |
No | 184 (94.4%) |
Bone contusion, (n (%)) | |
Yes | 121 (62.1%) |
No | 74 (37.9%) |
Sport injury, (n (%)) | |
Yes | 146 (74.9%) |
No | 49 (25.1%) |
Sport associated, (n (%)) | |
Yes | 171 (87.7%) |
No | 24 (12.3%) |
Variable | N | IKDC Score | Mean Difference | 95% CI | p |
---|---|---|---|---|---|
Gender | |||||
Male | 156 | 88.5 ± 13.2 | 6.2# | 2.1; 10.2 | 0.002 |
Female | 39 | 82.3 ± 15.1 | |||
ACL | |||||
Acute, partial tears | 39 | 87.0 ± 11.3 | −0.2 | −4.8; 4.3 | 0.8 |
Acute, complete tears | 156 | 87.2 ± 13.7 | |||
Bone contusion | |||||
Yes | 121 | 89.8 ± 13.1 | −4.0 | −8.3; −2.7 | 0.2 |
No | 74 | 93.7 ± 14.2 | |||
Sports injury | |||||
Yes | 171 | 88.1 ± 14.7 | 11.8# | 7.3; 16.4 | 0.001 |
No | 24 | 76.2 ± 15.8 | |||
Treatment of ACL lesion | |||||
Surgical | 137 | 82.7 ± 14.6 | −2.3 | −6.3; 1.8 | 0.4 |
Conservative | 58 | 85.0 ± 13.7 | |||
Side | |||||
Right | 107 | 86.4 ± 14.2 | −1.1 | −3.6; 3.5 | 0.9 |
Left | 88 | 87.6 ± 13.9 | |||
PCL | |||||
Injury | 3 | 76.8 ± 9.3 | −8.6 | −25.2; 7.6 | 0.3 |
No injury | 192 | 85.4 ± 14.5 | |||
MCL | |||||
Injury | 61 | 85.9 ± 15.5 | −0.9 | −4.8; 3.1 | 0.7 |
No injury | 134 | 86.8 ± 13.9 | |||
ECL | |||||
Injury | 11 | 85.2 ± 17.1 | −1.4 | −9.1; 6.6 | 0.8 |
No injury | 184 | 86.6 ± 13.2 |
95% Confidence Interval for Bone Contusion Relative Risk | ||||||
---|---|---|---|---|---|---|
Factors | B | Wald | p-Value * | Bone Contusion Odds Ratio | Lower Bound | Upper Bound |
Intercept | −0.39 | 1.02 | 0.31 | - | - | - |
Associated injury (Ref: no) | −0.75 | 5.46 | 0.02 * | 2.12 | 1.07 | 3.92 |
Sports injury (Ref: no) | −0.82 | 0.41 | 0.04 * | 0.44 | 0.22 | 0.97 |
MCL injury (Ref: no) | −0.74 | 4.31 | 0.04 * | 0.48 | 0.23 | 0.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez Romero, E.A.; Lim, T.; Alonso Pérez, J.L.; Castaldo, M.; Martínez Lozano, P.; Villafañe, J.H. Identifying Clinical and MRI Characteristics Associated with Quality of Life in Patients with Anterior Cruciate Ligament Injury: Prognostic Factors for Long-Term. Int. J. Environ. Res. Public Health 2021, 18, 12845. https://doi.org/10.3390/ijerph182312845
Sánchez Romero EA, Lim T, Alonso Pérez JL, Castaldo M, Martínez Lozano P, Villafañe JH. Identifying Clinical and MRI Characteristics Associated with Quality of Life in Patients with Anterior Cruciate Ligament Injury: Prognostic Factors for Long-Term. International Journal of Environmental Research and Public Health. 2021; 18(23):12845. https://doi.org/10.3390/ijerph182312845
Chicago/Turabian StyleSánchez Romero, Eleuterio A., Tifanny Lim, José Luis Alonso Pérez, Matteo Castaldo, Pedro Martínez Lozano, and Jorge Hugo Villafañe. 2021. "Identifying Clinical and MRI Characteristics Associated with Quality of Life in Patients with Anterior Cruciate Ligament Injury: Prognostic Factors for Long-Term" International Journal of Environmental Research and Public Health 18, no. 23: 12845. https://doi.org/10.3390/ijerph182312845
APA StyleSánchez Romero, E. A., Lim, T., Alonso Pérez, J. L., Castaldo, M., Martínez Lozano, P., & Villafañe, J. H. (2021). Identifying Clinical and MRI Characteristics Associated with Quality of Life in Patients with Anterior Cruciate Ligament Injury: Prognostic Factors for Long-Term. International Journal of Environmental Research and Public Health, 18(23), 12845. https://doi.org/10.3390/ijerph182312845